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Abstract 
In this article, the sensitivity of each of the fixed effects probit and complementary log-log models to gamma, 
Cauchy and lognormal tolerances was studied, through Monte Carlo experiments. Seven levels of sample size and 
four levels of number of time points were utilized for the simulation. Criteria used for comparison were the bias; 
variance and the root mean squared error. It was found that, typically for the probit and complementary log-log 
models, the lognormal tolerance produced the least absolute bias, while Cauchy produced the highest. Cauchy 
tolerance typically produced the least variance and lognormal tolerance, the highest for both the probit and the 
complementary log-log models. The lognormal tolerance produced the least variability around the true parameter 
value, and Cauchy, the highest for the probit model. For the complementary log-log model, gamma tolerance 
produced the least variability around the true parameter value and Cauchy, the largest.  It was concluded that both 
the probit and the complementary log-log models were least sensitive to the lognormal tolerance, followed by 
gamma, and lastly, Cauchy tolerance. 
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Introduction 
Cases of modelling abound in various fields 
of human endeavour, ranging from socio-
economic to medical sciences, where the 
dependent variable is a choice among a 
number of identified alternatives. That is, 
where the dependent variable assumes 
discrete values. Examples include occupa-
tional choice, choice of automobile, political 
party affiliation and HIV status of an 
individual. Unlike the case of continuous 
dependent variable that examines “how 
much?”, discrete choice models examine 
“which one?”. Of particular interest to this 
article is the case where choice is made 
between only two alternatives - the case of 
binary choice.  

The use of discrete choice modelling is 
not limited to qualitative response variables 
alone. Sometimes, quantitative (continuous) 
response variables are classified into 
categories, which are assigned discrete values 
and   then  analyzed   within   the  context  of  
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discrete choice modelling. Such remains valid 
much as the categorization has been done 
such that mutual exclusiveness among 
categories is maintained. For example, in an 
income   study, income, though continuous, 
may be categorized into low, middle, and 
high. Such categorization of continuous 
variable into discrete form often results in 
ordered discrete choice models since, the 
categorization is often associated with some 
form of ordering (ranking). By assigning 1 to 
low income; 2 to middle income and 3 to 
high income, there is some form of ordering 
since those assigned 1 earn less than those 
assigned 2 and similarly those assigned 2 
earn less than those assigned 3. 

Various research works have been carried 
out in the area of choice modelling. [1] 
proposes a discrete-time dynamical system to 
model a class of binary choice games. [2] 
proposes a quadratic exponential type binary 

model and a n  consistent conditional 

estimator. [3] suggests a generalized 
estimating equation approach to binary 
response panel data selection models. [4] 
presents for the index coefficients in a binary 
choice model, computationally simple root-n 
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consistent and asymptotically normal 
estimators. [5] and [6] are among notable 
contributors to the literature on discrete 
choice modelling. 

Parametric models whether cross-section 
or panel are known to be sensitive to their 
various parametric assumptions. The probit 
model for instance, requires that the latent 
model errors be standard normally distributed 
while, the complementary log-log requires 
standard type I extreme value (minimum) 
errors. The probability distribution that 
generates the latent model errors is known as 
tolerance in the literature. The probit hence, 
requires standard normal tolerance and the 
complementary log-log, standard type I value 
(minimum) tolerance. It is the focus of this 
article to assess the sensitivity of the fixed 
effects probit and complementary log-log 
models to (wrong) choices of the gamma, 
Cauchy and lognormal tolerances. 

The plan of this article is as follows: 
Section 2 presents the modelling framework; 
Section 3, the methods; Section 4 presents the 
results and discussion while the last section 
concludes the article. 
 
Binary Choice Modelling Framework 
In the binary choice modelling framework, 
we shall view the discrete outcome ( y ) as 

depending on whether a latent continuous 
variable (variable that is not directly 
measurable but inferred through another 

variable), *y crosses a threshold or not. We 

shall assume that *y  is a linear function of a 

vector of explanatory variables, .x  
Hence, 

uxy  /*                                   (1) 

Instead of observing
*y , we are observing y  

where, 
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Eqn. (3) implies that the probability that the 
event occurs given x , usually denoted p , is 

the expected value of the response binary 
variable given x . The probability function 
that generates the residual error (tolerance), is 
the determinant of the link function and 
hence, the form of resulting binary choice 
model.  

When the standard normal is selected (as 
tolerance), the resulting model is the probit 
model defined 

)(
2

1 /2

2/

xduep

ux











                  (5) 

 
Hence, 

xp /)(  .                                            (6)                                      

 
The link is hence, the inverse of the standard 
cumulative normal distribution. 

If the standard extreme value distribution 
is used as tolerance, we have the 
complementary log-log model, 

                                                        ))exp(exp()exp(                      
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Hence, 

xp /))1log(log(                                 (7) 
 

))1log(log( p is therefore, the link. The 

model is linear in the log of the negative of 
the log of the compliment of p .  

 
Methods 
The Model 
The model under consideration is a balanced 
one-way fixed effects error components 
model with a single covariate. This model is 
suitable for modelling binary panel data, 
when the omitted individual specific effect, is 
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to be taken into cognizance and inference 
drawn applies only to the individuals 
involved in the study. 

itiitit vxy  *  i = 1,…, N; t = 1,…, T   (8a) 

 
where, 












0y if                  0

0y if                  1
*
it

*
it

ity                      (8b) 

*
ity is a latent variable observed through ity ; 

 is a constant; 

itx is the exogenous variable; 

i is the unobserved individual specific 

heterogeneity;  

itv is the usual stochastic error term in 

regression. 
 
Data Generating Procedure 
The research adopted methods similar to 
those used in [7]. The latent and observed 
dependent variables were generated 
respectively, using eqn. (8a) and eqn. (8b). 

The exogenous variable itx  utilised method 

similar to [8] method and it was generated as 

 

ittiit xtx  1,5.01.0                            (9) 

 

where, it was uniformly distributed on the 

interval [-5, 5]. 0ix was chosen as io105 . 

The [8] method was used in [9], [10], [11] 
and several others. 

itv was generated as: Standard Cauchy; 

Gamma with parameters α = 1 and β = 1; and 
lognormal with parameters m = 1 and s = 0 

.48. 
2
  and   were each set at 1. N was set 

at 25, 50, 100, 150, 200, 250, and 300 while 
T was set at 5, 10, 15, and 20. The 
experiments were replicated 1000 times. 

 
 
Each of the fixed effects probit and 

complementary log-log models was fitted to 

the simulated data. We hence had the 
following cases: 
 
Case I: Probit modelling of standard Cauchy 
errors based data. 
 
Case II: Probit modelling of gamma errors 
based data. 
 
Case III: Probit modelling of lognormal 
errors based data. 
 
Case IV: Complementary log-log modelling 
of standard Cauchy errors based data. 
 
Case V: Complementary log-log modelling of 
gamma errors based data. 
 
Case VI: Complementary log-log modelling 
of lognormal errors based data. 
 
Parameter Estimation   
Estimation of binary choice models is usually 
carried out via the maximum likelihood 
method, with the exception of the linear 
probability model.  

To develop the framework, note that yit is 
Bernoulli with parameter β

/
x so that 
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But, under the fixed effects framework, the 
likelihood function for NT observations is  
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For the probit,  
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and for the complementary log-log, 

))exp(exp()exp()( ////
iitiitiit xxxF      (10f) 

 
No explicit (closed form) solution exists 

for the maximum likelihood estimator MLÊ
 

as equations embedded in eqn. (10d) are non-
linear in β except for the case of linear 
regression model. Iterative procedure is 
therefore required to obtain a solution. Since, 
the log likelihood for each of the probit and 
the complementary log-log is globally 
concave, the Hessian is automatically 
negative definite and the obtained optimum is 
therefore a maximum. The Newton-Raphson 
method was used in obtaining the estimates.  
 
For the Newton’s method, 

(3.4)                            
loglogˆˆ

)1()1( ˆ

1

ˆ
/

2
)1()(

 






































jj

LLjj






    (11) 
 

where, )(ˆ j  denotes the jth iterative solution. 

The inverse of the Hessian 
1

/
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L is a 

direction matrix that reflects the curvature of 
the log likelihood, indicating how rapidly the 
gradient is changing while the gradient vector 
















Llog indicates the direction of the change 

in the log likelihood for a change in the 
parameters [11].  
 
Criteria for Performance Evaluation 
The performance criteria were the bias 
(BIAS), the variance (VAR) and the root 
mean square error (RMSE), defined below: 

For the experiment that is replicated r 

times, let ĵ represent the jth estimate of the 

true parameter value,  . Then, 
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A two-way ANOVA in which tolerance (at 3 
levels) and T (at 4 levels) were the factors, 
was performed to ascertain the significance or 
otherwise of the means of the biases across 
tolerance and across T. 
 
Results and Discussion 
The results are attached as Appendices I, II 
and III. Table 1 presents the biases for the 
three different tolerances. At N=25, gamma 
produced the maximum bias of 465.8% (at 
T=5) while the lognormal produced the least 
of 9.3% (at T=10) for the probit. For the 
complementary log-log, lognormal produced 
maximum bias of 89.2% (at T=5) and also the 
least of 8.5% (at T=20).  At N=50, gamma 
produced the maximum bias of 72.4% (at 
T=5) while, lognormal produced the least of 
20.6% (at T=10) for the probit; Cauchy 
produced the maximum of 68.9% (at T=20) 
and minimum bias of 5.2% (at T=20) for the 
complementary log-log. For values of N from 
50 and above, Cauchy produced the largest 
bias and lognormal the least (at T=20) for the 
complementary log-log. For N=100 and 
above, for the probit, Cauchy produced the 
maximum (at T=20) and lognormal, the 
minimum (at T=5). At N=100, maximum bias 
of 67.7% and the minimum of 18.3% (at T=5) 
were obtained; for the complementary log-
log, maximum bias was 69.2% and the 
minimum, 3.0%. For the probit, maximum 
bias of 67.6% and least of 22.2% were 
obtained for N=150 while maximum bias of 
69.2% and minimum of 2.3% were obtained 
for the complementary log-log. 
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Table 1: Biases 
 

  Probit Complementary Log-Log 

N T Tolerance Tolerance 

Gamma Cauchy LNormal Gamma Cauchy LNormal 

 
 

\25 

5 4.65763 -0.342297 -.872134 0.498894 -0.365708 -.892164 

10 -0.310444 -0.638529 -0.0926691 -0.109233 -0.587061 0.255171 

15 -0.364068 -0.65736 -0.187657 -0.20644 -0.647128 0.122406 

20 -0.367312 -0.667107 -0.195944 -0.225597 -0.67909 0.0848184 

 
 

50 

5 -0.724429 -0.613589 1.47568 -0.614777 -0.48279 0.481011 

10 -0.369359 -0.648793 -0.206365 -0.175952 -0.602279 0.135949 

15 -0.387173 -0.66239 -0.235987 -0.226637 -0.654557 0.0599323 

20 -0.386852 -0.673967 -0.233097 -0.244514 -0.688863 0.0517009 

 
100 

 
 

5 -0.32087 -0.647831 -0.183182 -0.0408553 -0.525067 0.208867 

10 -0.388659 -0.656887 -0.245933 -0.195317 -0.611086 0.0907891 

15 -0.397351 -0.667267 -0.261738 -0.24106 -0.659833 0.0349573 

20 -0.391068 -0.676238 -0.255403 -0.246854 -0.692324 0.0295389 

 
 

150 

5 -0.327817 -0.657999 -0.222292 -0.0475293 -0.534674 0.181796 

10 -0.38977 -0.661817 -0.259716 -0.195065 -0.617461 0.084606 

15 -0.404909 -0.667447 -0.26828 -0.246872 -0.661896 0.0330433 

20 -0.399661 -0.67624 -0.261745 -0.255071 -0.691969 0.0229759 

 5 -0.349692 -0.667407 -0.253814 -0.0755957 -0.546547 0.139673 

200 10 -0.39784 -0.661348 -0.262949 -0.203295 -0.617423 0.077481 

 15 -0.403794 -0.669991 -0.272437 -0.246344 -0.664204 0.0293843 

 20 -0.402415 -0.677038 -0.262049 -0.257346 -0.692783 0.0244865 

 5 -0.350405 -0.666249 -0.247803 -0.0719312 -0.545761 0.153716 

250 10 -0.400056 -0.664331 -0.271917 -0.207013 -0.622409 0.0709003 

 15 -0.406208 -0.669744 -0.27824 -0.247472 -0.664164 0.024131 

 20 -0.401447 -0.678284 -0.269256 -0.257519 -0.694503 0.0192305 

 5 -0.362494 -0.671292 -0.266031 -0.086271 -0.551988 0.136542 

300 10 -0.39925 -0.665498 -0.272415 -0.206177 -0.622269 0.0758129 

 15 -0.405654 -0.670039 -0.276826 -0.247554 -0.664527 0.0304097 

 20 -0.402789 -0.678717 -0.267793 -0.256857 -0.694393 0.0181328 

 
At N=200, the maximum bias of 67.7% and 
minimum of 25.4% were obtained for the 
probit while for the complementary log-log, 
maximum and minimum biases of 69.3% and 
2.4% were respectively obtained. Maximum 
bias of 67.8% and minimum of 24.8% (at 

N=250) for the probit, while the maximum 
bias of 69.5% and the minimum of 1.9% were 
obtained for the complementary log-log. At 
N=300 for the probit, maximum bias of 
67.9% and least of 26.6% were obtained. For 
the complementary log-log, maximum bias of 



 
 
356     Journal of Science Research (2013) Vol. 12: 351-360 
 
 

ISSN 11179333 

69.4% and the least of 1.8% were obtained. 
For values of N greater than 50, the 
maximum bias for the probit was quite stable 
(between 67.6, 72.4% for the probit and 69.2, 
and 69.4% for the complementary log-log). 
The bias was at most 465.8% for gamma; 
67.9% for Cauchy and 87.2% for lognormal 
in the case of probit; 61.5% for gamma; 
69.5% for Cauchy and 89.2% for lognormal 
in the case of complementary log-log. 

Typically, bias decreased with increased 
T at any value of N. Only 2 (1 for each of 
gamma and lognormal) of the 84 biases were 
cases of overestimation while the rest were 

cases of underestimation for the probit. For 
the complementary log-log, gamma produced 
only a case of overestimation (at N=25, T=5); 
Cauchy, just as it did for the probit, 
underestimated all through; lognormal 
produced only a case of underestimation. In 
respect of sign of bias, the behaviour of 
gamma was complete opposite of that of 
lognormal. Table 2 presents the sum of ranks 
based on absolute bias. The lognormal 
tolerance typically produced the least 
absolute biases, followed by gamma, and 
lastly, Cauchy for both probit and 
complementary log-log.  

 
Table 2: Sum of Ranks based on Absolute Bias 

 
 Gamma Cauchy LogNormal 

PROBIT 53 79 36 

CLOGLOG 51 79 38 

  
Tables 3 and 4 present the results of 2-way 
ANOVA in which tolerance (at 3 levels) and 
T (at 4 levels) were the factors. For the probit 
(see Table 3), no significant differences were 
observed for the biases across both the 
tolerance and T for N=25 and N=50. For 
N=100 and N=150, differences in mean 
biases were found to be significant across the 
tolerance and T. For values of N greater than 
150, significant differences were observed for 

T, the contrary was observed for tolerance. At 
N=25 (see Table 4), for the complementary 
log-log, no significant differences were found 
for both tolerance and T. At N=50, no 
significant differences were found for 
tolerance, while significant differences were 
found for T. For N greater than 50, significant 
differences were found across both tolerance 
and T. 

 
Table 3: Summary of 2-Way ANOVA for Probit 

 
N Factor P-Value Conclusion 

25 Tolerance .556 Do not reject H0 

T .396 Do not reject H0 

50 Tolerance .660 Do not reject H0 

T .144 Do not reject H0 

100 Tolerance .012 Reject H0 

T .000 Reject H0 

150 Tolerance .038 Reject H0 

T .000 Reject H0 

200 Tolerance .202 Do not reject H0 

T .000 Reject H0 

250 Tolerance .084 Do not reject H0 

T .000 Reject H0 

300 Tolerance .317 Do not reject H0 

T .000 Reject H0 
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Table 4: Summary of 2-Way ANOVA for Complementary log-log 
 

N Factor P-Value Conclusion 

25 Tolerance .985 Do not reject H0 

T .251 Do not reject H0 

50 Tolerance .935 Do not reject H0 

T .005 Reject H0 

100 Tolerance .000 Reject H0 

T .000 Reject H0 

150 Tolerance .000 Reject H0 

T .000 Reject H0 

200 Tolerance .000 Reject H0 

T .000 Reject H0 

250 Tolerance .000 Reject H0 

T .000 Reject H0 

300 Tolerance .000 Reject H0 

T .000 Reject H0 

 
For the two models (see Table 5), 

typically, Cauchy produced the least 
variance, followed by gamma, and lastly, the 
lognormal, the only exception being the case 
N and T equal to 25 and 5 respectively. For 
all tolerances, diminished variance was 
associated with increased T. Unlike the 
variance, the root mean squared error did not 
exhibit a consistent behaviour in relation to 
either of the tolerance and T (see Table 6). 
However, Table 7 presents the sum of ranks 
due to each tolerance based on RMSE. Just as 

with the case of bias, the lognormal tolerance 
produced the least variability around the true 
parameter value, followed by gamma, and 
then, Cauchy for probit. For the comple-
mentary log-log, gamma tolerance produced 
the least, and Cauchy, the largest variability 
around the true parameter value.  

On a general note, the lognormal 
tolerance can hence, be described as 
providing the least sensitivity and Cauchy, 
the highest sensitivity for both the probit and 
the complementary log-log models. 
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Table 5: Variances 
 

  Probit Complementary Log-Log 

N  
 T 

Tolerance Tolerance 

Gamma Cauchy LNormal Gamma Cauchy LNormal 

 
 

25 

5 3992.235335 21.467634 .29821 3.625756 0.543891 .2913614 

10 0.235569 0.053098 0.574514 0.400969 0.073763 0.875347 

15 0.158843 0.043618 0.270344 0.251540 0.048831 0.517965 

20 0.149724 0.039870 0.251040 0.225161 0.038639 0.451622 

 
 

50 

5 0.198198 0.078427 561.732983 0.407944 0.145686 1.792800 

10 0.149302 0.045906 0.258173 0.255255 0.061857 0.518073 

15 0.135610 0.040106 0.219676 0.215756 0.043630 0.413498 

20 0.131917 0.036803 0.212757 0.199042 0.034219 0.395994 

 
100 

 
 

5 0.187528 0.052234 0.305836 0.371740 0.096562 0.631297 

10 0.133070 0.041673 0.209048 0.229193 0.055038 0.424925 

 15 0.125390 0.038058 0.194661 0.198028 0.040652 0.376297 

20 0.127182 0.035683 0.192916 0.193858 0.032578 0.363869 

 
 

150 

5 0.173365 0.045637 0.249068 0.341729 0.085652 0.546853 

10 0.125722 0.040065 0.196124 0.217961 0.052465 0.412953 

15 0.121381 0.037613 0.187264 0.193199 0.039348 0.367050 

20 0.122748 0.035371 0.187915 0.188607 0.032291 0.355597 

 5 0.154161 0.041212 0.216460 0.309066 0.077421 0.479688 

200 10 0.124309 0.039615 0.191654 0.216773 0.051208 0.401478 

 15 0.120229 0.036854 0.182705 0.191898 0.038484 0.361193 

 20 0.120351 0.035000 0.187820 0.185548 0.031863 0.357960 

 5 0.152087 0.040233 0.217696 0.306747 0.075673 0.492168 

250 10 0.122708 0.038327 0.184196 0.213587 0.048930 0.391565 

 15 0.119176 0.036861 0.179351 0.191014 0.038440 0.356835 

 20 0.120810 0.034747 0.181922 0.185531 0.031506 0.351645 

 5 0.144691 0.038424 0.199614 0.295174 0.072217 0.461544 

300 10 0.123204 0.038120 0.184227 0.214215 0.048999 0.397018 

 15 0.209414 0.036166 0.178569 0.190432 0.037902 0.358660 

 20 0.119972 0.034642 0.181617 0.185457 0.031505 0.348423 
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Table 6: Root Mean Squared Errors 
 

  Probit Complementary Log-Log 

N  T 

Tolerance Tolerance 

Gamma Cauchy LNormal Gamma Cauchy LNormal 

 
 

25 

5 63.355574 4.645945 1.162138 1.968413 0.823185 1.2183161 

10 0.576146 0.678835 0.763611 0.642574 0.646841 0.969773 

15 0.539805 0.689739 0.552774 0.542363 0.683816 0.730033 

20 0.533519 0.696349 0.537991 0.525410 0.706968 0.677360 

 
 

50 

5 0.850292 0.674477 23.746802 0.886507 0.615445 1.422734 

10 0.534535 0.683256 0.548416 0.534989 0.651611 0.732499 

15 0.534334 0.692001 0.524753 0.516837 0.687078 0.645825 

20 0.530633 0.700738 0.516809 0.508752 0.713268 0.631400 

 
100 

 
 

5 0.538967 0.686963 0.582573 0.611072 0.610129 0.821537 

10 0.533034 0.687876 0.519164 0.517051 0.654572 0.658155 

15 0.532238 0.695200 0.512999 0.506101 0.689951 0.614425 

20 0.533063 0.702126 0.508081 0.501420 0.715465 0.603938 

 
 

150 

5 0.529933 0.691809 0.546334 0.586505 0.609531 0.761514 

10 0.532051 0.683256 0.513397 0.509812 0.651611 0.648160 

 15 0.534165 0.692001 0.509154 0.504127 0.687078 0.606747 

20 0.531486 0.700738 0.506385 0.503655 0.713268 0.596762 

 5 0.525781 0.697599 0.529982 0.561053 0.613299 0.706538 

200 10 0.531588 0.690649 0.510682 0.508037 0.657586 0.638343 

 15 0.532239 0.696952 0.506880 0.502576 0.692568 0.601712 

 20 0.531309 0.702410 0.506448 0.501772 0.715410 0.598798 

 5 0.524281 0.695788 0.528302 0.558499 0.611169 0.718190 

250 10 0.531745 0.692576 0.508070 0.506400 0.660547 0.629755 

 15 0.533086 0.696719 0.506723 0.502251 0.703432 0.597844 

 20 0.531009 0.703432 0.504401 0.501843 0.716827 0.593308 

 5 0.525446 0.699326 0.519987 0.550106 0.613928 0.692955 

300 10 0.531606 0.693547 0.508367 0.506680 0.660467 0.634638 

 15 0.532699 0.696820 0.505175 0.501713 0.692615 0.599654 

 20 0.531236 0.703774 0.503319 0.501430 0.716719 0.590552 

 
 

Table 7: Sum of Ranks Based on RMSE 
 

 Gamma Cauchy LogNormal 

PROBIT 48 80 40 

CLOGLOG 32 71 65 
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Conclusions 
The sensitivity of each of the fixed effects 
probit and complementary log-log models to 
three forms of tolerance has been 
investigated. We found that the two models 
were least sensitive to the lognormal 
tolerance, followed by gamma, and lastly, 
Cauchy; the lognormal exhibited the least 
variability around the true parameter value, 
followed by gamma, and then, Cauchy for 
probit while for the complementary log-log, 
gamma exhibited the least and Cauchy, the 
largest.  
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