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Ultimate Bounded-ness of Periodic Solutions of A Class of Liénard Type p-
Laplacian Equation with Multiple Deviating Arguments

Payne V. F. 1

Abstract:
In this article, we investigate quite formally the existence of solutions followed by investigating the
ultimate bounded-ness of the following Liénard type p-Laplacian equation with multiple deviating
arguments :

(φp(x′))′ + µf1(x)(φp(x′))2 + f2(x)(φp(x′))

+β(t)

n∑
i=1

g(t, x(t− τi(t))) = e(t)

 (L)

where µ > 0, f1, f2, e ∈ C(IR, IR), β(t) > 0, τi(t) > 0 are two T -periodic functions with∫ T

0

e(t)dt = 0, T > 0, g(t, x)is continuous and g(t, .) = g(t + T, .) and for p > 1, φp : IR →

IR, ((φp(x′)))′ =
d

dt
{|dx
dt
|p−2 dx

dt
} is a one-dimensional p-Laplacian. The study employs a combina-

tion of the Manásevich-Mawhin continuation theorem in settling the question of existence of periodic

solutions and the Lyapunov second method in providing a framework for obtaining bounded-ness of

such solutions. An example illustrates our results.

Keywords: Ultimate boundedness, Liénard equation, Manásevich-Mawhin continuation theorem,

p− Laplacian
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1. Introduction

In the study of dynamical systems (which

include differential equations), Liénard

equation is a second order differential

equation named after its proponent, the

French physicist Alfred-Marie Liénard.

It arose from the development of radio

and vacuum tube technology. Liénard

and modified (or Liénard-type) equation

model oscillating circuits. Current stud-

ies which involve practical problems con-

cerning mechanics, engineering technique

fields, economy, control theory, physics,

chemistry, biology, medicine, atomic en-

ergy, information theory are associated

with Liénard or the modified equation.

Qualitative questions on stability,

bounded-ness, convergence and existence

of periodic solutions of the equation are

linked in the literature with the contri-

butions of the following mathematicians

: Liénard [10], Krasovskii [9], Burton [1],

Heidel [7], Hara and Yoneyama [5], Gao

and Zhao [4], Cantarelli [2], Manásevich

and Mawhin [12], Liu and Huang [11],

Cheng and Ren [4], Huo and Wu [8], Cemil
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Tunç[14, and references therein].

In this article, the author established

certain sufficient conditions under which

periodic solutions of equation (L) exist

and are ultimately bounded. Our moti-

vation springs up from the recent results

of C. Tunç [14 and references therein] and

a host of other prolific works of ([3], [4],

[8], [11]). The paper is structured into four

sections. After the introduction, Section 2

is devoted to a review of fundamental con-

cepts and results used in subsequent sec-

tions. In Section 3 main results are stated

and established. In conclusion, an illus-

trative example is provided in Section 4.

2. Preliminary notes.

In order to provide a suitable frame-

work for subsequent chapters, we begin by

reviewing the following fundamental no-

tions, concepts and lemmas:

Definitions

Consider a system of differential equations

x′ = f(t, x) (2.1)

where f(t, x) ∈ C(I× IRn, IRn), we say that

(i) a solution x(t, t0, x0) of (2.1) is

bounded if ∃ an α > 0 such that

|x(t, t0, x0)| < α ∀ t > t0 where α

may depend on each solution,

(ii) the solutions of (2.1) are ulti-

mately bounded if ∃ a B >

0 and a T > 0 such that for

every solution x(t, t0, x0) of (2.1),

|x(t, t0, x0)| < B ∀t ≥ t0 + T

where B is independent of the par-

ticular solution while T may depend

on each solution.

(iii) the solutions of (2.1) are uniformly

ultimately bounded for bound B if

the T in (ii) is independent of t0.

In what follows we define A classical

Liénard equation as

x′′ + f(x)x′ + g(x) = 0 (2.2)

where f, g ∈ C1(IR), f even g odd. The

corresponding non-homogeneous equation

is

x′′ + f(x)x′ + g(x) = h(t) (2.3)

where h(t) is a continuous T -periodic

function, f(x), is positive and g(x) is

monotonically increasing.

The following are several examples of

Modified Liénard equations

(i)

(φp(x
′))′ + µf(x)φp(x

′) + g(x) = 0

(2.4)

where p > 1, µ > 0, is a parame-

ter and f, g : IR → IR are continuous

functions.

(ii) Modified Liénard equation

with one constant deviating

argument

x′′ + µf(x)(x′) + g(x(t− h)) = 0

(2.5)

where f, g, τ : IR → IR are continu-

ous functions on IR and h > 0 is a

constant.
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(iii) Modified Liénard equation

with a variable deviating

argument

x′′ + f1(x)(x′) + f2(x)(x′)
+g(x(t− τ(t))) = e(t)

(2.6)

where f, g : IR → IR are continuous

functions on IR with τ(t) being a peri-

odic function of period T and h > 0

is a constant.

(iv) Modified Liénard equation

with multiple variable deviating

arguments

(φp(x
′))′ + µf1(x)(φp(x

′))2

+f2(x)(φp(x
′))

+β(t)
n∑
i=1

g(t, x(t− τi(t))) = e(t)

L

where µ > 0, f1, f2, e ∈
C(IR, IR), β(t) > 0, τi(t) > 0

are two T -periodic functions with∫ T

0
e(t)dt = 0, T > 0 g(t, x)

is continuous and g(t, .) = g(t +

T, .) and for p > 1, φp : IR →

IR, ((φp(x
′))′ =

d

dt

{
|dx
dt
|p−2dx

dt

}
is

a one-dimensional p-Laplacian.

(iv) is the same as equation(L) which is of

interest in this article.

Let q be the conjugate exponent of p i.e.

1

p
+

1

q
= 1. Using the substitution y =

φq(x
′) and the identity φq.φp(s) = s, (L)

can be replaced by the following equiva-

lent first order system :

x′ = φq(y)
y′ = −µf1(x)y2 − f2(x)y − g(t, x(t))

−β(t)
n∑
i=1

∫ t

t−τi(t)
g′((x(s)y(s))ds

+e(t) (2.7)

In what follows we define

C1
T = {x ∈ C1(IR2) : x(0) = x(T ), x′(0) = x′}

(2.8).

For x ∈ C1
T , define

||x|| = |x|∞ + |x′|∞ (2.9)

with

|x|∞ = max
t∈[0,T ]

|x(t)|, |x′|∞ = max
t∈[0,T ]

|x′(t)|

(2.10).

Then C1
T is a Banach space.

We denote throughout this paper

Br = {x ∈ C1
T : ||x|| ≤ r} (2.11)

and state the following salient assump-

tions :

(Σ1) ∃ constants d ≥ 0, N ≥ 0 with

N(
T

2
)p < 1 such that for |x| > d,

〈x,
n∑
i=1

g(t, x(t− τi(t)))〉 ≤ NT |x|p (2.12)

and

β(t)
n∑
i=1

g(t, x(t− τi(t)))− e(t) 6= 0 (2.13)

(Σ2) ∃ a sequence {ri}∞i=1, ri ∈ IR+, ri →
+∞, such that the Brouwer degree

deg(G,Bri ∩ IRn, 0) 6= 0 (2.14)

where G : IRn → IRn is defined by

G(a) =
1

T

∫ T

0
β(t)(e(t)− g(t, a))dt

(2.15)
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We now introduce the following lemma

which is used in proving one of our main

results :

Lemma 2.1 (Manásevich-Mawhin see

[12], [13])

Consider the equation

(φp(x
′(t))′ = f(t, x, x′) (2.16)

where f : IR× IRn × IRn → IRn is continuous

and f(t, ., .) = f(t+ T, ., .). Assume that

(Φ1) For each λ ∈ (0, 1), the equations

(φp(x
′(t))′ = λf(t, x, x′) (2.17)

has no T -periodic solution on ∂Br

(Φ2) G(a) = 0 has no solution on ∂Br∩IRn

where

G(a) =
1

T

∫ T

0
f(t, a, 0)dt (2.18)

(Φ3) The Brouwer degree

deg(G,Br ∩ IRn, 0) 6= 0 (2.19)

Then equation (2.16) has at least

one T -periodic solution in Br.

3. Main Results.

Proposition 3.1

If the assumptions Σ1 and Σ2 hold, then

equation (L) has at least one T -periodic

solution.

Proof.

We employ Lemma 2.1 in the proof of

Proposition 3.1 as follows :

Our first step is to show that the set of all

possible T -periodic solutions of the homo-

topy equation

(φp(x
′))′ + λµf1(x)(φp(x

′))2 + λf2(x)(φp(x
′)

+λβ(t)
n∑
i=1

g(t, x(t− τi(t))) = λe(t), λ ∈ (0, 1)

(3.1)

is a bounded subset of C1
T . So suppose

x(t) is an arbitrary T -periodic solution

of equation (3.1). Then integrating (3.1)

from 0 to T and using the conditions

x(0) = x(T ), x′(0) = x′(T ), we obtain∫ T

0
β(t)(

n∑
i=1

g(t, x(t− τi(t)))− e(t) = 0

(3.2)

By continuity
n∑
i=1

∫ T

0
=

∫ T

0

n∑
i=1

and more-

over since β(t) > 0, (3.2) yields∫ T

0
(g(t, x(t− τi))− e(t) = 0. (3.3)

This means there is a η ∈ [0, T ] such that

(g(η, x(η − τi(η))− e(η)) = 0 (3.4)

for each i = (1, 2, · · · , n). We have thus

reached a contradiction of (2.15). Hence

|x(η)| ≤ d (3.5),
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from whence we next have that

|x(t)| = |x(η) +
∫ t

η
x′(τ)dτ |

≤ d+
∫ t

η
x′(τ)|dτ,

t ∈ [η, η + T ]

(3.6)

This leads to the following estimate :

|x(t)| = |x(t− T )| = |x(η)−
∫ η

t−T
x′(τ)dτ |

≤ d+
∫ η

t−T
|x′(τ)|dτ,

t ∈ [η, η + T ]
(3.7)

It therefore follows that

|x|∞ = maxt∈[0,T ] |x(t)|
= maxt∈[η,η+T ] |x(t)|
≤ maxt∈[η,η+T ]{d+

1

2
(
∫ t

η
|x′(τ)|dτ

+
∫ η
t−T |x′(τ)|dτ)}

≤ d+
1

2

∫ T

0
|x′(τ)|dτ (3.8)

We now choose two non-intersecting sets

namely :

K1 = {t : t ∈ [0, T ], |x(t)| > d}
K2 = {t : t ∈ [0, T ], |x(t)| ≤ d} (3.9)

Integrating from 0 to T the resulting ex-

pression from the multiplication of

homotopy equation (3.1) by x(t) we obtain

∫ T

0
|x′(t)|pdt = −

∫ T

0
〈(φp(x′(t)))′, x(t)〉dt

. = λµ
∫ T

0
〈f1(x)(φp(x

′))2, x(t)〉dt

+λ
∫ T

0
〈f2(x)(φp(x

′), x(t)〉dt

+λβ(t)
n∑
i=1

∫ T

0
〈g(t, x(t− τi(t))), x(t)〉dt

−λ
∫ T

0
〈e(t), x(t)〉dt

= λβ(t)
n∑
i=1

∫ T

0
〈g(t, x(t− τi(t))), x(t)〉dt

−λ
∫ T

0
〈e(t), x(t)〉dt

= λβ(t)
n∑
i=1

∫
K1

〈g(t, x(t− τi(t))), x(t)〉dt

+λβ(t)
n∑
i=1

∫
K2

〈g(t, x(t− τi(t))), x(t)〉dt

−λ
∫ T

0
〈e(t), x(t)〉dt (3.10)

The summands in (3.9) hold for each i =

(1, 2, · · · , n).

Therefore we have that

∫ T

0
|x′(t)|pdt

= λβ(t)
∫
K1

〈g(t, x(t− τ(t))), x(t)〉dt

+λβ(t)
∫
K2

〈g(t, x(t− τ(t))), x(t)〉dt

−λ
∫ T

0
〈e(t), x(t)〉dt

≤
∫ T

0
NT |x|pdt

+
∫ T

0
max

t∈[0,T ], x≤d
|g(t, x(t− τ))||x(t)|dt

+
∫ T

0
|e(t)||x(t)|dt ≤ NT |x|p∞

+AT |x|∞, (3.11)

with A = max{|g(t, x(t − τ))|, t ∈

[0, T ], |x(t)| ≤ d}+ |e|.

The next step involves establishing the fol-

lowing claims :
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(i) ∃ a constant N1 >

0 such that |x|∞ ≤ N1, and

(ii) ∃ a constant N2 > 0 such that

|x′|∞ ≤ N2.

Claim (i)

By (3.11), we have that ∃ N` > N with

N`(
T

2
)p < 1 such that for large |x|∞,

∫ T

0
|x′(t)|dt ≤ N`T |x|p∞ (3.12)

Using Hölder’s inequality we have

∫ T

0
|x′(t)|dt ≤

∫ T

0
(|x′(t)|pdt)

1
p (

∫ T

0
1dt)

p−1
p

−T
p−1
p (

∫ T

0
|x′(t)|pdt)

1
p (3.13)

Therefore by (3.8), (3.12), (3.13) we get

|x|∞ ≤ d+ 1
2
T

p−1
p (

∫ T

0
|x′(t)|pdt)

1
p

≤ d+ 1
2

+N
1
p

` |x|∞ (3.14)

Since N`(
T
2
)p < 1, (3.14) ⇒

|x|∞ ≤ d(1− T

2
N

1
p

` )−1. (3.15)

Therefore ∃ M1 such that

|x|∞ ≤ N1 (3.16)

Claim (ii)

Since x(0) = x(T ) ∃ t0 ∈ [0, T ] such that

x′(t0) = 0. By φp(0) = 0, we have

|x′|p−1∞ = maxt∈[0.T ] |φp(x′(t))|
= maxt∈[t0,t0+T ] |

∫ t

t0
(φp(x

′(s)))′ds|

≤ µ|
∫ t

t0
f1(x(s)(φp(x

′(s)))2ds|

+
∫ t

t0
f2(x(s))(φp(x

′(s))ds|

+β(s)
n∑
i=1

∫ t

t0
|g(s, x(s− τi(s)))|ds

+
∫ t

t0
|e(s)|ds

+µ
∫ T

0
|f1(x(t)(φp(x

′(t)))2|ds

+
∫ T

0
f2(x(t))(φp(x

′(t))|dt

+β(t)
n∑
i=1

∫ T

0
|g(t, x(t− τi(t)))|dt

+
∫ T

0
|e(t)|dt

≤ QT + T maxt∈[0,T ],x∈N1 |g(t, x(t− τ)|
+T |e|∞ (3.17)

where QT is a bound for all the integrals

involving the f ′is, ( i = 1, 2)) which holds

for each i ∈ IN, µ, β(t) > 0 and

∫ T

0
|f1(x(t)(φp(x

′(t)))2|dt

+
∫ T

0
|f1(x(t)(φp(x

′(t)))2|dt ≤ QT

It therefore follows that ∃ N2 such that

|x′|∞ ≤ N2 (3.18)

Combination of (3.16) and (3.18) yields

||x|| = |x|∞ + |x′|∞ ≤ N1 +N2 (3.19)

from whence we have that the set of all

T -periodic solutions of equation (3.1) is a
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bounded subset of C1
T . The other two hy-

potheses of Lemma (2.1), namely that

deg(G,Br ∩ IRn, 0) 6= 0 and that G(a) = 0

has no solution on ∂Br ∩ IRn and are satis-

fied for G(a) =
1

T

∫ T

0
(e(t)−g(x(t−τ(a))dt

and r > N1 +N2 + d+ 1. Hence equation

(L) has at least one solution in Br by the

Manásevich-Mawhin theorem.

For our next result, we consider equation

(L) as well as the associated assumptions

on all the underlying functions and we em-

ploy the equivalent first order system in

(2.9).

Proposition 3.2

In addition to the fundamental as-

sumptions earlier imposed on functions

f1, f2, g, e, µ, β, it is assumed that ∃

positive constants C1, C2 such that the

following conditions hold :

(Π1)
n∑
i=1

g(t, x(t − τi(t)) − e(t) > 0 ∀ t ∈

IR, τi > 0, | sup
i∈IN, t∈[0,T ]

x(t − τi(t))| >

C1

(Π2) limx→−∞ supt∈[0,T ]
|∑n

i=1 g(t, x(t− τi(t))|
|x|p−1

≤

C2

(Π3) f1(x)y2 + f2(x)y ≥ δ, fi(x)g(t, x) >

0, (i = 1.2) ∀|x| ≥ h, |y| ≥

k, |e(t)| ≤ m, ∀ t ≥ 0.

(Π4) |µf1(x)y2+f2(x)y| ≤ F ∀ fi(x)sgnx >

0, |x| ≥ h

(Π5) φq(y)sgny > 0, |y| > k and

|φq(y)| → ∞ as y →∞

then solutions of equation (L) are uni-

formly ultimately bounded. Next we state

a preliminary result we shall employ in the

proof of Proposition 3.2.

Lemma 3.3 (see [15, p.72] for proof)

Assume there exists a Liapunov func-

tion V (t, x, y) defined on 0 < t <

∞, |x|,∞, |y| ≥ K > 0 which satis-

fies the following conditions :

(i) a(|y|) ≤ V (t, x, y) ≤ b(|y|), where

a(r) and b(r) are continuous, in-

creasing and a(r)→∞ as r →∞,

(ii) V̇L(t, x, y) ≤ −c(|y)| where c(r) > 0

is continuous.

Suppose that corresponding to each

M there exists a Liapunov func-

tion W (t, x, y) defined on 0 ≤ t <

∞, |x| ≥ K1(M), |y| ≤ M which

satifies the following conditions :
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(iii) a1(|x|) ≤ W (t, x, y) ≤ b1(|x|), where

a1(r) and b1(r) are continuous and

a1(r)→∞ as r →∞,

(iv) ẆL(t, x, y) ≤ 0

Moreover, assume that choosing B

such that b(K) < a(B), there ex-

ists a Liapunov function U(t, x, y)

defined on T ≤ t < ∞, |x| < K2 >

0, |y| ≤ B which satisfies the fol-

lowing conditions :

(v) a2(|x|) ≤ U(t, x, y) ≤ b2(|x|), where

a2(r) and b2(r) are continuous and

increasing a1(r)→∞ as r →∞,

(vi) U̇L(t, x, y) ≤ −c2(|x) where c2(r) >

0 is continuous,

then solutions of equation (L) are uni-

formly ultimately bounded.

Proof of Proposition 3.2

Consider equation (L) whose equivalent

system is

x′ = φq(y)
y′ = −µf1(x)y2 − f2(x)y − g(t, x(t))

− β(t)
n∑
i=1

∫ t

t−τi(t)
g′((x(s)y(s))ds+ e(t)

(3.3.1)

with all the afore-mentioned assumptions,

we establish that the solutions are uni-

formly ultimately bounded. Suppose K >

0 is a constant such that

K ≥ 1 +m+
α

F
+ F (1 + β) + k (3.3.2)

where α = max{β|y|m + F |φq(y)| −

βyφq(y)} ≥ 0 with

|φq(y)| ≥ m+
F

β
(1 + βF +m) (3.3.3)

for |y| ≥ K. Choose a domain 0 ≤ t <

∞, max(|y| −K, |w| −K) ≥ 0, on which

a Liapunov function

V (y, w) = p(y, w) + q(y, w) (3.3.4)

is defined, with p(y, w) =
1

2
(βy2+w2) and

q(y, w) =


−Fysgnw for |y| ≤ w

−Fwsgny for |y| ≥ |w| (3.3.5)

It can be observed that V (y, w) is clearly

continuous, positive and V (y, w) →

∞ as y2 + w2 →∞ since

1

2
(βy2 + w2)− F |y| ≥ 1

2
βy2

1

2
|w|(|w| − F )

>
1

2
βy2 for|y| ≤ |w|,

1

2
(βy2 + w2)− F |w| ≥ 1

2
w21

2
|y|(β|y| − F )

>
1

2
w2 for|y| ≤ |y|, (3.3.6)

from whence it follows that there are two

functions a(r) and b(r) such that

β(|y|+ |w|) ≤ V (y, w) ≤ b(|y|+ |w|)

(3.3.7)
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Next we have that

ṗ(L)(y, w) ≤ −ayφq(y) + β|y|m+ |w|F
and

q̇(L)(y, w) = −F |w|+ Fφq(y)sgnw
−F |e(t)|sgnw (3.3.8)

for |y| ≤ |w| and

q̇(L)(y, w) = Ff(x)sgny + Fβ|y|

≤ F 2 + Fβ|y| (3.3.9)

for |y| ≥ |w|. Hence for |y| ≥ |w|, we have

that

V̇(L)(y, w)

≤ −|y|(β|φq(y)| − βm− F − Fβ − F 2)
< 0 (3.3.10)

since|y| ≥ K, and for |y| ≤ |w|, |y| ≥

K

V̇(L)(y, w) ≤ −β
2
|y|[|φq(y)

− |m]− 1

2
|φq(y)|[β|y|F )

− F (y| −m) < 0 (3.3.11)

and for |y| ≤ |w|, |y| ≥ K

V̇(L)(y, w) ≤ Fm+β−F |w| < 0 (3.3.12)

(since |z| ≥ K ) Next choose a function

W (x,w) =
β

2
(x+

w

β
)2

on |w| ≤ M and |x| ≥ max(h,
M

β
). It is

then clear that

Ẇ(L)(x,w) = −(x+
w

β
)g(t, x) < 0

(3.3.13)

With a choice of B such that β(B) <

a(B), a function

U(x,w) =
β

2
(x+

w

β
)2

is defined on the domain |w| ≤ B, |x| ≥

max(h,
B

β
). This yields

β

4
x2 ≤ U(x, z) ≤ 3β

4
x2 (3.3.14)

and

U̇(L)(x,w) ≤ −1

2
xg(t, x) < 0 (3.3.15)

Thus appealing to Lemma 3.3, we have

that the solutions of equation (L) are uni-

formly ultimately bounded. 4. An Ex-

ample.

Consider the equation

(φp(x
′))′ expπ(t)(φp(x

′))2

+ exp 2π(t)(φp(x
′)

exp(t)
n∑
i=1

g(t, x(t− sinnπ(t))) =
1

2π
cos t (4.1)

where p = 3, T = 2π, τi(t) = sinnπ(t)

gn(t, x) =


x2n exp cosn t+

1

nπ
cos t, x ≥ 0

x2n

n!
exp π2 cosn t x < 0

(n = 1, 2, · · · , )

By (4.1), we can obtain C1 =
1

1000
,

C2 =
1

nπ2
, with N(

T

2
)p < 1, C2 =

1

108π4
.

All the assumptions Π1 − Π5 hold. Hence

according to Proposition 3.2 and Lemma
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3.3, (4.1) has at least one 2π-periodic

solution which is uniformly ultimately

bounded.
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