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Abstract 
Seemingly Unrelated Regression (SUR) model which takes cognizance of correlations and strength of 
association between the error variables to yield more efficient estimates is a common tool in multi-equation 
regression analysis. The use of Cholesky method to partition the variance-covariance matrix   into lower and 

upper triangular matrices to establish contemporaneous relationship among equations through their errors was 
investigated in this paper. Literature on the efficiency of SUR and Ordinary Least Squares (OLS) estimators 
assumed inconsequential the use of either upper or lower triangular matrices from a decomposed variance-
covariance matrix. This study investigated the sensitivity of the two triangular matrices on SUR and OLS 
estimators. A Monte Carlo experiment was performed on a four-equation model with sample sizes n = 10, 30, 
50, 100, 500 and 1000 and each replicated 10000 times. The Average Mean Square Error (AMSE) was used to 
assess the performance of the estimators. It was observed that the upper triangular matrix had higher AMSE 
values than the lower triangular matrix for SUR and OLS estimators. Also, the AMSE of SUR estimator was 
lower than that of OLS estimator, irrespective of the triangular matrix used.  
 
Key words: Triangular matrices, Average Mean Square Error, Ordinary Least Squares, Seemingly Unrelated 
Regression. 

 
 
Introduction 
The Seemingly Unrelated Regression 
(SUR), which considers a joint modelling, 
is a special case of the multivariate 
regression model [21, 22]. It is used to 
capture the effect of different covariates 
allowed in the regression equations. 
Seemingly unrelated regressions allow the 
estimation of multiple models 
simultaneously while accounting for the 
correlated errors. The contemporaneous 
correlation, which could account for some 
common unnoticeable or unquantifiable 
effect, which the disturbances of several 
separate regression equations are expected 
to reflect is the correlation between 
disturbances in different equations. Taking 
cognizance of such correlation leads to 
efficient estimates of the coefficients and 
standard   errors.  The   variance-covariance 
matrix is a Hermittan positive-definite non-
singular symmetric matrix usually decom-
posed by the Cholesky decomposition. The 
Cholesky decomposition partitions the 
variance-covariance matrix into an upper 
and lower triangular matrix [7, 21, 22].  
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The main motivation for use of SUR is 
to gain efficiency in estimation by 
combining information on different 
equations. Efficiency would be attained 
when contemporaneous correlation between 
the disturbances is high and explanatory 
variables in different equations are 
uncorrelated. Definite gains are obtained for 

all sample sizes when  > 0.3 where,   is 

the contemporaneous correlation for the 
disturbances in the equations [1, 5, 6, 7, 13, 
14, 19, 21]. There is no clear-cut distinction 
between SUR and univariate models (GLS 
and OLS are identical) when the same set or 
subset (and values) of covariates, which 
may not likely lead to more efficient 
estimates in SUR are used rather than 
running the model separately, which 
supports the findings of [3, 8]. Within the 
Bayesian context, [1] investigated how 
large the contemporaneous correlations 
among disturbances should be in order for 
SUR to be more efficient than OLS. The 
study asserts that definite gains are obtained 

when 0.333   which compares well with 

[4] who used a frequentist approach. [20] 
examined the relative gain/loss in efficiency 
of SUR estimators when one or more pair 
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of the predictors in the system of equations 
is correlated (non-orthogonal).  

The parametric SUR was extended to 
nonparametric, semiparametric and geo-
additive SUR model [11, 12, 16]. Recent 
studies on SUR [2, 9, 18]. The major gap 
observed in all these scholarly works is the 
assumed inconsequential application of 
decomposed variance-covariance matrix on 
the SUR estimates. To address this, an 
arbitrarily chosen four-equation model with 
the true covariance given by [1] on small 
and large sample sizes (n= 10, 30, 50, 100, 
500 & 1000) replicated 10000 times in turn 
was investigated. The rest of this paper 
discusses the model and the simulation 
scenarios in section 2. Section 3 gives the 
presentation and discussion of the results. 
Section 4 concludes the paper. 
 
The Model 
Consider the SURE model consisting of 
stacked system of M equations: 
 

Y X                                            (1) 
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iy  is an 1mn  vector of observations on 

the thi  response variable 
 

iX  is an 
imn k  matrix of explanatory 

variables 
 

i  is a 1ik   vector of regression 

parameters 
 

i  is 1mn vector of disturbances 

The variance-covariance matrix of the 
disturbance in (2) is 

'( ) nE I   , where, ( ) 0E      (3)

  
That is, the expectation is assumed to be 
zero at different equation and different 

sample point. The positive definite m m  

matrix   is given as 
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So that,  
 

nI                                  (5) 

 
Its inverse is given as 
 

1 1

nI                                    (6) 

 
The OLS is used to estimate one equation at 
a time since each equation is a classical 
regression. The Generalized Least Squares 
(GLS) estimator is used to estimate an 
m m  covariance matrix of the 

disturbances  . The common estimators of 

  for classical linear SUR model [17] 

usually are: 
 

(i) OLS: This is the equation-by-
equation OLS estimator. 

 
~~ ~

' 1

1 1
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(ii) GLS: If  is known , 0.3  , 

GLS estimator is 

' 1 1 ' 1 ' 1 1 ' 1( ) ( ( ) ) ( )GLS X X X y X I X X I y


 

              
(8) 

 

When 0 ; , OLS is preferred while GLS 

also known as Zellner’s Least Squares 
Estimator (ZLSE) is more efficient than 

OLSE when 0.3   [10, 15] 

 
 
where  

ij

ii jj




 
 , 0ij                      (9) 

 
 



 
 

Alaba, et al.: Cholesky Decomposition of Variance-Covariance Matrix Effect on the Estimators of Seemingly…    363 
 
 

ISSN 11179333 

The Design of the Simulation Experiment 
An arbitrary four-equation SUR model with 
correlated errors was specified as follows:  

1 10 11 11 12 12 13 13 1

2 20 21 21 22 22 2

3 30 31 31 3

4 40 41 41 4

y X X X

y X X

y X

y X

    

   

  

  

    

   

  
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 (10)

   

 
The positive definite 4 4 variance-

covariance matrix is defined by  
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The data series were generated using the 
following steps. 
 
Step 1. The vectors of 'X s of independent 

parametric regressors were genera-
ted.  x11  and  x12 are drawn from 
normal distribution and x13,  x21,  x22,  

x31 and x41 are drawn from uniform 
distribution U(-3, 3) 

 
Step 2. Four mutually independent (0,1)N  

sequences 
1 2 3 4( , , , )i i i i   

 
were 

generated and transformed to ensure 
that the disturbance terms are 
contemporaneously correlated and 
distributed as (0, )N  . Le 

t
'

1 2 3 4( , , , )i i i i     , where, 

( ) 0E   .   

 
 
 
 
 
 
 
 
 
 
 
 
 

Since,   by definition is a positive 
definite matrix, there exist a non-
singular triangular matrix P such 
that   
 

'PP                                (12) 

Therefore, the random vectors are 
 

 'U P                   (13) 
 
By construction, the vectors 
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 where, 

  is the Kronecker product.     (14) 
 
Since   is a positive- definite 
matrix, we decomposed the matrix 

such that 
'PP   

 
The upper triangular matrix is 
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While the lower triangular matrix is 
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Therefore, 
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From (17), we obtained  
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We obtained the other values by using (19) 
for (18) 
 

2*

44  = 1 

 

1*

44  =1                   (19) 

 
 
Decomposing the variance-covariance matrix, gave 
 
            
                     (20) 
 
 
 
 
The four random disturbance series are formed using 
 

'U P                    (21) 
 
The random disturbance series for the upper triangular matrix is 
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While the random disturbance series for the lower triangular matrix is 
 
   
                    (24) 
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In this manner, the desired error terms were 
obtained. 
 
Step 3. Specific values were assigned to the 
structural parameters. The coefficients are 
pre-determined as the convention is in 
Monte-Carlo experiment 
 

1 11 12 13 1

2 21 22 2

3 31 3

4 41 4

y = 0.4 + 0.5x  + 0.7x + 0.1x  + 

y = 0.5 + 0.7x   - 0.2x  + 

y = -1.1 + 0.9x  + 

y = 0.2 - 1.3x  + 









 

 
Step 4. For sample size n= 10, 30, 50 100, 

500, 1000, the experiment was 
replicated 10000 times. 

 
Step 5. We estimated the known parameters 

as if they were not known using 
SUR and OLS estimation methods, 
we then compared the performance 
of the estimators.  

 
Codes were written using the STATA Do-
file editor and the steps 1- 5 specified above 
were all executed using STATA software 
package, 8.0 version. 
 
Analysis and Discussion of Simulation 
Results 
Presentation of Results 
The results of the AMSE and Mean of OLS 
and SUR estimators were presented using 
the two triangular matrices. The AMSE 
values of upper and lower triangular 

matrices for SUR when n = 10, are: 0.0658, 
and 0.0950, 0.0073 and 0.0217, 0.0051 and 
0.0034 while OLS estimators are given as 
0.3124 and 0.4649, 0.0333 and 0.0351, 
0.0135 and 0.0093 respectively. When n = 
30, the SUR AMSE values of upper and 
lower triangular matrices are: 0.0589 and 
0.0559, 0.0024 and 0.0117, 0.0111 and 
0.0005 while OLS estimators are given as 
0.2725 and 0.2589, 0.0111 and 0.0360, 
0.0342 and 0.0015. Similar results were 
obtained when n= 50 for the SUR AMSE 
values of the upper and lower triangular 
matrices which are given as: 0.0234 and 
0.0261, 0.0013 and 0.0117, 0.0111 and 
0.0005 while OLS estimators are 0.1192 
and 0.1336, 0.0065 and 0.0360, 0.0342 and 
0.0015. In the same vein, we had 0.0087 
and 0.0092, 0.0006 and 0.0020, 0.0021 and 
0.0001 for the upper and lower triangular 
matrices SUR AMSE values while for OLS 
0.0540 and 0.0528, 0.0022 and 0.0066, 
0.0070 and 0.0004 when n= 100.   

Also, the SUR AMSE for the upper 
triangular matrix and lower triangular 
matrix when n = 1000 is given as 0.0006 
and 0.0007, 0.0003 and 0.0002, 0.0002 and 
0.0000 while we had 0.0049 and 0.0052, 
0.0003 and 0.0006, 0.0007 and 0.0000 for 
the OLS estimators (see Tables 1 and 2). 
The mean of the estimators replicated 
10000 in turn for the two triangular 
matrices for both OLS and SUR are 
presented in Tables 3 and 4. 
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Table 1: AMSE from Upper Triangular Matrix 

 
 

Table 2: AMSE from Lower Triangular Matrix 
 

 n Estimators 
10  11  12  13  20  21  22  30  31  40  41  

10 SUR 0.0062 0.0217 0.0051 0.0034 0.0110 0.0447 0.0093 0.0159 0.2633 0.0012 0.0730 

OLS 0.0107 0.0351 0.0135 0.0093 0.0345 0.0578 0.0204 0.0513 0. 3631 0.0037 0.1927 

30 SUR 0.0038 0.0117 0.0111 0.0005 0.0079 0.0012 0.0015 0.0142 0.0034 0.0909 0.0113 

OLS 0.0044 0.0360 0.0342 0.0015 0.0092 0.0025 0.0031 0.1527 0.0053 0.0976 0.0283 

50 SUR 0.0038 0.0117 0.0111 0.0005 0.0079 0.0012 0.0015 0.0142 0.0034 0.0909 0.0113 

OLS 0.0044 0.0360 0.0342 0.0015 0.0092 0.0025 0.0031 0.1527 0.0053 0.0976 0.0283 

100 SUR 0.0012 0.0020 0.0021 0.0001 0.0024 0.0003 0.0004 0.0051 0.0011 0.0305 0.0034 

OLS 0.0013 0.0066 0.0070 0.0004 0.0025 0.0007 0.0008 0.0052 0.0017 0.0312 0.0098 

500 SUR 0.0003 0.0004 0.0004 0.0000 0.0005 0.0001 0.0001 0.0010 0.0002 0.0062 0.0006 

OLS 0.0003 0.0012 0.0012 0.0001 0.0005 0.0002 0.0002 0.0011 0.0003 0.0063 0.0020 

1000 SUR 0.0001 0.0002 0.0002 0.0000 0.0002 0.0000 0.0000 0.0005 0.0001 0.0031 0.0003 

OLS 0.0001 0.0006 0.0007 0.0000 0.0002 0.0001 0.0001 0.0005 0.0002 0.0031 0.0010 

 

 
 
 
 

n Estimators 
10  11  12  13  20  21  22  30  31  40  41  

10 SUR 0.0556 0.0658 0.0950 0.0073 0.0578 0.0102 0.0069 0.0766 0.01368 0.0570 0.0112 

OLS 0.0969 0.3124 0.4649 0.0333 0.0977 0.0375 0.0258 0.0994 0.0352 0.08101 0.0430 

30 SUR 0.0284 0.0589 0.0559 0.0024 0.0299 0.0019 0.0024 0.0282 0.0044 0.0308 0.0010 

OLS 0.0334 0.2725 0.2589 0.0111 0.0364 0.0122 0.0097 0.0305 0.0105 0.0331 0.0096 

50 SUR 0.0183 0.0234 0.0261 0.0013 0.0194 0.0012 0.0015 0.0187 0.0020 0.0196 0.0007 

OLS 0.0202 0.1192 0.1336 0.0065 0.0212 0.0087 0.0069 0.0195 0.0073 0.0229 0.0073 

100 SUR 0.0096 0.0087 0.0092 0.0006 0.0097 0.0005 0.0006 0.0097 0.0015 0.0097 0.0002 

OLS 0.0102 0.0520 0.0548 0.0032 0.0100 0.0029 0.0036 0.0099 0.0032 0.0100 0.0032 

500 SUR 0.0020 0.0013 0.0013 0.0001 0.0020 0.0001 0.0001 0.0020 0.0003 0.0020 0.0000 

OLS 0.0020 0.0096 0.0094 0.0007 0.0020 0.0007 0.0007 0.0020 0.0006 0.0020 0.0006 

1000 SUR 0.0010 0.0006 0.0007 0.0000 0.0010 0.0000 0.0000 0.0010 0.0002 0.0010 0.0000 

OLS 0.0010 0.0049 0.0052 0.0003 0.0010 0.0003 0.0003 0.0010 0.0003 0.0010 0.0003 
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Table 3: Upper Triangular Matrix 
 

 SUR MEAN OLS MEAN 

 10 30 50 100 500 1000 10 30 50 100 500 1000 

1y   

10  0.3936 0.3719 0.3668 0.4043 0.4025 0.3999 0.4049 0.3786 0.3661 0.4037 0.4026 0.3999 

11  0.4463   0.4835 0.5088 0.4952 0.5007 0.5011 0.4515 0.3469 0.5374 0.4723 0.4976 0.4995 

12  0.7094 0.6891 0.7238 0.6878 0.7010 0.7011 0.7568 0.5794 0.7591 0.6560 0.7012 0.6980 

13  0.0798 0.1053 0.0950 0.1068 0.1003 0.0999 0.0707 0.1304 0.0973 0.1099 0.0998 0.1000 

  2y  
 

20  0.6454 0.4769 0.4679 0.4942 0.5018 0.5007 0.6449 0.4843 0.4678 0.4946 0.5019 0.5007 

21  0.7864 0.6811 0.7020 0.6989 0.6998 0.6999 0.7890 0.6962 0.7013 0.6934 0.6992 0.6995 

22  -0.1903 -0.1884 -0.1988 -0.1993 -0.2005 -0.1996 -0.1812 -1.1930 -0.1989 -0.2040 -0.1998 -0.1994 

  3y  
 

30  -1.1167 -1.1144 -1.1117 -1.0939 -1.1013 -1.0989 -1.0939 -1.1150 -1.1121 -1.0939 -1.1012 -1.0989 

31  1.2306 1.2903 1.2806 1.2995 1.2980 1.2997 1.2794 1.2932 1.2734 1.3012 1.2985 1.2997 

  4y  
 

40  0.1962 0.1715 0.1597 0.2005 0.2023 0.2002 0.1447 0.1743 0.1414 0.1998 0.2022 0.2002 

41  -1.3479 - 1.2975 -1.2806 -1.2999 -1.3000 -1.3001 -1.4370 -1.2703 -1.2684 -1.2946 -1.3013 -1.3001 
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Table 4: Lower Triangular Matrix 

 
 SUR MEAN OLS MEAN 

 10 30 50 100 500 1000 10 30 50 100 500 1000 

1y   

10  0.4074 0.4032 0.4017 0.4009 0.4003 0.4000 0.4098 0.4036 0.4031 0.3999 0.4003 0.4000 

11  0.5330   0.5515 0.4988 0.5033 0.5006 0.5008 0.5507 0.5489 0.4914 0.4993 0.5007 0.5011 

12  0.8005 0.7398 0.6981 0.7028 0.7001 0.7010 0.8278 0.7359 0.7009 0.6931 0.7010 0.7011 

13  0.1098 0.0918 0.0994 0.1020 0.1002 0.0993 0.1199 0.0936 0.0971 0.1062 0.1004 0.0999 

  2y  
 

20  0.5367 0.5067 0.4994 0.4922 0.4999 0.5004 0.5361 0.5082 0.5002 0.4927 0.4999 0.5004 

21  0.6603 0.6889 0.6982 0.6975 0.7002 0.7001 0.6530 0.6883 0.7003 0.6931 0.7003 0.7000 

22  -0.2350 -0.2009 -0.1985 -0.1986 -0.2006 -0.1968 -0.2535 -0.2046 -0.1964 -0.1995 -0.2006 -0.1995 

  3y  
 

30  -1.1243 -1.0918 -1.0840 -1.0961 -1.1029 -1.0989 -1.1128 -1.0921 -1.0841 -1.0961 -1.1029 -1.0989 

31  1.2216 1.2915 1.2849 1.2984 1.2984 1.2999 1.2460 1.2928 1.2844 1.2978 1.2982 1.2997 

  4y  
 

40  0.1815 0.2219 0.1572 0.1936 0.2009 0.2021 0.1842 0.2229 0.1510 0.1940 0.2009 0.2022 

41  -1.2216 1.2721 -1.2589 -1.2946 -1.3014 -1.3000 -1.5195 -1.2629 -1.2488 -1.2979 -1.3020 -1.2985 
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Discussion of Results 
It was observed that the AMSE of the lower 
triangular matrix are lower than that of the 
upper triangular matrix for both SUR and 
OLS estimators except for 

40  and 
41  in 

equation 
4y  where we had a reverse order. 

The AMSE of SUR estimators were lower 
than the OLS estimators which depict that 
SUR estimator performed better than OLS 
estimator. Another salient result is that, as 
the sample size increases, the AMSE values 
reduced considerably. Comparing the 
means of the upper triangular matrix and 
lower triangular matrix of SUR and OLS 
estimators, it can be observed that the larger 
the sample size, the closer the mean of the 
parameters to its true population 
parameters.  
 
Conclusion 
This study found that the lower triangular 
matrix gave smaller AMSE when compared 
with the AMSE of the upper triangular 
matrix of the decomposed variance-
covariance matrix. The lower triangular 
matrix of the decomposed variance-
covariance matrix is adjudged the best for 
further analysis.  
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