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Forecasting in One-Dimensional and Generalized | ntegrated Autor egressive
Moving Average Bilinear Time Series Models

Qjo, J.F.

Abstract

In this paper, forecast of one-dimensional integrated autoregressive moving average bilinear time series modd is
compared with forecast of generalized integrated autoregressive moving average bilinear time series model. We
described methods for estimation of these models and the forecast. It is also pointed out that for this class of non-
linear time series models; it is possible to obtain optimal forecast. The estimation technique is illustrated with
respect to atime series, and the optimal forecast of these time series are calculated. A comparison of these forecasts
is made using the two models under study. The mean square error for forecast in one-dimensional integrated
autoregressive moving average bilinear model is smaller than the mean square error for forecast in generalized
integrated autoregressive moving average bilinear model. Though the two models are adequate for forecast when
compared with the real series but forecast with one-dimensional integrated autoregressive moving average bilinear
model is more adequate.

Key words: Optimal Forecast, Non-linear time Series Models, Bilinear models, Estimation Technique, Mean

Square Error.

Introduction

The bilinear time series models have attracted
considerable attention during the last years.
Overviews of bilinear time series models and
their application to various areas and
disciplines have been studied [1-9]. The
bilinear time series models studied by these
researchers could not achieve stationarity for
all non-linear series. The one-dimensional
integrated autoregressive moving average
bilinear time series model that could achieve
stationarity for all non-linear time series [11,
12]; and the generalized integrated
autoregressive moving average bilinear time
series model that could achieve stationarity
for al non-linear time series [13, 14] were
reported.

Forecasting connote an attempt to see into
the future. There are two words, which are
used to denote numerical forecasting methods
namely forecasting and prediction.
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Forecasting is the process of estimation in
unknown sSituations. Prediction is a similar,
but more general term, and usualy refers to
estimation of time series, cross-sectiona or
longitudinal data. Forecasting is commonly
used in discusson of time-series data
Therefore forecasting is a powerful useful
instrument in planning and making a wise
decision about the future [10]. As a result of
feature of stationarity for all non-linear series
in one dimensional and generalized integrated
autoregressive moving average bilinear time
series model we shall attempt to study
optimal forecast using these two models and
see the one that performs better.

Materials and methods

One-dimensional and generalized
integrated autor egressive moving average
bilinear time series models

We define one dimensional integrated auto-
regressive moving average bilinear time
series model asfollows:
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y (B)X, =f (B)V'X, +q(B)g +[ibklxtkjeu. denoted asBL (p, d, 4,1, 1),

k=1

where, f (B) =1-f,B—f ,B*.....—f BP, q(B)=1-q,B-q,B*........ -q,BY, and
Xy =Y 1 Xig+oe Y pa Xipa T8 1€~ — 0 6 +(Z b X, Jem (1)
k=1
where, f,,...f are the parameters of the consecutive differencing required to achieve
- : stationarity.
autoregressive component; . . .
< P We define generalized integrated

d;..0q a€ the parameters of the associated
error process;

o W ,b,, are the parameters of the non-
linear component and d is the degree of

autoregressive moving average bilinear time
series model as follows:

y (B)X, =f (B)V*X, +q(B)g + Zr]ibm X, & ,denoted asGBL (p, d, g, r, S)

k=1 1=1

where f (B) =1-f ,B-f ,B*.....—f |B?, q(B)=1-q,B—q,B"........ -q,B* and

f,..,f, ae the paameters of the

autoregressive component; ¢,..q, ae the
parameters of the associated error process;
o FHT b, are the parameters of the non-

linear component and d is the degree of
consecutive differencing required to achieve
stationary.

Model Estimation

The estimation of the models are similar, we
shall report the estimation of generalized type
since m =12,3...., s for the generalized case

include m =1 the one dimensional case.
Suppose that X, are generated by equation
(1), the sequence of random deviates {e}
could be determined from the relation

6 =X =Y 1 Xig— oY pa Xipa TAE 1+t 06 — B X 1§ — =B X 8 ©)

To estimate the unknown parameters in
equation (3), we make the following
assumptions:

(i) The errors {g} are independent and

identically distributed with mean

zero and variance s? with finite
kurtosis.

(i) The values ofy 's<1 and |b,'s<1
ensure that  stationarity  and

invertibility conditions required of
the bilinear process are satisfied. For
details see[11].

Thus, maximizing the likelihood function
IS equivdent to  minimizing the
functionQ(G) , whichisasfollows:

e =Y & (4
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with respect to the parameter G = (y ,,.....y ;:0;.0,

Then the partial derivatives of Q(G) are given by

dOG) & de .
77 _ 2 1t =
dG Z,:nq dG (
0°QG) & dg dg & d
dGdG (ZQ dG, dG, ;q dG

R

&
dG)

where these partial derivatives of (t) satisfy the recursive equations
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W, (t)=) B, X, ;Weassumee =0 (t =1,2, ..., m-1) and also
j=1

2
de o9& _g
dG,  dG,dG,

Frome=0 (=1, 2, ..., m-1),
de, o d’e

=0, =0, and
dG, dG,dG,

dg < de_

W (t)—=-X
da(m- +§ ]( ) dBkmi tfkqu
(k=1,2,...,r;m;=1,2,...,5), it

follows that the second order derivatives with
respecttoy ; (i=0,1,2,...,p)and g, (i =0,
1, 2, ..., q) are zero. For a given set of values
{y:}, {q} and {Bjj } one can evauate the

first and second order derivatives using the
recursive equations 6, 7, 8 and 14.

PRVERLCR-C

dQ(G)
dG,

and let H(G)=[d2Q(G)/dGIde] be a
matrix of second partiad derivatives.
Expanding V(G), ner G=G in a Taylor
series, we obtain
[V(G)ls, =0=V(G)+H(G)(G-G).
Rewriting this equation, we
haveG -G = —H (G)V(G), thereby

obtaining an iterative equation given by
G* =GN —_HHGY)WVGY), where G®
is the set of estimates obtained at the k™ stage
of iteration. The estimates obtained by the
above iterative equations usually converge.
The iteration requires good sets of initia
values of the parameters. This is done by

fitting the best subset of the linear part of the
bilinear model.

(,j=1,2 ...,Rt=1,2, ..., m-1)

Forecasting Structure of the Models
Suppose {X, } is adiscrete time series and we

wished to predict X, ., given the semi-
infinite realization {X_s<t,} Let the

predictor be X, (h). Then it is well known
that E[Xt(ﬁh —)Zto (h)]2 is minimum if and
only ifX, (h=E(X,,,/X,s<0} The

evaluation of )Zto (h) from the model depends

on the unknown parameters.

Typically, we will substitute the estimates
of these parameters, and then calculate the
predictors. The predictors thus obtained are

denoted by X, (h), (h=1,2,.....) and the
error by &,_(h) =X, ., - X, (h), and the
mean sum of squares of the errors of the
predictors for the period (t, + h, to, +h+1,
colrh+M)is g2y - L$e (1
55 [10]

Results

To present the application of the model and
its forecast, we will use a rea time series
dataset, the Wolfer sunspot. The scientists
track solar cycle by counting sunspots — cool
planet-sized areas on the Sun where intense
magnetic loops poke through the star’s visible
surface. We have used annual sunspot
numbers for the years 1730-1879, giving 150
observations [12]. We have employed Akaike
Information Criterion (AIC) in  model
selection and the estimated models are given
below.
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One-dimensional I ntegrated autor egr essive moving Average Bilinear Time series Model

Fitted Model at t=150

X, =0.667154X, , —0.299180X, ,—0.199718X, . —0.330045¢_, —0.404780¢_, —0.001573
X, &, —0.009150X, e _, —0.001215X, .e_, —0.0110694X, & , —0.009126X, € ,
+0.005051X, e , —0.026523X, e _, +0.016699X, € ,

Generalized integrated autor egressive moving aver age bilinear time series model

Fitted Model at t=150

X, =0.667154X, , —0.299180X, , —0.199718X, . —0.330045¢ , —0.404780e_, —0.001675
X, .6, —0.016864X e ,+0.004643X, .6 ,+0.013121X, e, +0.006690X, € ,
~0.010201X, ,& , —0.024090X, ,&_, —0.008779X, € ,

Discussion
It was clear form Table 1 that the one-
dimensional integrated autoregressive

moving average bilinear time series model
has smaller residual variance (174.06) and
smaler mean square error (13.99) for the
forecast when compared with the residual
variance (184.65) and mean sguare error

(14.26) of generalized integrated auto-
regressive moving average bilinear time
series model. Therefore the performance of
one-dimensional integrated autoregressive
moving average bilinear time series model is
better when used for forecasting.

Table 1: Residual Variance and Mean Square Errorsfor Forecast (Sunspot Data)

M odel performance

bilinear model

One-dimensional integrated
autor egr essive moving aver age

Generalized integrated
autor egr essive moving
average bilinear model

Residual variance 174.06

184.65

Mean sguare errors 13.99

14.26

Figure 1 shows the time plot of origina
series. Figure 2 shows the time plot of
forecasts of one-dimensional model while
Figure 3 shows the time plot of forecast of
generalized model. These graphs were plotted
separately to see the movement and direction
of the original series and the forecast of the
two models under study. The direction and
movement of original series and forecast of
one-dimensiona and generalized models
using the time plot were shown in Figure 4.

The adequacy of any model lies in its
ability to forecast the data appropriately. The
summary statistics in table 2 indicated the
closeness of the forecast series gotten from
the two models under study. We saw that the
sum of the series for the forecast in one-
dimensional (6791) and generalized model
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(6820) were closed to the sum of the origina
series (7117). The mean vaues of the one-
dimensional (45.27) and generalized (45.47)
models were aso closed to the mean (47.45)
of the origina series. In other words, the
variation in the sum, mean and standard error
of one dimensional (2.65) and generalized
(2.66) models compared to the original series
(2.94) were not enormous. This was SO
because of the forecasting performance of the
two models considered. The time plots in
Figure 4 were produced from the summary
statistics especially the sum of each of the
series which was on yearly basis. Therefore,
the relative performance of the two models
compared to the origina series is made clear
in Figure 4.



Table 2: Summary Statistics of Original Seriesand Forecast Series of One-dimensional and Generalized

Integrated Autoregressive moving Average Bilinear Time Series M odels

Summary statistics

Original series

One-dimensional
bilinear series

Generalized bilinear
series

Sum

7117

6791

6820

M ean

47.45

45.27

45.47

Standard error

2.94

2.65

2.66
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Fig. 1: Time plot of sunspot data (original series).
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Fig. 2: Time plot of forecast using one-dimensional integrated autoregressive moving average bilinear model.
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Fig. 3: Time plot of forecast using generalized integrated autoregressive moving average bilinear model.
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Fig. 4. Time plot of original series, forecast of one-dimensional and generalized integrated autoregressive moving
average bilinear models.
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Conclusion

Two bilinear time series models that were
capable of achieving stationarity for all non-
linear series were considered. These two
models were used to forecast the future value
having estimated their parameters. One
dimensional integrated autoregressive
moving average bilinear model performed
better than generalized integrated auto-
regressive moving average bilinear model
after we have studied the residual variance
attached to the two models. The mean square
errors for forecast of the models were studied
and we found out that the mean square error
attached to one dimensional bilinear model
was smaller than generalized model. The two
models were used to forecast. On the basis of
the forecasting performance, one dimensional
integrated autoregressive moving average
bilinear time series model has revealed the
usefulness of this class of non-linear model
for forecasting.
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