

Effects of Varying Levels of Ocimum gratissimum Leaf Powder on Growth Performance and Feed Utilization of *Heterobranchus bidorsalis* Fingerlings

*AFE, O.E, DADA, A.A AND OLUFAYO, M.O. Department of Fisheries and Aquaculture Technology, The Federal University of Technology Akure, Ondo State, Nigeria. **Corresponding Author* E-mail: oeaguda@futa.edu.ng

Abstract

Growth performance and feed utilization of Heterobranchus bidorsalis fingerlings fed varying inclusion levels of diets supplemented with Ocimum gratissimum leaf powder were assessed in the study. Apparently healthy H. bidorsalis fingerlings (12.05g \pm 0.01) were randomly divided into five treatment groups representing iso-nitrogenous diets (about 40% crude protein) containing varying inclusion levels 0g/100g (control), 0.5g/100g, 1.0g/100g, 1.5g/100g, and 2.0g/100g of O. gratissimum leaves denoted as CTR, OG1, OG2, OG3 and OG4 respectively. The fish were fed these diets for 70 days in triplicate. The experimental fish were randomly distributed into fifteen plastic tanks of dimension $40 \times 30 \times 35$ cm³ at a stocking density of ten fish per tank. Heterobranchus bidorsalis fingerlings fed 1.5g/100g diet of O. gratissimum recorded the best growth performance in terms of body weight gain, feed conversion ratio (FCR) and specific growth rate (SGR). There was a significant increase in growth and nutritional performance of H. bidorsalis fingerlings with increasing inclusion of O. gratissimum leaves (P<0.05). A differential equation ($y = -15.227x^4 + 53.533x^3 - 54.453x^2 + 53.53x^3 - 54.453x^3 - 54.453x^2 + 53.53x^3 - 54.453x^3 - 54.55x^3 - 54.55x^3 - 54.55x^3 - 54.55x^3 - 54.55x^3 - 56.55x^3 - 56.$ 17.887x + 22.07; $R^2 = 1$) showed that highest weight gain occurred at O. gratissimum level of approximately 1.65 g/100g. The study therefore showed that O. gratissimum leaves as an additive significantly improved growth and feed utilization parameters in the treated groups.

Keywords: *Heterobranchus bidorsalis, Ocimum gratissimum*, growth performance, nutrient utilization, specific growth rate.

Introduction

The use of feed additives in diets of cultured fish is aimed at improving fish performance, immunity and carcass quality. Continuous search for new feed additives is quite important for researchers in aquaculture (Cho and Lee, 2012). Some of these additives used in feed mill are medicinal herbs and plants that can enhance efficiency of feed utilization and animal productive performance (Mohamed *et al.*, 2003). There are a large number of feed additives available to improve fish growth performance. Some synthetic additives used in feed mill especially hormones and antibiotics may cause negative effects on fishes. Therefore, to resolve these problems, increasing attention is being given to the use of natural alternative feed additives (Shubha, 2015). Plant extracts have also been found to be cheaper, safer, biodegradable and biocompatible (Sudagar and Hajibeglou, 2010). Citarasu - (2010) reported that various extracts from herbs and spices have improved animal performance either by stimulating action on gut secretions or by having a direct bactericidal effect on gut microflora. The herbal ingredients fish diets reportedly induce the secretion of the digestive enzyme while the growth promoters in herbs induce high protein synthesis.

H. bidorsalis is a freshwater fish that belongs to the family *Clariidae*. The genus *Heterobranchus* is similar in many respects to Clarias but can be readily differentiated from *Clarias* by the fact that it has the rayed dorsal fin followed by an adipose fin. The flesh contains lesser oil in comparison with that of Clarias. It has good taste, fast growth rate and is rarely parasitized making it well prized (Holden and Reed, 1972). *H. bidorsalis* has the capacity of utilizing a remarkably wide range of food organisms suggesting a euryphagous diet (Fagbenro *et al.*, 1991).

Ocimum gratissimum belongs to the group of plants known as spices (Vierra and Simon, 2000). It is of the family Labiatea, genus Ocimum and species gratissimum (Iwu, 1993). In Nigeria, it is popularly called "effinrin-nla" by the Yorubas, "Ahuji" by the Igbos and "Daidoya" by the Hausas (Effraim et al., 2003). It is also known by names such as tree basil and shrubby basil in English. It has been used extensively in the traditional system of medicine in many countries (Rabelo et al., 2003). The infusion of O. gratissimum leaves is used as pulmonary antisepticum, antitussivum and antispasmodicum (Ngassoum et al., 2003).

Aside its several uses in humans, *Ocimum* gratissimum reportedly improved the growth of *Clarias gariepinus* (Adewole and Faturoti, 2017; Abdel-Tawwab *et al.*, 2018), exerted anesthetic effect on *Oreochromis niloticus* juveniles (Deshina and Yusuf, 2017) and improved heamatological profile of *C. gariepinus* (Sogbesan and Ahmed, 2018). There is a dearth of information on the use of *Ocimum gratissimum* in the diet of *H. bidorsalis*. This necessitated the present study which evaluated the effect of *Ocimum gratissimum* leaf powder on growth and nutrient utilization in the diet of *Heterobranchus bidorsalis* fingerlings.

Materials and Methods

This study was carried out at Research Laboratory of the Department of Fisheries and Aquaculture

Technology, Federal University of Technology, Akure, Nigeria.

Fresh *Ocimum gratissimum* leaves were acquired from Odopetu Market in Akure, Ondo State, Nigeria. The leaves from *O. gratissimum* were identified and authenticated at the Department of Crop, Soil and Pest Management, Federal University of Technology, Akure. The leaves were destalked, washed and air dried for seven days after which the dried leaves were reduced to powdery form using Kenwood electric blender BL440 (UK). The resultant powder obtained was stored in air-tight container and kept in the freezer till required in the preparation of experimental diets.

Five iso-nitrogenous diets (40% crude protein) were formulated as control (CTR) along with four other diets containing four graded levels of O. gratissimum; 0.5% (OG1), 1.0% (OG2), 1.5% (OG3) and 2.0% (OG4). Diet formulation were according to Fagbenro et al., (1993) as shown in Table 1. All dietary ingredients were milled into a small particle size. The ingredients including protein sources, oil and vitamin premix were thoroughly mixed in a Hobart A-2007 pelleting and mixing machine (Hobart Ltd, London, UK) to obtain a homogeneous mass and cassava starch was added as a binder. The resultant mash was pressed without steam through a mixer with 2mm diameter die attached to the Hobart pelleting machine. The pellets produced were dried, broken up, sieved and kept in a cool and dry place until the start of experiment at a temperature of (27-30°C) and stored at - 20° C until the start of the feeding experiment. Proximate analysis of O. gratissimum leaves and experimental diets was as described by AOAC (2005).

Groups of 10 apparently healthy *H. bidorsalis* fingerlings (12.05g \pm 0.01 body weight) were stocked into 15 plastic tanks of dimension 40 ×30×35cm³ filled with water. Each experimental diet was fed to five groups of fish in three replicates for 70 days. Fish were fed between 08:00-09:00h and 18:00-19:00h GMT. All groups were fed their respective diets daily at 5% body weight. Each group of fish were batch weighed fortnightly to monitor growth and adjust feeding rates accordingly. The physical assessment of culture water was carried out daily according to APHA (1987) and the parameters assessed include temperature (°C), hydrogen-ion concentration (pH) and dissolved oxygen (DO). Proximate Analysis of *O. gratissimum* leaves and experimental diets was as described by AOAC (2005). Growth and diet utilization indices were evaluated as:

Weight gain = final weight of fish - the initial weight of fish

Percentage weight gain=<u>Final mean weight of fish</u> x 100 Initial mean weight of fish

Specific Growth Rate = $\frac{100 (\ln W_2 - \ln W_1)}{t}$

Where; W_1 and W_2 are the initial and final fish weight, respectively, and t represents the duration of the feeding trial.

Percentage survival = $N_1 / N_0 \ge 100$

Where: N_1 = Total number of fish survival in pond at end of experiments.

 N_0 = Total number of fish in tank at the beginning of experiments.

Feed Conversion Ratio (FCR) = $\frac{dry \text{ weight of feed intake (g)}}{Wet \text{ weight gain by fish (g)}}$

Protein Efficiency Ratio (PER) = $\frac{\text{Weight gain (g)}}{\text{Protein fed (g)}}$

Protein Productive Value (PPV) = 100[protein retained in tissue (g)/protein fed (g)]

Energy utilization (EU) = 100 x (energy gain (g)/energy intake (g)).

Feed efficiency ratio (FER) = weight gain/ feed intake.

Data generated were appropriately subjected to one-way ANOVA test (P<0.05) while statistical differences of treatment were determined using New Duncan's Multiple Range Ad-hoc Test (Dytham, 1999) using Statistical Package for Social Science (SPSS), version 22.0. Fourth degree polynomial regression analysis was used to determine *H. bidorsalis* fingerlings responses to the level of *O. gratissimum* in the formulated diet.

Ingredients	CTR	OG1	OG2	OG3	OG4
Fish meal (68% CP)	23.0	23.0	23.0	23.0	23.0
Soybean Meal (42%CP)	26.0	26.0	26.0	26.0	26.0
Groundnut Cake (45% CP)	28.0	28.0	28.0	28.0	28.0
Yellow Maize (10% CP)	11.0	11.0	11.0	11.0	11.0
Vegetable Oil	4.0	4.0	4.0	4.0	4.0
Rice Bran	2.0	2.0	2.0	2.0	2.0
Bone meal	2.0	2.0	2.0	2.0	2.0
Vit/Min Premix*	2.0	2.0	2.0	2.0	2.0
Binder	2.0	2.0	2.0	2.0	2.0
O. grattisimum leaf powder	0	0.5	1.0	1.5	2.0
Proximate composition (%)					
Moisture					
Ash	8.51	10.16	10.02	10.51	9.94
Crude lipid	10.96	13.05	13.22	13.33	13.39
Crude fibre	1.98	2.09	2.29	2.50	2.64
Crude protein	40.29	40.26	40.30	40.32	40.31
Nitrogen free extract	29.72	25.49	25.52	24.63	24.73
Gross energy(Kcal/g)	4.53	4.50	4.56	4.54	4.55

Table 1: Composition of the basal experimental diet (g/100g)

*Vitamin premix- A Pfizer livestock product containing the following per kg of feed: A = 4500 I, U, D = 11252 I.U, E = 71I.U, K3=2mg, B12=0.015mg, pantothenic acid = 5mg, nicotinic acid = 14 mg, folic acid = 0.4mg, biotin = 0.04 mg. choline = 150mg, cobalt = 0.2 mg, copper = 4.5 mg, iron = 21 mg, manganese = 20mg, iodine = 0.6 mg, selenium = 2.2 mg, zinc = 20 mg, antioxidant = 2 mg.**GE= Gross Energy: Gross energy was calculated as 5.64, 9.44 and 4.11Kcal per gram of protein, lipid and carbohydrate respectively according to NRC (2011).

Results

There were no adverse effects of different inclusion levels of *O. gratissimum* in the experimental diets on the water quality parameters of the culture water. The pH value ranged between 7.05 and 7.23, temperature of 24.7-24.8°C and dissolved oxygen concentrations 5.25-5.90ppm.

The proximate analysis of *O. gratissimum* leaf used in this study shows that it has moisture content of 10.57 ± 0.01 , ash content of 4.82 ± 0.01 , Crude Lipid content of 5.58 ± 0.00 , crude fibre content of 8.93 ± 0.01 , protein content of 13.29 ± 0.01 and carbohydrate content of 56.81 ± 0.01 . The proximate composition of *H. bidorsalis* fingerlings prior to feeding with experimental diets is shown in Table 2. *Heterobranchus bidorsalis* fingerlings used in this study had moisture content of $7.31\%\pm0.01$, ash content of $5.56\%\pm0.01$, crude lipid content of 16.76%±0.00, protein content of 46.44±0.00 and Nitrogen free extract content of 23.9%±0.01. The results of the proximate composition of *H. bidorsalis* fed varying inclusion level of *O. gratissimum* (Table 2) showed significant variations in crude protein, crude lipid and ash contents of the fish with increasing level of *O. gratissimum* in the diet. NFE is highest in control and lowest in OG₄ while moisture content is lowest in the control diet and highest in Og₁.

Growth and nutrient utilization indices of *H. bidorsalis* fingerlings fed *O. gratissimum leaves powder* at varying inclusion levels (Table 3) showed that significant variations occurred in mean weight gain, % weight gain, protein productive value, feed conversion rate and feed intake among the treated fish groups. However, the fish showed no significant differences (P>0.05) in feed efficiency ratio, protein efficiency ratio and survival. The

optimum dietary O. gratissimum level of H. bidorsalis fingerlings is presented in Figure 1. The 4th order polynomial regression model depicted that a significant and moderately strong relationship existed between the specific growth rate and O. gratissimum concentration (g/100g) in

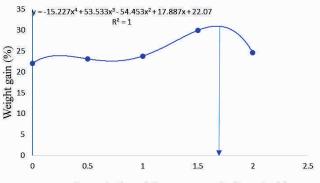

the fish diets. A differential equation $(y = -15.227x^4)$ $+53.533x^{3} - 54.453x^{2} + 17.887x + 22.07; R^{2} = 1$ showed that highest weight gain occurred at O. gratissimum level of approximately 1.65 g/100g (Figure 1).

Table 2: Proximate composition of *Heterobranchus bidorsalis* fed varying inclusion levels of Ocimum gratissimum leaf powder

PARAMETERS	INITIAL	CONTROL	OG1	OG2	OG3	OG4
Moisture	7.31±0.01	$7.91{\pm}0.00^{a}$	$8.87{\pm}0.00^{e}$	$8.59{\pm}0.00^{\circ}$	$8.77{\pm}0.00^d$	$8.25 {\pm} 0.00^{b}$
Ash	5.56 ± 0.01	$3.33{\pm}0.00^{a}$	$4.20{\pm}0.00^{b}$	$4.35{\pm}0.00^{\circ}$	$4.50{\pm}0.00^{d}$	4.77 ± 0.00^{e}
Crude Lipid	16.76 ± 0.00	$19.07{\pm}0.00^{a}$	21.11 ± 0.00^{b}	$21.18 \pm 0.00^{\circ}$	$21.23{\pm}0.00^{d}$	21.36 ± 0.00^{e}
Crude Protein	46.44 ± 0.01	$48.10{\pm}0.00^{a}$	$54.68 {\pm} 0.00^{b}$	$54.92{\pm}0.00^{\rm c}$	$55.14{\pm}0.00^{d}$	55.61 ± 0.00^{e}
NFE	23.92±0.01	21.59±0.00 ^e	$11.14{\pm}0.00^{d}$	10.96±0.00 ^c	10.36 ± 0.00^{b}	$10.01{\pm}0.00^{a}$

NFE = Nitrogen free extract

Figures in each row having the same superscripts are not significantly different (P > 0.05)

Concentration of O. gratissimum leaf powder (g)

Figure 1: Fourth order degree polynomial regression analysis of weight gain to dietary O. gratissimum

supplementation of Ocimum gratissimum powder							
PARAMETERS	CONTROL	OG1	OG2	OG3	OG4		
Initial mean weight (g)	12.06±0.02 ^a	$12.04{\pm}0.02^{a}$	12.07±0.03ª	12.06±0.03 ^a	$12.05{\pm}0.04^{a}$		
Final mean weight (g)	34.12±1.33 ^a	$35.18{\pm}0.41^{a}$	$35.88{\pm}0.77^{a}$	42.03 ± 2.20^{b}	$36.72{\pm}1.89^{a}$		
Mean weight gain (g)	$22.07{\pm}1.32^{a}$	$23.14{\pm}0.47^{a}$	$23.81{\pm}0.75^{a}$	29.97 ± 2.18^{b}	$24.67{\pm}1.86^{a}$		
PWG (%)	$183.01{\pm}10.80^{a}$	$192.19{\pm}3.20^{a}$	$180.79 {\pm} 5.99^{a}$	$248.48{\pm}17.64^{b}$	$204.64{\pm}15.06^{a}$		
Survival (%)	$73.33{\pm}16.67^{a}$	$83.33 {\pm} 3.33^{a}$	86.67±13.33 ^a	$93.33{\pm}8.82^{a}$	$90.00{\pm}11.55^{a}$		
SGR (%/day)	$1.48{\pm}0.05^{a}$	$1.53{\pm}0.02^{a}$	$1.56{\pm}0.03^{a}$	$1.78{\pm}0.07^{b}$	$1.59{\pm}0.07^{a}$		
Feed intake	43.26 ± 0.01^{b}	$40.96{\pm}0.06^{a}$	$41.91{\pm}0.02^{a}$	51.25±0.02°	43.17 ± 0.07^{b}		
FCR	$1.96{\pm}0.07^{b}$	$1.77{\pm}0.17^{a}$	$1.76{\pm}0.04^{a}$	$1.71{\pm}0.15^{a}$	$1.75{\pm}0.15^{a}$		
PER	$1.48{\pm}0.14^{a}$	$1.34{\pm}0.03^{a}$	$1.24{\pm}0.04^{a}$	$1.39{\pm}0.12^{a}$	$1.39{\pm}0.13^{a}$		
PPV	$41.10{\pm}0.38^{a}$	$47.57 \pm 0.47^{\circ}$	47.86±1.24 ^c	49.27 ± 0.87^{b}	$48.88 \pm 2.10^{\circ}$		
EU	$93.63{\pm}0.20^{a}$	$95.80{\pm}0.12^{b}$	96.43 ± 0.39^{b}	99.20±0.43 ^d	$97.93{\pm}0.09^{\circ}$		

Table 3: Growth performance and nutrient utilization of *H. bidorsalis* fed dietary

 $0.56{\pm}0.01^{a}$

 0.51 ± 0.06^{a}

FER

Figures in each row having the same superscripts are not significantly different (P > 0.05) PWG: percentage weight gain, SR: survival rate, SGR: specific growth rate, FCR: food conversion ratio, PER: protein efficiency value, PPV: protein productive value, EU: energy utilization, FER: feed efficiency ratio.

0.57±0.02^a

 0.58 ± 0.05^{a}

0.57±0.05^a

Discussion

In the present study, *H. bidorsalis* fed *O* grattisimum supplemented diets showed improved growth performance indices over the control with an optimum inclusion level of 1.65g/100g. Improvements in growth performance and nutrient utilization indices could be due to the quality of the protein content of the experimental diets. The present findings could also be attributed to the presence of antioxidants in *O. gratissimum* leaf powder. Abdel-Tawwab *et al.*, (2018) also suggested that dietary supplementation of *O. gratissimum* may control and distort the growth and colonization of pathogenic bacteria in fish guts, which could lead to a greater feed utilization efficiency resulting to improved fish growth.

Results in the present study aligned with the findings of Abdel-Tawwab et al., (2018) who fed Clarias gariepinus fingerlings with diets containing extracts of O. gratissinum leaves (0,5,10 and 15g/kg) for 12 weeks. They reported increase in fish growth with increasing inclusion of extracts of O. gratissinum in the diets and that fish growth was maximized at an inclusion level of 12g/kg inclusion level of O. gratissinum leaf extract. Adewole and Faturoti (2017) reported that the optimum growth of C. gariepinus was observed between 0.125 and 0.25% inclusion levels of O. gratissimum when they evaluated the effect of dietary O. gratissimum leaf meal at levels of 0.0, 0.125, 0.25, 0.5, 1.0, and 2.0% on C. gariepinus fingerlings (10.94 \pm 0.02g) for 12 weeks. They also reported that inclusion of O. gratissimum between 0.5 and 2.0% in the fish diets resulted into retarded growth and high fish mortality. The findings in the present study also agreed with the reports of Dada and Abiodun (2014) when Nile tilapia (Oreochromis niloticus) fingerlings fed dietary fluted pumpkin (Telfaria occidentalis) extract showed significantly improved growth performance and feed utilization indices over the control group. The fish fed experimental diets in this present study showed better growth performance and nutrient utilization indices when compared with the reports of Afe and Omosowone (2019) who fed Clarias gariepinus fingerlings with Acacia

auriculiformis leaf supplemented diets. The gradual increase in weight gain observed in the present study agreed with the reports of Saleh et al., (2015) who observed gradual improvement in weight gain of sea bass (Dicentrarcus labrax) fed either onion or garlic supplemented diets. The specific growth rates observed in fish fed O. gratissimum across all treatment groups are higher when compared with those reported by Gbadamosi and Salako (2015) in C. gariepinus fed O. gratissimum supplemented diets. However, contradicting results were reported by Sogbesan et al., (2017) when fermented O. gratissimum leaf meal was included (at 0%, 1%, 2%, 3% and 4%) in the diet of Clarias gariepinus fingerlings where fish growth reduced with increasing inlusion of O. gratissimum leaf meal. The result obtained for FCR in this study agreed with the reports of Soltan and El-Laithy (2008) who fed Oreochromis niloticus fry with diets containing probiotics (Bacillus subtilis and Biogen®) and two spices (garlic and fennel). This is an indication that fish diets supplemented with O. gratissimum optimized protein use for growth which can reduce the quantity of feed required for fish growth thereby reducing production costs.

The whole body crude protein of fish in the present study significantly increased with increasing level of O. gratissimum in the diets. This may be attributed to the presence of O. gratissimum in the diets that could be responsible for a rise in muscle free amino acid and hence improvement in protein synthesis. Saleh et al., (2015) observed significant increase in the whole body protein content of Dicentrarcus labrax when fed garlic and onion powder supplemented diets. The contrasting result between the present study and some previous studies on the effects of dietary O. gratissimum on fish growth and feed utilization, chemical composition and survival is attributable to variations in fish species, fish physiology, dietary inclusion level of the phyto-addictive and rearing conditions.

The values of water quality parameters monitored during the feeding experiment remained within acceptable limits as recommended for African catfish (Viveen *et al.*, 1985) which is an indication of adequate water management practices.

Conclusion

The inclusion of *O. gratissimum* in the diets of *H. bidorsalis* in the present study showed improved growth performance and nutrient utilization in the treated group over the control group. This suggests that the recommended level of *O. gratissimum* in the diet of *H. bid orsalis* should between 1.5 and 1.65g/100g.

References

- Abdel-Tawwab, M., Adeshina, I., Jenyo-Oni, A., Ajani, E. K. and Emikpe, B.O. (2018). Growth, physiological, antioxidants and immune response of African Catfish *Clarias gariepinus* to dietary clove basil, *Ocimumon grastissimum* Leaf Extract and its Susceptibility to *Listeria inonocytogenes* infection. *Fish and Shellfish Immunology* Vol. 76: 346-354.
- Adewole, A.M. and Faturoti, E.O. (2017). Effects of basil leaf (*Ocimum gratissimum*) as dietary additives on growth performance and production economics of *Clarias gariepinus*, *International Journal of Aquaculture*, 7(6): 42-50.
- Afe, O.E. and Omosowone, O.O. (2019). Growth and feed utilization in *Clarias gariepinus* fingerlings fed on *Acacia auriculiformis* Leaf Supplemented Diets. *International Journal of Fisheries and Aquaculture*, 11(3): 55-61.
- AOAC (Association of Official Analytical Chemists) (2005). Official methods of analysis. (18th ed.). Gaithersburg, MD: Association of Official Analytical Chemists International: 141pp.
- Cho, S.H. and Lee, S.M., (2012). Onion powder in the diet of the olive flounder, *Paralichthys olivaceus*: effects on the growth, body composition, and lysozyme activity. *Journal of World Aquaculture Society* 43, 30–38.
- Citarasu, T. (2010). Herbal Biomedicines: A New Opportunity for Aquaculture Industry. *Aquaculture Int*. 18: 403-414.
- Dada, A.A. and Abiodun, A.D. (2014). Effect of dietary fluted pumpkin (*Telfaria occidentalis*) extract on growth performance, body composition and Haematological parameters of Nile Tilapia (*Oreochromis niloticus* Linnaeus). *Journal of Fisheries*. 2(3): 203-208.
- Deshina, I. and Yusuf, O.Y. (2017). Anaesthetic Effect of *Ocimum gratissimum* Extract on *Oreochromis niloticus* Juveniles. *European Journal of Experimental Biology*, 7: 7. doi:

10.21767/2248-9215.100007.

- Dytham, C., (1999). *Choosing and Using Statistics; A Biologist's Guide*. Blackwell Science Ltd. London, United Kingdom, 264pp.
- Fagbenro, O.A., Olaniran T.S. and Esan A.O. (1991). Some aspects of the biology of the Catfish, *Heterobranchus bidorsalis* Geoffroy Saint Hilaire, 1809 (Clariidae) in River Ogbese, Nigeria. *African Journal of Zoology*, 105: 363-372.
- Fagbenro, O.A., Adedire, C.O., Owoseeni, E.A. and Ayotunde E.O. (1993). Studies on the biology and aquaculture potential of Feral Catfish, *Heterobranchus bidorsalis* Geoffrey Saint Hilaire 1909) *Clariidae*. *Tropical zoology*, 6: 67-79.
- Gbadamosi, O.K. and Salako, F. (2015). Gustation and growth performance of African Catfish, *Clarias gariepinus* fed varying levels of dietary african basil, *Ocimum gratissimum* Leaf Supplementation. *Egyptian Academic Journal* of *Biological Sciences*. 6 (1): 9-15.
- Holden, M. and Reed, W. (1972). West African Freshwater Fishes. Longman. p. 67.
- Iwu, M.M. (1993). Handbook of African medicinal plants. CRC Press Inc. Boca Raton, Florida. 464pp.
- Mohamed, A.H., El-Saidy, B.E. and El-Seidy, I.A. (2003). Influence of some medicinal plants on digestibility, nutritive value, rumen fermentation and some blood biochemical Parameters in Sheep. *Egyptian Journal of Nutrition and Feeds*. 6 (2):139-150.
- Ngassoum, M.B., Jessia-Ngang, J.J., Tatsadjieu, L.N., Jirovetz, L., Bauchbauer, G. and Adjoudji, O. (2003). Antimicrobial study of Essential Oils of *ocimum gratissimum* Leaves and *Zanthoxylum xanthoxyloides* Fruits from Cameroon. *Fitoterapia*; 74: pp.284.
- National Research Council (NRC), (2011). Nutrient Requirements of Fish and Shrimps. National Academy Press, 376p.
- Rabelo, M., Souza, E.P., Soares, P.M.G, Miranda, A.V., Matos, F.J.A and Criddle, D.N. Antinociceptive properties of essential oil of *Ocimum gratissimum* L. (Labiatae) in Mice. *Brazilian Journal of Medical and Biological Research*, 36: 521-524.
- Saleh, N.E., Michael, F.R. and Toutou, M.M. (2015). Evaluation of garlic and onion powder as phyto-additives in the diet of sea bass (*Dicentrarcus labrax*). *Egyptian Journal of Aquatic Research*. 41: 211-217.

- Shubha, R. S. (2015) Medicinal Uses of Ginger (*Zingiber officinale* Roscoe) Improves Growth and Enhances Immunity in Aquaculture. *International Journal of Chemical Studies*; 3(2):83-87.
- Sogbesan, O.A., Ahmed, Y.M. and Ajijola, K.O. (2017). Growth performance, nutrient utilization, somatic indices and cost benefit analyses of African Basil Leaf Additive Diets on *Clarias* gariepinus (Burchell, 1822) Fingerlings. Journal of Animal Research and Nutrition. Vol. 2, (1): 10 doi:10.21767/2572-5459. 100030.
- Soltan, M. A. and El-Laithy, S. M. (2008). Effect of probiotics and some spices as feed additives on the performance and behaviour of the Nile tilapia, *Oreochromis niloticus*. Egyptian Journal of Aquatic Biology and Fisheries,

Vol. 12, (2): 63-80.

- Sudagar, M. and Hajibeglou, A. (2010). Effect of plant extracts supplemented diets on Immunity and Resistance to Aeromonas hydrophila in Common Carp (Cyprinus carpio). Research Journal of Animal Sciences. 4 (1): 26-34.
- Vierra, R.F. and Simon, J.F. (2000). Chemical Characterizationn of *Ocimum gratissimum* found in the market and used in traditional Medicine in Brazil. *Journal of Economic Botany*. 20:5-6.
- Viveen, W., Richter, C., Van- Ordt, P., Janssen, J. and Huismsan, E. (1985). Practical Manual for the Culture of the African Catfish (*Clarias gariepinus*). Directorate General for International Technical Cooperation, The Hague, The Netherlands, 93pp.

www.theaifarm.com

AFE, O.E, DADA, A.A AND OLUFAYO, M.O African Journal of Fisheries and Aquatic Resources Management Volume 4, 2019 ISSN: 2672-4197 (Prints) ISSN: 2672-4200 (Online) Pp 35-42