
 
 
Journal of Science Research (2013) Vol. 12: 261-273   
 

ISSN 11179333 

 

Panel Data Estimators in the Presence of Quadratic and Exponential 
Functional Forms of Heteroscedasticity 
 
 
Femi J. Ayoola

1
, O.E. Olubusoye

2
 and A.A. Salisu

3 

 
 
Abstract 
The problem of heteroscedasticity in panel data has been widely discussed in literature and has continued to attract 
the attention of researchers particularly in applied econometrics. In this study, we explore two functional forms of 
heteroscedasticity: Quadratic Heteroscedasticity Functional Form (QHFF) and Exponential Heteroscedasticity 
Functional Form (EHFF) in a random error component model. We use one-way error component model to evaluate 
these two forms of heteroscedasticity on individual effect of one error components model. In this paper, we design a 
Monte Carlo experiment to investigate the relative sensitivity of the following estimators: Pooled Ordinary Least 
Square (POLS), Between Group (BG), Within Group (WG) and Panel Generalize Least Square (PGLS) estimators, 
in the presence QHFF and EHFF on individual effect. The Monte Carlo experiments follow closely that of [1] and 
[2]. Using purposedly cross-sectional units, 10,30,50N   

and time periods 5,15,20T  and replication of 2500 for 

various combinations of N and T dataset were generated. R Version 2.15.2 Statistical software is used for our 
analyses. The relative performances of these estimators were assessed using Bias (BIAS) and Root Mean Squared 
Error (RMSE). The estimators were then ranked according to their performances. The performance of estimators in 
the presence QHFF and EHFF were investigated under the finite sampling properties of Bias and RMSE, for the two 
experiments set up and estimators were ranked as follows in ascending order of their performances: PGLS, BG, WG 
and POLS. This result will helps in the choice of estimator in empirical work when there is presence of 
heteroscedasticity.      
 
Key words: Panel data model, Quadratic heteroscedasticity functional form, Exponential hetero-scedasticity 
functional form, Estimators, Experiment. 

 
 
Introduction 
Different types of data are generally available 
for empirical analysis, namely, time series, 
cross section and panel. A data set con-
taining observations on a single phenomenon 
observed over multiple time periods is called 
time series (e.g., GDP for several quarters or 
years). In time series data, both the value and 
the ordering of data points have meaning. In 
cross-section data, values of one or more 
variables are collected for several sample 
units, or entities, at the same point in time 
(e.g., crime rates for 50 states in the United 
States for a given year). 

As largely acknowledged, hetero-
scedasticity is endemic when working with 
micro-economic cross-section data. A 
primary  and  well-known  source  of  hetero- 
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scedasticity stems from differences in the size 
characteristic. On the other hand, the error 
variance may also systematically vary across 
observations of similar size. For example, the 
variance of firms profits might depend upon 
product diversification or research and 
development expenditures. Likewise, the 
variance of firms outputs might depend upon 
their capitalistic intensity and so on. Note that 
in practice, these different sources of 
heteroscedasticity may be simultaneously 
present. 

Obviously, there is no reason to expect 
the heteroscedasticity problems associated 
with microeconomic panel data to be 
markedly different from those encountered in 
work with cross-section data. Nonetheless, 
the issue of heteoscedasticity received 
somewhat less attention in the literature 
related to panel data error components 
models than in the literature related to cross-
section models. [3] seems to be the first to 
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deal with the problem of heteroscedasticity in 
panel data. The study looked at 
heteroscedasticity and stratification in two-
way error component models. The study 
involved spectral decomposition of the 
variance-covariance matrix to derive 
statistically efficient and computationally 
simple estimation procedures. 

Both [3] and [4] were concerned with the 
estimation of a model allowing for 
heteroscedasticity on the individual-specific 
error term, i.e., assuming that µi ~ 2(0, )

ii  
 

while vit ~ 2(0, )it vv IID  . In contrast, [5], [6], [7] 

and [8] adopted a symmetrically opposite 
specification allowing for heteroscedasticity 
on the remainder error term, i.e., assuming 

that µi ~
2(0, )i IID  

 
while vit ~ (0, 2(0, )

iit vv 
 

[9] 

suggested an adaptive estimation procedure 
for an error component model allowing for 
heteroscedasticity of unknown form on the 
remainder error term, i.e., assuming that      

µit ~ 
2(0, )it IID  

 
while vit ~

2(0, )
itit vv IID  , where 

2

itv is a non-parametric function '( )itf z of a 

vector of exogenous variables. They also 
suggested a robust version of the [10] LM test 

for no random individual effects,
2 0  , by 

allowing for adaptive heteroscedasticity of 
unknown form on the remainder error term.  

In this paper, we focus on balanced 
micropanels with N large and T small. We 
want to evaluate two different hetero-
scedasticity functional forms when they are 
incorporated on individual effect of error 
component model. Also, we want to estimate 
and rank the performances of the following 
four estimators: Pooled OLS (POLS), 
Between Group (BG), Within Group (WG) 
and Panel GLS (PGLS). This paper is 
structured as follow: Section 2 presents the 
theoretical framework. Section 3 describes 
the data generating scheme. Section 4 
presents results and discussion while the last 
section concludes the paper.  
    
 
 

Theoretical Framework 
A typical static panel data regression can be 
expressed as: 

1

; 1,..., , 1,...,
j

it o k kit it

k

Y X u i N t T 


    
         (1) 

where, itY is the dependent variable and 

k itX are the matrix of explanatory variables. 

The subscripts i  and t  as earlier defined refer 
to cross-sectional and time series dimensions 

respectively. itu is the composite error term 

which can be decomposed further into 
specific effects and remainder disturbance 
term. 

There are two sets of specific effects 
namely the individual specific effects and 
time specific effects. If only one set of 
specific effects is included in the regression, 
such is referred to as one-way error 
components model. However, if both sets of 
specific effects are included, we refer to the 
model as two-way error components model. 
Equations (2), (3) and (4) show 

decomposition of itu
 
into one-way and two-

way error components. 
 

it i itu v              (2) 

it t itu v              (3) 

it i t itu v               (4) 

 

where, i  and t  
denote the observed indivi-

dual and time specific effects respectively.  
For this paper, we shall limit our empirical 
applications to the one-way error components 
as stated below. 
 

0

,

1,..., , 1,...,

it it k it

it i it

y x u

u v

i N t T

 



  

 

 

        (5) 

 
where, 

ity
 

is the dependent variable, 

itx
 

is (1 )k vector of explanatory variable 
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k  
is ( 1)k vector of coefficients 

i  
represents unobserved cross-sectional 

(individual) effects for N cross 
sections, 

itv
 

represents remainder disturbance 

term. 
 
The index i  refers to the individuals and the 
index t to the observations of each individual. 
The total number of observations is NT . The 

error terms i  
and itv are assumed mutually 

independent and normally distributed 
according to: 
 

vit ~
2 2 2 2 '(0, ); (0, ); ( ), 1,..., , 1,...,it v i i iv N N h f i N t T           µi  ~ N 

2 2 2 2 '(0, ); (0, ); ( ), 1,..., , 1,...,it v i i iv N N h f i N t T          
 

2 2 2 2 '(0, ); (0, ); ( ), 1,..., , 1,...,it v i i iv N N h f i N t T            

 

where, (.)vh and (.)h are arbitrary non-

indexed (strictly) positive twice continuously 
differentiable functions satisfying 

(.) 0, (.) 0, (0) 1, (0) 1v v vh h h h      and 

(1) (1)(0) 0, (0) 0,vh h 
 

where 
(1) ( )h x denotes 

the first derivative of ( )h x with respect to 

. itx z and '

if are respectively ( 1)k  is a vector 

of strictly exogenous regressors while  is a 

(1 )k vectors of parameters. We will denote 

by  
'

2 2 '( , , , ( 1,...,3)v p p      
 

the 

vector of variance-specific parameters. 
 
Staking the T observations of each individual 
i , (5) may be written as: 
 

, 1,...,i i i i T i iy x u u v i N            (6) 

 

where T is a ( 1)T  vector of ones, and are 

vectors and a matrix of  regressors. From (2), 
the covariance matrix of may be written as:  

2 2 '( ) ( ), 1,...,i v N T T u iI I J h f i N           (7) 

 
where, IN  is an identity matrix of dimension 
N, IT is an identity matrix of dimension T, 

'

T T TJ   and is a matrix of regressors with a 

typical row being itz . Here, ( ( ))v idiag h z
 

denotes a diagonal matrix with its tht diagonal 

element being the tht element of the vector.  
Finally, stacking again the above vectors 

and matrices, we obtain the general matrix 
form of the model. 
 

, , ,N Ty X u Z v Z I              (8) 

 
2 2 '

1( ) ( ( )) ( ( ))v vdiag h Z Z diag h f Z           (9) 

 
,y u  and v  are ( 1)NT   vectors,   is the 

vector of individual effects ,X Z and F are, 

respectively ( )NT k ,
1( )NT K and ( )NT k  

matrix of regressors and   is the ( )NT NT  
block-diagonal covariance matrix of u . Here, 

( ( )vdiag h Z denote a diagonal ( )NT NT  
matrix with its 

tht diagonal element being the 
thit element of the ( 1)NT  vector ( ( )).vh Z  

 
Data Generating Scheme 
The design of our Monte Carlo experiments 
follows closely that of [1] for panel data, 
which in turn adapted it from [11]. Consider 
the following simple regression model: 
 

0 1 1,..., , 1,...,it it i ity x v i N t T          
(10) 

 
where, 
 

, , 1,0.5it i t i tx     (see [12])                   (11) 

 

We generated ,i t
 
as iid ~ (0,2)iid N  and para-

meters 0 1( , )  are assigned (10, 0.5) 

respectively. We purposedly chose cross-
section units as 10,30,50,N   and time 

periods, 5,15,20.T   For each scenario, 2500 

replication were made. For this work, we set 
up two experiments: 
 
Experiment 1  
Follows the [1] set up, where our 
contamination was on individual effect, and 
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we assume Quadratic heteroscedastic 
functional form (QHFF) as stated below: we 
generated our data by assuming                      

µi ~
2(0, )i iN  

 
and our remainder error,         

vit  ~
2(0, )it vv N   

2 2 2 2( ) (1 )i i i ix x                  (12) 

 
Experiment 2 
We followed the [1] set up, where our 
contamination was on individual effect, but it 
took Exponential heteroscedastic functional 
form (EHFF) as stated below: we generated 

our data by polluting µi ~
2(0, )i iN   and our 

remainder error, vit  ~ 2(0, )it vv N   
2 2 2( ) exp( )i i i ix x                (13) 

 

where, ix
 

is the individual mean of itx . 

Denoting the expected variance of i by 
2

i and following [1], we fix the expected 

total variance of 
2 2 10i v  

 
to make it 

comparable across the different data 

generating processes. We let 2

v  
take the 

value 4. For each fixed value of 2

v , degrees 

of heteroscedasticity ( )DH   
is assigned 

values 0,1,2, and 3 with 0 
 
denoting the 

homoscedastic individual specific error. For a 

fixed value of 2

v , we obtained a value of 
2 2(10 )i v  

 
and using a specific value of 

 , we got the corresponding value for 
2

  
from (equations 12 and 13). We can choose a 
quadratic or an exponential heteroscedastic 
specification for 2 2 '

2( )i ih f    
 

with 
' 2

2( ) (1 .)i ih f x   
 

and '

2( ) exp( .)i ih f x  
 

for experiments 1 and 2 respectively. 

Criteria for Evaluating the Performance of 
the Estimators 
The summary of principal calculations for 
each model, estimation procedure, hetero-
scedasticity function of the individual effect 
and remainder would be judged with below 
criteria. 
 

(i) Mean of estimates over replication. 

Let  , be the estimate of the parameter 

  obtained in the thr  replication, then 

1

1ˆ ˆR

rrR
 


  , where, R number of 

replications. 

(ii)  Bias of the estimator ˆ ˆ( )Bias      

(iii) Variance  
2

1

1

ˆ ˆ ˆ( )
R

rr
V R  


   

(iv)  Mean Square Error (MSE) 

 
2

1

1

ˆ( )
R

rr
MSE R  


   

2
ˆ ˆ( ) ( )Var Bias   

   
 

(v) Root Mean Square Error (RMSE) 

 
1

2 2ˆ ˆ ˆ( ) ( ) ( ( ))RMSE Var Bias   

  
Discussion of Results 
Table 1 reports the Monte carlo results of 
Bias in experiments 1 and 2 when time period 
T = 5, 15, 20 and cross-section unit N=10 for 
both experiments. But, it was observed in the 
Biases of the estimators at 5T  for 10N   
and 30, POLS performed reasonably fine but 
as T and N increases PGLS and BG 
outperform other estimators, but in Table A3 
of appendix, for 50N  , PGLS, BG and 
POLS performed equally and likely in terms 
of biases. 
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Table 1: Bias for Slope in Experiments 1 and 2, when N=10 and R=2500 
 

 Experiment 1 , N=10, R=2500 Experiment 2 , N=10, R=2500 

T   
POLS BG WG PGLS POLS BG WG PGLS 

5 

0 1.3587 -3.8195 -4.1754 -0.0557 -0.0453 -2.9903 -3.1301 1.4386 

1 -0.6115 1.1080 1.2340 1.1601 3.7151 -0.2130 -0.3544 0.1475 

2 -1.9443 2.9971 3.5171 -1.0562 3.4485 -1.5551 -1.7768 -0.1923 

3 -4.0269 5.6390 6.7138 -2.3847 2.7696 -9.9741 -10.8180 -2.2992 

15 

0 -0.1374 -0.1290 -0.8928 -0.1087 -0.2667 -0.1562 -0.9772 -0.1539 

1 -0.6044 8.8665 0.6800 -2.3874 2.2656 0.9937 1.0158 0.8864 

2 -4.8641 4.7740 0.7390 -3.1124 8.1738 0.9640 1.0893 0.6936 

3 
-

12.9961 -3.1104 0.1086 -4.9578 35.7569 0.8256 1.4326 0.4903 

20 

0 -0.0454 -1.5228 -0.8538 -0.4471 -0.5869 -1.5228 -0.9264 -0.0536 

1 -0.1042 1.0000 0.8978 0.1664 1.7619 1.0000 1.3641 0.9219 

2 4.2879 1.0000 -0.2665 -4.2742 0.3188 1.0000 0.9356 0.4651 

3 6.3046 1.0000 -1.8477 -10.1225 -4.0761 1.0000 -0.4954 2.7134 
 

[see other tables/figures on appendix page] 

 
 

Table A4 reports the results of Root Mean 
Square Estimators (RMSE) for the quadratic 
(experiment I)  form of heteroscedasticity as 
time period 5T  , PGLS and WG recorded 

minimum RMSE, but in Table 2b as 15T   
and 20 30N  , PGLS takes the lead while 
BG gives the minimum RMSE in Table 3. 

Table A5 presents biases on experiment 2 and 
we found out that PGLS and BG produces 
minimum biases for all combinations N and 
T. While the evidences in Table A6 reveal 
good performance in terms of RMSE criteria 
to favour PGLS as the best and BG, WG 
compete as well. 

 
 

Table 2: Final Summary Results on Both Experiments 
 

Estimator 
Experiment 1 Experiment 2 

Total Performance Ranking 
BIAS RMSE BIAS RMSE 

POLS 27 16 12 12 67 4
TH

 

BG 23 17 25 15 80 2
ND

 

WG 24 16 20 13 73 3
RD

 

PGLS 31 23 26 20 100 1
ST
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Fig. 1: Graph showing bias performance of different estimators at different time period T around slope. 
 

 
Conclusion 
In this paper, we considered two experiments 
with four estimators using static panel data 
regression model. Our Monte carlo and 
ranking results in experiment 1 shows the 
following ascending order of performances 
as; PGLS, POLS, BG and WG. While, for 
experiment 2, PGLS, BG, WG and POLS. 
Also, Figure 1 above reveals that as time 
increases PGLS outperformed better than 
other estimators. 

Generally, considering the two experi-
ments from above Table 2 shows that all 
estimators were ranked in ascending order of 
performance: PGLS, BG, WG and POLS. 
This result helps in the choice of estimator in 
empirical work when there is presence of 
heteroscedasticity. 
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Appendix 
 
 

Table A1: Estimated ranking performances on BIAS for Slope coefficient on both experiments 
 

 Experiment 1 , N=10, R=2500  Experiment 2 , N=10, R=2500 

T   
POLS BG WG PGLS   POLS BG WG PGLS 

5 

0 1.3587 -3.8195 -4.1754 -0.0557   -0.0453 -2.9903 -3.1301 1.4386 

1 -0.6115 1.1080 1.2340 1.1601   3.7151 -0.2130 -0.3544 0.1475 

2 -1.9443 2.9971 3.5171 -1.0562   3.4485 -1.5551 -1.7768 -0.1923 

3 -4.0269 5.6390 6.7138 -2.3847   2.7696 -9.9741 -10.8180 -2.2992 

15 

0 -0.1374 -0.1290 -0.8928 -0.1087   -0.2667 -0.1562 -0.9772 -0.1539 

1 -0.6044 8.8665 0.6800 -2.3874   2.2656 0.9937 1.0158 0.8864 

2 -4.8641 4.7740 0.7390 -3.1124   8.1738 0.9640 1.0893 0.6936 

3 -12.9961 -3.1104 0.1086 -4.9578   35.7569 0.8256 1.4326 0.4903 

20 

0 -0.0454 -1.5228 -0.8538 -0.4471  -0.5869 -1.5228 -0.9264 -0.0536 

1 -0.1042 1.0000 0.8978 0.1664  1.7619 1.0000 1.3641 0.9219 

2 4.2879 1.0000 -0.2665 -4.2742  0.3188 1.0000 0.9356 0.4651 

3 6.3046 1.0000 -1.8477 -10.1225  -4.0761 1.0000 -0.4954 2.7134 
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Table A2: Estimated Ranking Performances on BIAS for Slope Coefficient on both Experiments 
 

 Experiment 1, N=30, R=2500 Experiment 2, N=30, R=2500 

T   
POLS BG WG PGLS POLS BG WG PGLS 

5 

0 -0.4205 -0.5010 0.0402 -0.1711 -0.4987 -0.7361 -0.1895 -0.1917 

1 0.2293 0.5743 17.5124 0.5932 1.1374 1.9766 3.0913 1.2817 

2 -1.2128 -0.2220 48.4005 0.3402 1.7790 6.5361 12.8528 0.8957 

3 -3.3256 -1.3888 93.6617 0.2665 4.7750 27.8223 58.4253 0.6406 

15 

0 -0.7371 -0.9431 0.1015 0.0064 -0.4636 -0.2705 -0.3642 0.0089 

1 0.9722 0.4896 -5.8404 -1.4688 1.1734 -0.7778 -0.3784 -6.2135 

2 1.5570 0.5789 -7.1547 -1.3906 1.6221 -7.3323 -8.3704 -12.9551 

3 2.4028 0.6952 -3.5350 -18.5313 5.4715 -44.8344 -36.9228 3.8989 

20 

0 -0.4223 0.1163 -0.3123 -0.4873 -0.3976 -0.6965 -0.2869 -0.0759 

1 0.8603 -0.4961 0.2834 -0.0408 1.0735 0.7248 -0.3591 1.6665 

2 -0.4433 2.3758 -1.7323 -0.8122 2.4165 2.9411 4.2125 2.4299 

3 -1.5179 3.3534 -2.5034 -1.6021 8.0212 10.9233 14.7590 8.7575 

 
 

 
Table A3: Estimated Ranking Performances on BIAS for Slope Coefficient on both Experiments 

 

 Experiment 1, N=50, R=2500  Experiment 2, N=50, R=2500 

T   
POLS BG WG PGLS POLS BG WG PGLS 

5 

0 -0.2200 -0.1679 0.1701 0.0367 -0.1791 -0.1916 -0.3054 -0.1892 

1 -0.4586 -0.3734 3.3292 1.4005 1.7409 0.1221 1.7040 1.6607 

2 -0.3609 -0.1394 8.3163 0.0163 4.0614 0.5376 0.0026 -2.4857 

3 -7.1864 -4.6468 7.7437 -21.6948 14.3400 -0.4113 -0.4741 -21.1126 

15 

0 -0.5576 -0.8658 -0.5633 -0.0345 -0.5513 -1.0160 -0.0573 -0.5801 

1 1.1860 0.1684 0.4186 -0.2551 0.9380 0.7057 1.6265 0.5732 

2 0.6067 -0.9584 -1.9707 2.6290 1.0941 -0.5924 5.7592 -0.7487 

3 0.2328 -2.4172 -3.0581 8.1478 1.2750 -4.5104 9.0576 -8.0946 

20 

0 -0.4783 -0.2002 -0.0857 0.0307 -0.4917 -0.0350 0.0095 0.1042 

1 1.0383 1.1249 5.4259 -0.8730 1.0893 1.3714 11.8421 0.1363 

2 0.8741 3.2213 2.4492 -3.9121 1.3285 1.6800 73.8737 7.0115 

3 1.0157 5.1169 13.5963 -5.0326 2.4749 5.4829 387.5474 34.5518 
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Table A4: Estimated Ranking Performances on RMSE for Slope Coefficient on both Experiments 
 

 Experiment 1, N=10, R=2500 Experiment 2,  N=10, R=2500 

T   
POLS BG WG PGLS POLS BG WG PGLS 

5 

0 1.3693 3.8297 4.1803 0.2720 1.4486 3.0034 3.1367 0.2652 

1 0.6194 1.1075 1.2335 0.9515 0.1876 0.2317 0.3595 1.1702 

2 1.9332 2.9900 3.5133 0.9623 0.2241 1.5511 1.7742 1.2831 

3 3.9977 5.6244 6.7060 1.1384 2.2864 9.9310 10.7955 2.4117 

15 

0 0.1663 0.4452 0.8972 0.1102 0.2827 0.4539 0.9822 0.1872 

1 0.5419 2.5890 0.6771 2.3691 2.1631 0.9993 1.0156 0.9279 

2 4.0380 1.4127 0.7375 3.1087 7.7191 0.9958 1.0884 0.8128 

3 10.7534 0.9583 0.1417 5.2782 33.7383 0.9810 1.4289 0.7035 

20 

0 0.4555 1.5943 0.8583 0.1098 0.5933 1.5943 0.9306 0.1126 

1 0.2513 1.0000 0.8989 0.8957 1.7490 1.0000 1.3613 0.9498 

2 4.1999 1.0000 0.2843 2.3226 0.3478 1.0000 0.9362 0.9026 

3 9.9380 1.0000 1.8408 4.3970 4.0347 1.0000 0.5022 2.0267 

 
 

 
Table A5: Estimated Ranking Performances on RMSE for Slope Coefficient on both Experiments 

 

 Experiment 1, N=30, R=2500 Experiment 2,  N=30, R=2500 

T   
POLS BG WG PGLS POLS BG WG PGLS 

5 

0 0.4316 0.5433 0.1183 0.2064 0.5080 0.7655 0.2198 0.2233 

1 0.3172 0.6558 6.0254 0.7587 1.1329 1.9204 2.7125 1.2297 

2 1.2027 0.4377 16.4742 0.6555 1.7569 6.2911 11.0924 1.0031 

3 3.2479 1.3379 31.8411 0.6342 4.6915 26.7552 50.3735 0.8934 

15 

0 0.7386 0.0315 0.1026 0.9455 0.4670 0.3502 0.3689 0.0714 

1 0.9732 2.2952 5.8070 0.5420 1.1711 0.8744 0.4066 1.1261 

2 1.5558 2.3016 7.1014 0.6236 1.6188 5.6996 8.2651 1.8880 

3 2.3989 3.8444 3.5000 0.7043 5.4330 34.6368 36.4717 1.4412 

20 

0 0.3161 0.5268 0.4250 0.1283 0.4004 0.7247 0.1037 0.2910 

1 0.3309 0.3818 0.8620 0.4538 1.0880 0.7104 1.2672 0.3679 

2 1.7178 0.8214 0.4673 2.1621 2.4136 3.1639 2.0263 4.2110 

3 2.4915 1.5638 1.5364 3.0607 8.0692 12.1585 6.7489 14.7046 
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Table A6: Estimated Ranking Performances on RMSE for Slope Coefficient on both Experiments 
 

 Experiment 1, N=50, R=2500 Experiment 2,  N=50, R=2500 

T   
POLS BG WG PGLS POLS BG WG PGLS 

5 

0 0.2329 0.2395 0.1879 0.0914 0.2040 0.1809 0.3086 0.2487 

1 0.5432 0.7595 3.0437 1.1457 1.6550 1.8016 1.6944 0.1393 

2 0.6777 0.1821 7.5419 1.0233 2.4300 4.0327 0.3954 0.4938 

3 6.7966 3.2814 7.1185 8.8249 19.8851 14.2689 1.7003 1.9403 

15 

0 0.0460 0.8782 0.5651 0.5592 0.5529 1.0265 0.0758 0.5818 

1 1.3413 0.1737 0.4187 1.1858 0.9401 0.7004 1.2454 0.5720 

2 3.2783 0.9596 1.9660 0.6096 1.0950 0.6218 4.3918 0.7549 

3 6.1500 2.4620 3.0541 0.2441 1.6477 4.8208 6.9235 8.1157 

20 

0 0.4796 0.2483 0.0899 0.0332 0.4930 0.1604 0.0100 0.0353 

1 1.0363 0.9166 5.1735 0.8825 1.0868 0.1440 11.2700 1.3626 

2 3.6355 2.6097 2.3471 0.8739 1.3284 4.5567 70.1900 1.6827 

3 1.0448 4.1659 12.9722 4.8886 2.4779 22.4601 368.2100 5.6204 

 
 
 

 
 

Fig. 2: The graph showing bias performance of different estimators on both experiments. 
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Fig. 3: The graph showing RMSE performance of different estimators on both experiments. 

 
 
 
 
 

  
Fig. 4: The multiple bar chart showing bias performance of different estimators on both experiments. 
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Fig. 5: The multiple bar chart showing RMSE performance of different estimators on both experiments. 


