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Abstract 
Spatial Qualification Model (SQM) is a logical system built to reason about the possibility of an agent’s presence at 
a location of incidence, at a certain time given its prior antecedents. The usability of this logical system is strongly 
dependent on the existence of a proof system. This work is aimed at developing an analytic proof system to 
demonstrate the logical truth of statements in the spatial qualification logic. Tableau proof method was used to 
analytically prove that the formulae (axioms) in the SQM system were the logical consequence of the set of 
formulae that make up the prior knowledge. The proof system confirms the logical truth of the axioms in the system. 
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Introduction 
The logical model of spatial qualification [1] 
was formalized following the introduction of 
the spatial qualification problem [2, 3]. The 
problem is a specific type of qualification 
problem that deals with the impossibility of 
knowing an intelligent agent’s presence at a 
specific location and time to carry out an 
action or participate in an event given its 
known antecedents. Spatial qualification 
therefore, is one important precondition for 
any action to take place at a location. The 
qualitative spatial reasoning field have 
formalized a number of spatial concepts. 
Some of the resulting qualitative spatio-
temporal calculi used for reasoning about 
these concepts are included in the summary 
in Table 1. 

The spatial qualification model [1] is a 
logical  system  with axioms directed towards  

 
the determination of the spatial presence of 
an agent for it to be a participant in an action 
with the reachability of the locations 
concerned taken into consideration. The 
axioms contained in the logic re-used the 
RCC-8 topological relations [6] in defining 
spatial concepts, such as regionally_ disjoint 
and regionally_ connected  [1], required to 
determine the possibility of an agent’s spatial 
qualification. Formal axioms that make up 
the spatial qualification model (SQM) are 
explicitly stated following the quantified 
modal logic [11]. The formal model was 
described using the possible world semantics 
[12] with the concepts of the world remaining 
fixed across possible worlds confirming 
Barcan’s axioms [13] with constant domain 
across possible worlds. 
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Table 1: Review of Qualitative Spatiotemporal Calculi 
 

Calculi Relations Examples 

Star, double cross, cardinal direction [4] direction left, above,… 

Point, relative distance distance far, near,…  

Sizes sizes large, tiny,… 

Shapes [5] shapes oval, convex,… 

RCC-5, RCC-8 [6] topology touch, inside,… 

QTC [7,8] motion reach, leave, hit… 

Allen Interval logic [9] Interval Relations before, after, … 

Anchoring relations [10] Anchoring relations around, within 

SQM - Spatial Qualification Model [1] Spatial Qualification present at, reachable 

  
The validity of the logical statements in 

spatial qualification model (SQM) can only 
be determined if there is a mechanical 
procedure for determining whether or not the 
statement follows from a given set of 
statements. Theorem proofing can be done 
using several proof methods such as 
unification, resolution and tableau proof 
method [14]. Classical logics such as first 
order logic can best be handled using 
resolution since it is already in clausal form. 
The most widely used proof method for 
modal logics is the analytic/semantic tableau 
proof method.  The use of analytic tableau 
proof method reduces the burden of 
transforming sentences such as possibility to 
its clausal form. Semantic tableau is a proof 
system used to prove the validity of a 
formula, or if a formula is a logical 
consequence of a set of formulas and/or 
prove of satisfiability of a set of formulae 
[15]. Since, the logic follows the syntax of 
the quantified modal logic, tableau proof 
method is said to be appropriate for the proof 
system. This work is aimed at employing the 
analytical tableau proof method to provide a 
proof system for the logical model of spatial 
qualification. 

The rest of the paper is organized as 
follows. Section 2 gives the review of 
Quantified Modal Logics. An overview of the 

methodology used and the proof system is 
described in section 3. Section 4 discusses the 
decidability of the proof system. Section 5 
gives the summary and conclusion of the 
paper.  

 
Quantified Modal Logics 
Quantified modal logic combines features of 
two logical languages, namely—the adequate 
expressivity of first-order logic and the 
dynamic modalities of the modal logic [16]. 
Clearly outlined is the syntax of first-order 
logic [17] and its semantics [18]. The syntax 
and semantics of modal logic is as outlined in 
[19, 20].Hence, the operators used in 
quantified modal logics include the universal 

quantifier , existential quantifier , unary 

operator ¬, binary operators , ,, , the 
necessarily □ and the possibly operator ◊. The 
complete semantics of quantified modal logic 
has been developed [21]. 

Although, semantic tableau has been used 
to prove the validity of formulae in 
propositional and predicate logic [15], it is 
more widely used as a proof technique for 
modal systems. It has also been used in 
providing a sound and complete proof system 
for the propositional S5 system [19]. Fitting 
[13] in his attempt to prove the validity of 
Barcan’s formula and its converse, which is 
of constant domain across possible worlds, 
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gave several examples of propositions and 
their tableau proofs. This can also be seen in 
the tableau proof whose rules go with the 
semantics of the first-order modal logic [11].   

Semantic tableau is the most suitable 
proof method for modal logic [14]. Hence, 
theorem proving of the spatial qualification 
logic which employs the quantified modal 
logic for its representation adopts the tableau 
proof method to ascertain its logical truth.  
 
The Tableau Proof System 
The most widely used proof method for 
modal logics is the analytic tableau proof 
method. Semantic tableau is a proof system 
used to prove the validity of a formula, or if a 
formula is a logical consequence of a set of 
formulas and/or prove of validity of a set of 
formulae [14]. A tableau is a tree-like 
representation of a formula or set of formulae 
in logic [22]. Each node of a tableau carries a 
signed formula (true or false). Tableau 
calculus consists of a finite collection of 
rules.  Rules specify how to break down one 
logical connective into its constituent parts.   

A proof procedure on the other hand is a 
policy for application of the rules. The 
application of a tableau rule following a finite 
path sometimes leads to the creation of many 
branches. In tableaux, if any branch leads to 
an evident contradiction, the branch closes.  
If all branches close, the proof is complete 
and the original formula is said to be a logical 

truth. The objective of tableaux is to show 
that the negation of a formula is not valid. 

The basic rules for constructing the 
tableau stems from that of propositional 
logic, extends to rules that deal with the 
universal and existential quantifiers in first-
order logic and then to rules that deal with 
possibly and necessarily modalities of modal 
logics.  Since our logic is a quantified modal 
logic, we shall combine all the rules for 
propositional, first-order and modal logics as 
described in the section addressing the 
development of the proof system. First-order 
logic is said to be undecidable in general. 
This means that no procedure exists in 
general that can tell whether or not a 
statement is valid. However, it is semi-
decidable in the sense that a procedure exists 
that can tell if a statement is valid, but the 
procedure is not guaranteed to terminate if 
the statement is not valid. We look forward to 
seeing the case of modal logics. 
 
Tableau Proof Rules 
Since, SQM follows the syntax of quantified 
modal logic which combines features of first-
order and that of modal logic, our proof rules 
therefore will combine the tableau rules in 
propositional [22], first-order and modal 
logic. Hence, the following tableau rules shall 
become applicable to the proof system of 
SQM. 

 
(i) Negation rules 

 
 
 
 
 

(ii) Conjunctive rules 
 
 
 
 

 
 
 
 

T ¬A 

 F A 

T  (A  B) 

T A 
T B 

T  (A  B) 

 
T A T B 

T  (A  B) 

 
F A T B 

T  (A  B) 

 
T A F B 
T B F A 

F ¬A 

T A 
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(iii)  Disjunctive rules 
 

 
 
 
 
 

(iv)   Universal rules 
 
 
 
 

for any term t in the language. 
 
 

(v) Existential rules 
 
 
 
 

for a new constant c. 
 
 

(vi)   Necessity rules 
 
 
 
 
 

(vii) Possibility rules 
 

 
 

  
 
Sample Tableau proofs for SQM 
To prove that a formula, B is a logical 
consequence of a set of formulae, A1 ... Ak, 
the following lemmas are hereby stated. 
 
Lemma 1. Given that: 

{Present_at(x,l1,t1), x,l1,l2,t1,t2. l1=l2  

t1<t2Reachable(x,l1,l2,(t1,t2)), l1=l2, 
t1<t2} 
⊦  ◊Present_at(x,l2,t2) 
 

Proof: To proof by contradiction that the 
above lemma is true, we start by saying that 
the set of axioms entails ¬◊Present_at 

(x,l2,t2). Including the negated axiom to the 
set and proving using tableau rules is as 
analysed in Figure 1 and completed in Figure 
2. Since both branches of the above tableau 
do not lead to a closure, we look for a way of 
extending the branch that is still open.  

From the system of axioms in SQM, 
axiom TA3 defines Reachable to be  

Reachable(x,l1,l2,(t1,t2))(t1<t2(Presen_at(

x,l1,t1)◊Present_at(x,l2,t2)). 
 
By equivalence, we have that 
 

F  (A  B) 

 
F A F B 

 

F  (A  B) 

 
T A F A 
F B T B 

F  (A  B) 

T A 
T B 

F(A  B) 

T A 
F B 

T x  A(x) 

T A(t) 

F x  A(x) 

F A(t) 

F x  A(x) 

F A(c) 

T x  A(x) 

T A(c) 

F ◊A 

Fk A 

T □A 

Tk A 

F □A 

Fk A 

T ◊A 

Tk A 
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Reachable(x,l1,l2,(t1,t2)) = (t1<t2 (Present_at 

(x,l1,t1)◊Present_at(x,l2,t2)).  

By substitution rule, (t1<t2(Present_at 

(x,l1,t1) ◊Present_at(x,l2,t2)) replaces 

Reachable(x,l1,l2,(t1,t2)) in the tableau in 
figure 1 and thus extends the branch further 
in other to lead to closure as shown in tableau 
2. 

 
 

 
 

Fig. 1: Proof of reachability (reflexive) axiom – open. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. {Present_at(x,l1,t1), x,l,t1,t2. . l1=l2  t1<t2 Reachable(x,l1,l2,(t1,t2)), t1<t2, 

l1=l2,¬◊Present_at(x,l2,t2)} 

2. Present_at(x,l1,t1) 

3. x,l1,l2,t1,t2. l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)) 

4. t1< t2 

5. l1 = l2  

6. ¬◊Present_at(x,l2,t2) 

7. ¬Present_at(x,l2,t2) 

8. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

9. ¬ (l1=l2   t1<t2) 

10. Reachable(x,l1,l2,(t1,t2)) 

11. ¬ (l1=l2) 

12. ¬ (t1<t2) 
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Fig. 2: Proof of reachability (reflexive) axiom - closed. 

From the closed tableau in Figure 2, the 
set of axioms in node (1) is expanded to have 
nodes (2), (3), (4), (5) and (6). By applying 
necessity rule from (6), we have item (7). 
Node (8) is from node (3) by universal rule.  
By conjunctive rule, node (8) opens into two 
branches with nodes (9) and (10). Node (9) 
again opens into two branches with nodes 
(11) and (12) and nodes (11) and (5) close as 
well as nodes (12) and (4) since there is a 
contradiction.   

Extending node (10) as explained in the 
first tableau above, we have node (10) 
replaced as shown in the second tableau in 

Figure 2.  By substitution rule, we have node 
(13) from (10). Again by conjunctive rule 
from node (13), we have nodes (14) and (15).  
Node (15) opens into two branches with 
nodes (16) and (17) by conjunctive rule. By 
possibility rule from (17), we have node (18).  
All branches in the tableau in Figure 2 lead to 
closure as nodes (17) and (2) close and also 
nodes (18) and (7) close.   

The closure of the tableau of the 
contradiction shows that the proof is 
complete and that SQM logic is satisfiable 
with the given statement in lemma 1. 

1. {Present_at(x,l1,t1), x,l,t1,t2. . l1=l2  t1<t2 Reachable(x,l1,l2,(t1,t2)), t1<t2, 

l1=l2,¬◊Present_at(x,l2,t2)} 

2. Present_at(x,l1,t1) 

3. x,l1,l2,t1,t2. l1=l2  t1<t2  Reachable(x,l1,l2,(t1,t2)) 

4. t1< t2 

5. l1 = l2  

6. ¬◊Present_at(x,l2,t2) 

7. ¬Present_at(x,l2,t2) 

8. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

9. l1=l2  t1<t2 

10. Reachable(x,l,l,(t1,t2))= (t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)) 

11. ¬ (l1=l2) 

12. ¬ (t1<t2) 

13. t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)) 

14. t1< t2 

15. (Present_at(x,l1,t1)  ◊Present_at(x,l2,t2)) 

16. ¬Present_at(x,l1,t1) 

17. ◊Present_at(x,l2,t2) 

18. Present_at(x,l2,t2) 
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Lemma 2. Given that: 
{Present_at(x,l1,t1), 
Reachable(x,l1,l2,(t1,t2)), 
Reachable(x,l2,l3,(t2,t3)), t1<t2<t3, 

Reachable(x,l1,l2,(t1,t2))Reachable(x,l2, 

l3,(t2,t3)) Reachable(x,l1,l3,(t1,t3))} 
⊦ ◊Present_at(x,l3,t3) 

Proof: The proof is as shown on Figure 3 and 
completed in Figure 4.  
 On applying the branch extension rule as 
it was done in figure 2, we have from axiom 
TA3, the tableau as shown in Figure 4. 
 

  
Fig. 3: Proof of reachability (transitive) axiom- open. 

 
 
 
 
 
 
 
 
 

1. {Present_at(x,l1,t1), Reachable(x,l1,l2,(t1,t2)),Reachable(x,l2,l3,(t2,t3)),   

t1<t2<t3, Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) 

Reachable(x,l1,l3,(t1,t3)), ◊Present_at(x,l3,t3)} 

2. Present_at(x,l1,t1) 

3. Reachable(x,l1,l2,(t1,t2)) 

4. Reachable(x,l2,l3,(t2,t3)) 

5. t1< t2 < t3 

6. x,l1,l2,l3,t1,t2,t3.  Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3))  

Reachable(x,l1,l3,(t1,t3)) 

7. ¬◊Present_at(x,l3,t3) 

8. ¬Present_at(x,l3,t3) 

9. Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) Reachable(x,l1,l3,(t1,t3)) 

10. ¬ (Reachable(x,l1,l2,(t1,t2)) Reachable(x,l2,l3,(t2,t3)) 

11. Reachable(x,l1,l3,(t1,t3)) 

12. ¬Reachable(x,l1,l2,(t1,t2)) 

13. ¬Reachable(x,l2,l3,(t2,t3)) 



 

322 
 

  
Fig. 4: Proof of reachability (transitive) axiom -closed. 

 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1. {Present_at(x,l1,t1),       Reachable(x,l1,l2,(t1,t2)),Reachable(x,l2,l3,(t2,t3)),  

t1<t2<t3,Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) 

Reachable(x,l1,l3,(t1,t3)), ◊Present_at(x,l3,t3)} 

2. Present_at(x,l1,t1) 

3. Reachable(x,l1,l2,(t1,t2)) 

4. Reachable(x,l2,l3,(t2,t3)) 

5. t1< t2 < t3 

6. x,l1,l2,l3,t1,t2,t3.        Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) 

Reachable(x,l1,l3,(t1,t3)) 

7. ¬◊Present_at(x,l3,t3) 

8. ¬Present_at(x,l3,t3) 

9. Reachable(x,l1,l2,(t1,t2))Reachable(x,l2,l3,(t2,t3)) Reachable(x,l1,l3,(t1,t3)) 

10. ¬ (Reachable(x,l1,l2,(t1,t2)) Reachable(x,l2,l3,(t2,t3)) 

11. Reachable(x,l1,l3,(t1,t3))= t1<t3Present_at(x.l1,t1) Present_at(x,l3,t3) 

12. ¬Reachable(x,l1,l2,(t1,t2)) 

13. ¬Reachable(x,l2,l3,(t2,t3)) 

14. (t1<t3(Present_at(x,l1,t1)◊Present_at(x,l3,t3)) 

15. t1< t3 

16. (Present_at(x,l1,t1)  ◊Present_at(x,l3,t3)) 

17. ¬Present_at(x,l1,t1) 

18. ◊Present_at(x,l3,t3) 

19. Present_at(x,l3,t3) 
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Lemma 3.Given that: 

{Present_at(x,l1,t1),x,l1,l2,t1,t2. l1=l2 

 t1<t2 Reachable(x,l1,l2,(t1,t2)), 
t1<t2}  
⊬  ◊Present_at(x,l2,t2) 

 
 
 
 
 
 
Proof: To prove by contradiction that the 
above lemma is true, we start by saying that 

the set of axioms entails ¬(¬◊Present_at 
(x,l2,t2)). Including to the set and proofing 
using tableau rules is as shown in Figure 5. 
and completed in Figure 6. By employing 
substitution rule as seen in the proof of 
lemma 1 and replacing, Reachable 
(x,l1,l2,(t1,t2)) of node (11) in Figure 5 with 

(l1=l2t1<t2(Present_at(x,l1,t1)◊Present_a
t(x,l2,t2)), and thus extends the branch further 
in other to lead to closure as shown in Figure 
6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Proof of negation of reachability (reflexive) axiom - open. 

 

1. {Present_at(x,l1,t1), x,l1,l2,t1,t2. l1=l2  t1<t2 Reachable(x,l1,l2,(t1,t2)), t1<t2, 

l1=l2,(◊Present_at(x,l2,t2))} 

2. Present_at(x,l1,t1) 

3. x,l,t1,t2. l1=l2  t1<t2 Reachable(x, l1,l2,(t1,t2)) 

4. t1<t2 

5. l1=l2  

6. ¬(◊Present_at(x,l2,t2)) 

7. Present_at(x,l2,t2) 

8. Present_at(x,l2,t2) 

9. l1=l2  t1<t2 Reachable(x, l1,l2,(t1,t2)) 

10. ¬ (l1=l2  t1<t2) 

11. Reachable(x,l1,l2,(t1,t2)) 

12. ¬ (l1=l2) 

13. ¬ (t1<t2) 
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Fig. 6: Proof of negation of reachability (reflexive) axiom - closed. 

From the tableau in Figure 6, the set of 
axioms in node (1) is expanded to have nodes 
(2), (3), (4), (5) and (6). Node (7) is obtained 
by applying double negation rule on (6). And 
by necessity rule from (7), we have item (8). 
Node (9) is from node (3) by universal rule.  
By conjunctive rule, node (9) opens into two 
branches with nodes (10) and (11) and by 
disjunctive rule node (10) extends to nodes 
(12) and (13).  Nodes (12) and node (5) close 
and nodes (13) and (4) also close.  

As seen in Figure 2, we have node (11) 
replaced as shown in the second tableau.  By 
substitution rule, we have node (14) from 
(11). Again by conjunctive rule from node 
(14), we have nodes (15) and (16).  Node (16) 
opens into two branches with nodes (17) and 
(18) by conjunctive rule. By possibility rule 
from (18), we have node (19). Nodes (17) and 
(2) close but node (19) is open. 

Since the branches in the tableau of 
Figure 6 do not all lead to closure, the proof 

1. {Present_at(x,l1,t1), x,l,t1,t2. . l1=l2  t1<t2 Reachable(x,l1,l2,(t1,t2)), t1<t2, 

l1=l2, ,(◊Present_at(x,l2,t2))} 

2. Present_at(x,l1,t1) 

3. x,l1,l2,t1,t2. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

4. t1< t2 

5. l1 = l2  

6. ¬(◊Present_at(x,l2,t2)) 

7. Present_at(x,l2,t2) 

8. Present_at(x,l2,t2) 

9. l1=l2  t1<t2Reachable(x,l1,l2,(t1,t2)) 

10. ¬ (l1=l2   t1<t2) 

11. Reachable(x,l,l,(t1,t2))= 

(l1=l2t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)) 

12. ¬ (l1=l2) 

13. ¬ (t1<t2) 

14. (t1<t2(Present_at(x,l1,t1)◊Present_at(x,l2,t2)) 

15. t1< t2 

16. (Present_at(x,l1,t1)  ◊Present_at(x,l2,t2)) 

17. ¬Present_at(x,l1,t1) 

18. ◊Present_at(x,l2,t2) 

19. Present_at(x,l2,t2) 
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is therefore incomplete showing that the 
negation of the assertion is not provable.  
This demonstrates the semi-decidability of 
SQM. Note the proofs, started by including 
the contradiction of the entailed formula to 
the right hand side of the statements to the 
set. Since, the tableau proofs with the 
contradiction lead to closure, it means that, 
the starting set of formulae is not a logical 
truth. This means that the set with the 
originally entailed formula is logically true.  
 
Decidability of the SQM 
From the proof system, it is possible to 
decide the possibility of an agent being 
present at a location, at a certain time, if it is 
possible for that agent to be present at that 
location at the time t, given the antecedents 
using SQM. However, it is not possible to 
infer the fact that it is not possible for an 
agent to be present at a certain location and at 
a certain time. The reason is that, most of our 
axioms are implications and not equivalence. 
Thus, SQM is semi-decidable. 
 
Conclusion 
Sequel to the closure of sample proofs 
tableaux analysed in this work, the axioms 
that constitute the spatial qualification logical 
system are said to be the logical consequence 
of the set of formulae that make up the prior 
knowledge.  Hence, the axioms that make up 
the SQM are proven to be logically true and 
sound for determining the possibility of an 
intelligent agent’s spatial and temporal 
presence at location of incidence. Further 
study should focus on a wider context of 
quantified modal logics with constant domain 
of possible worlds to determine their 
decidability, soundness and completeness.  
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