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On the Level of Precision of the Wavelet Neural Network in Rainfall Analysis
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Abstract
This research combines the efficiency of the artificial neural network and wavelet transform in modelling rainfall.
The data used were decomposed into continuous wavelet signals on a scale of 48. Each of the decomposed series
was subjected to correlation test with the original data.  Instead of using all the series, ten series were selected on the
basis of high correlation with the original data. These series included CWT 1, CWT 2, CWT 4, CWT 3, CWT 6,
CWT 8, CWT 5, CWT 10, CWT 12, and CWT 7 (according to rank). The analysis showed that except in extremely
rare cases, all the series performed optimally compared to the original data.  The result of the study has been able to
show that using the continuous wavelet transform in the ANN technique, a better performance of the network is
observed.
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Introduction
The artificial neural network has been found
to model rainfall more accurately than
conventional methods. This is because the
artificial neural network makes use of past
events of a phenomenon in predicting the
future by means of learning and training.
Research has shown that combining the
artificial neural network with other
mathematical functions and models makes
the resulting model more efficient. Recently,
the discrete wavelet transform has been used.
However, it is known that rainfall data is
rather continuous than discrete. When
observed as discrete, then the interest would
be on the probability of occurrence. This
study therefore uses the continuous form of
the wavelet transform. A wavelet network
model makes use of the merits of wavelet
analysis and artificial neural network, so it
has excellent performance in simulation and
forecast. Wavelet decomposition is a way of
analyzing a signal both in time and frequency
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domain. The wavelet spectrum based on
continuous wavelet transform (CWT), is a
natural extension of the conventional Fourier
spectrum analysis and short time Fourier
spectrum analysis which are commonly used
in climatologic time series analysis [9].

There have been considerable literatures
on the modelling of rainfall data on daily
basis. The majority of these models are
nevertheless derived empirically. The
significance of these models in meteorology
is possibly attached to the fitted parameters.
Most researchers make use of the gamma
distribution for describing precipitation
values for a variety of reasons [13, 28, 23,
26], especially because the gamma distri-
bution is bounded on the left at zero.  This is
important for precipitation applications
because there can never be a negative rainfall.
Thus, a distribution that excludes negative
values is readily applicable.

Recently, artificial neural networks
(ANN) has been used in modelling rainfall.
ANN constitute a useful tool to predict and
forecast various hydrological variables and
are used extensively in water resources
research [6, 24]. The artificial neural network
models are frequently employed for rainfall
forecasting [22, 10]. [11] used a neural
network to forecast rainfall intensity fields in
space. According to [15], majority of the
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early work in this area have been mainly
theoretical, concentrating on neural network
performance with artificially generated
rainfall-runoff data.

[18] used the combined benefits of the
discrete wavelet-neural networks (DWNN) in
the prediction of daily precipitation in
Turkey.  Wavelet transform can produce a
good local representation of the signal in both
the time and frequency domains, and
provides considerable information about the
structure of the physical process to be
modeled [29, 19, 17].  [21] predicted monthly
rainfall using WNN analysis.  Some other
areas that wavelet neural network have been
used include some selected methods of
thresholding for wavelet regression, SAR
image segmentation, solar radiation
forecasting, and forecasting IIP growth with
yield spreads [2, 27, 5, 20].

Materials and Methods
Wavelets are being used in representing
signals functions or images due to the fact
that they allow for large compression ratios.
The wavelet transform of a signal evolving in
time depends on two variables – frequency
(that is, scale) and time. Thus, wavelets
provide a tool for time-frequency
localization.

The wavelet transform is given by

(1)

Restricting to discrete values,

, then

(2)

where is known as the mother wavelet.

In both cases, it is assumed that .

Wavelet methods have been most studied
in the non parametric regression problem of
estimating a function on the basis of
observations at time points .  This is
modeled as

(3)

and is the noise [8, 1].  [16]
noted some authors such as [12], [3], and
[14], who did not assume any distribution for
the white term but noted that they are iid

.
If we consider the regression model,

(4)

where, , is an intercept, is an
dimensional vector of ones,

is the matrix of the signals, is a vector
of coefficients, and is the white, or
stochastic or error term ([4] 2008).

Now, defining a wavelet transformation
by an orthogonal matrix [25], say

, such that , being the
identity matrix.
Then, we can write , so that
in matrix form, (3) can be written as

(5)

where, is the matrix of wavelet
coefficients corresponding to the series in
and is the new regression vector.

The data presented to the network were
decomposed into wavelet forms.  We recall
that wavelet transforms are mathematical
functions that cut up data, functions or
operators into different frequency
components, and then study each component
with a resolution matched to its scale.  The
continuous wavelet transform (CWT) is used
in this study, which makes use of continuous
wavelets as functions.
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Fig. 1: Wavelet Transform of Rainfall in Ibadan for 200 days.

The decomposition here is based on a
scale of 48 using the MATLAB m-code.  This
means that the original data was decomposed
into 48 sub-time series.  It would be
unnecessary to use each sub-time series to
run the MATLAB code.  The first 10 highest
ranked sub-time series were selected for the
analyses.  These included CWT 1, CWT 2,
CWT 4, CWT 3, CWT 6, CWT 8, CWT 5,
CWT 10, CWT 12 and CWT 7 (in that order).

A network with 100 hidden neurons was
chosen for the purpose of generality, except
for the convolutions where both 100 and 10
hidden neurons were used (since the network
with 10 neurons had lower error variances.
For the individual transfer functions, the
functions that have been shown to perform
best were used to investigate the continuous
wavelet neural network (CWNN).  These
functions include:

(i) Hyperbolic Tangent transfer function
(ii) Hyperbolic Tangent Sigmoid transfer
function
(iii)Symmetric Saturating Linear transfer
function

Results and Discussions
The analysis begins with the construction of
the time plots of the original rainfall data and
the decomposed continuous wavelet
transform data on a 48 scale.  The original
data was plotted on graph C1, while the
decomposed data were plotted on the
remaining graphs.  That is, in Figure 2, C2 to
C49 represent the entire 48 decomposed
CWT data.  From the plots, it could be seen
that the time plots of the CWT shows an
evenly distributed rainfall pattern.  We see
that the plots become more sparsely
distributed along the scale.
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Fig. 2: Time Series Plot of the original rainfall data and the decomposed CWT.

In this study, twenty transfer functions
were initially used for network training with
the help of MATLAB, but fourteen emerged
workable. MATLAB 2009a was used in
developing the program for training the
network.  Five hidden layers were used.
These are 2, 5, 10, 50 and 100.  The number
of iterations involved in this work is 1000.
Daily data were used to train the network (for
200 days).  Twenty transfer functions were
used in the network.  However, six transfer
functions, namely Linear transfer function,
Positive Linear transfer function, Hyperbolic
Sine transfer function, Hyperbolic Cosine
transfer function, exponential transfer
function and gamma transfer function did not
yield any output in 2, 5 and 10 hidden layers
network.  Nevertheless, in the higher hidden
layers of 50 and 100, the Linear transfer
function yields outputs, while others in the
list of non-function transfer functions did not
yield any output.  The MATLAB code was

trained to plot the error between the input and
the output. The principle of efficiency was
used in selecting the best performing transfer
function.

Inspecting the general performances of
the network based on the errors generated by
the hidden neurons, outstanding results were
obtained as follows.

The Hyperbolic Tangent transfer function
ranked best in the overall performance with
error variance 1.343777949, followed by the
Hyperbolic Tangent Sigmoid transfer
function with error variance 2.132441698 and
the Symmetric Saturating Linear transfer
function, having error variance 22.04938194.
As expected, the Radial Basis transfer
function ranked last in overall performance.
This can be seen in Table 1.  We can note the
result from Figures 3a and 3b.  The graph
shows that as the hidden layers increases,
error variance due to Symmetric Saturating
Linear transfer function reduces drastically.
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Table 1:Error Variances of the Transfer Functions

Competitive transfer function 204.5773265 223.8483493 203.0092008 139.1934749 317.1809794 217.5618662 10
Hard Limit transfer function 207.8392972 191.248995 165.7895568 96.80318859 213.7932459 175.0948567 7
Symmetric Hard Limit transfer function 129.0696401 182.6077394 115.1224912 61.87730151 85.87222364 114.9098792 5
Log-sigmoid transfer function 222.299622 331.0173098 265.5221818 268.5481521 352.1146609 287.9003853 12
Inverse transfer function 14947.78244 0.018911123 171.4533406 218.8261943 202.7426787 3108.164712 14
Linear transfer function 15.16966137 162.9709612 89.07031126 4
Radial Basis transfer function 94.48467713 97.66291743 589.5135165 13487.15479 27633.56187 8380.475554 15
Saturating Linear transfer function 135.5935607 135.732966 169.2290683 350.7622309 528.9470077 264.0529667 11
Symmetric Saturating Linear transfer function 73.30123498 19.12790579 14.39814939 2.117148666 1.302470864 22.04938194 3
Softmax transfer function 206.4595437 179.9706259 202.4876644 197.6673605 236.0353431 204.5241075 9
Hyperbolic Tangent Sigmoid transfer function 10.6083217 0.003174559 0.000954226 0.041566456 0.008191549 2.132441698 2
Triangular Basis transfer function 107.3976903 91.71668251 118.874954 2386.839526 9959.251909 2532.816152 13
Hyperbolic Tangent transfer function 6.651800849 0.002590439 0.003918007 0.00048087 0.060099581 1.343777949 1
Sine transfer function 219.0672742 240.6836446 217.0671159 1.391879726 0.417669241 135.7255167 6
Cosine transfer function 274.6038618 207.0571003 161.3597498 115.0618724 169.5493846 185.5263938 8

Mean RankOVERALL RANKING
Hidden
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Fig. 3a: Graph of error variance of the best three transfer functions.
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Fig. 3b: Overall Performances of Error Variance of the Transfer Functions.

In the results involving wavelets, it is
found in every analysis that the continuous
wavelet neural network gives better results.
Tables 3a – 3c consist of the CWNN results
of the best performing transfer functions
earlier discovered.  These are the Hyperbolic
Tangent transfer function, Hyperbolic
Tangent Sigmoid transfer function and the
Symmetric Saturating Linear transfer

function. For the Hyperbolic Tangent transfer
function, CWNN resulted in a range of error
variances, 0.000729592 - 0.009715933, with
CWT 1 recording the least, and CWT 6
recording the highest.  This is in contrast to
the result of the function using the original
data, having error variance 0.060099581,
which is higher.

Table 3a: CWNN Result of Hyperbolic Tangent Transfer Function

Hidden Layer -

100

Mean Error

(act-pred)

Mean Absolute

Error
Variance

Sub-Time Series 1 0.00389005 0.013951741 0.000729592
Sub-Time Series 2 0.004260697 0.024978109 0.003239021
Sub-Time Series 4 -0.008116418 0.030443781 0.002145085
Sub-Time Series 3 -0.033570647 0.05209204 0.004102457
Sub-Time Series 6 -0.005403483 0.071986567 0.009715933
Sub-Time Series 8 0.001421891 0.023469652 0.002512283
Sub-Time Series 5 0.019393035 0.032890547 0.002339264
Sub-Time Series 10 -0.003360199 0.046734328 0.005444832
Sub-Time Series 12 -0.01788209 0.022665174 0.00073663
Sub-Time Series 7 0.023131841 0.039681095 0.002958337
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Table 3b: CWNN Result of Hyperbolic Tangent Sigmoid Transfer Function

Hidden Layer -
100

Mean Error
(act-pred)

Mean Absolute
Error

Variance

Sub-Time Series 1 0.001477114 0.014383582 0.000739871
Sub-Time Series 2 0.035310448 0.131156219 0.039282011
Sub-Time Series 4 0.004956716 0.029195522 0.002329514
Sub-Time Series 3 0.028981592 0.048633333 0.004778149
Sub-Time Series 6 -0.005168657 0.028030348 0.002541222
Sub-Time Series 8 0.004595522 0.040067164 0.006018716
Sub-Time Series 5 0.014223881 0.035047761 0.002771785
Sub-Time Series 10 -0.001948756 0.016926866 0.000814949
Sub-Time Series 12 -0.007950249 0.025757214 0.001418593
Sub-Time Series 7 -0.038218905 0.043672637 0.002743456

Table 3c: CWNN Result of Symmetric Saturated Linear Transfer Function

Hidden Layer -
100

Mean Error
(act-pred)

Mean Absolute
Error

Variance

Sub-Time Series 1 0.012547761 0.083100995 0.099012345
Sub-Time Series 2 0.015978607 0.216885075 0.493311007
Sub-Time Series 4 -0.028518408 0.217135323 0.42369717
Sub-Time Series 3 -0.054432338 0.286941791 0.709184674
Sub-Time Series 6 0.031933333 0.247026866 0.427719785
Sub-Time Series 8 -0.035263184 0.352124876 0.951654567
Sub-Time Series 5 -0.005807463 0.285989552 0.587782167
Sub-Time Series 10 0.053563682 0.381137811 0.791104316
Sub-Time Series 12 -0.004406468 0.407753731 0.763670662
Sub-Time Series 7 -0.045742289 0.270354229 0.62697559

In the case of Hyperbolic Tangent
Sigmoid transfer function, it is only CWT 2
with error variance 0.039282011 that is
higher than the result obtained using the
original data.  While in the case of the
Symmetric Saturating Linear transfer
function, all the sub-time series data show
smaller variances compared to the result from
the original result.

Conducting the test of hypotheses on the
results obtained, it was found out that there
are significant differences between each
decomposed data and the original data as
shown on Tables 4 and 5.  The null
hypothesis in the test for difference in the
means stated that there is no difference.

Three alternative hypotheses were
constructed.  These are:
1. ,
2. ,
3. ,

where is the mean of the
decomposed data.

It is noted that only the first alternative
hypothesis has the (that is
1.0000). The other two has
(that is, 0.0000).

The variance ratio test was used to test the
validity of the model based on the error
generated by the network from each
decomposed data. Similar to the previous test,
three alternative hypotheses were also
constructed, which are as follows:
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1. ,
2. ,
3. ,

where, is the standard deviation of the
decomposed data

The test shows that at ,
sub-series 1, 2, 4 and 6 are significant, while
at , sub series 1, 2, 4, 6 and 5
are significant.  These can be seen on Table
10.

Table 4: Sample Statistics of the Original Data and the CWNN

Mean Standard
Deviation

Standard Error of
the Mean

Original Data 6.081095 14.33177 1.010885
Sub-Series 1 -0. 0105473 5. 268888 0. 3716387
Sub-Series 2 0.0268657 11.987 0.8454978
Sub-Series 4 0.1049254 12.90514 0.9102586
Sub-Series 3 0.0257711 13.10204 0.9241467
Sub-Series 6 0.1443781 11.59102 0.8175676
Sub-Series 8 0.1827363 11.85019 0.8358478
Sub-Series 5 0.2015423 12.08643 0.852511
Sub-Series 10 0.2196518 12.79639 0.9025877
Sub-Series 12 0.2327861 13.73769 0.9689816
Sub-Series 7 0.1508955 11.57113 0.8161646

Table 5: Paired Sample Statistics of the Original Data and the CWNN

95% Confidence Interval of
the Difference

at
and

Lower Upper

Original Data - Sub-Series 1 4.605974 7.577309 8.0853 0.000
Original Data - Sub-Series 2 4.788468 7.31999 9.4317 0.000
Original Data - Sub-Series 4 4.412868 7.539471 7.5381 0.000
Original Data - Sub-Series 3 4.331777 7.77887 6.9278 0.000
Original Data - Sub-Series 6 4.078572 7.794861 6.3002 0.000
Original Data - Sub-Series 8 3.893714 7.903002 5.8020 0.000
Original Data - Sub-Series 5 3.841665 7.917439 5.6892 0.000
Original Data - Sub-Series 10 3.731568 7.991318 5.4267 0.000
Original Data - Sub-Series 12 3.608266 8.088351 5.1482 0.000
Original Data -Sub-Series 7 3.809 8.051398 5.5128 0.000
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Table 6: Variance Ratio Test of the Original Data and the CWNN

at at
Upper Tail Lower Tail

Original Data - Sub-Series 1 171.375 0.006 0.0000 0.0000
Original Data - Sub-Series 2 7.016 0.143 0.0319 0.016
Original Data - Sub-Series 4 9.256 0.108 0.0159 0.008
Original Data - Sub-Series 3 3.314 0.302 0.1705 0.0853
Original Data - Sub-Series 6 9.142 0.109 0.0164 0.0082
Original Data - Sub-Series 8 1.830 0.546 0.4806 0.2403
Original Data - Sub-Series 5 4.807 0.208 0.0776 0.0388
Original Data - Sub-Series 10 2.653 0.377 0.2602 0.1301
Original Data - Sub-Series 12 2.834 0.353 0.2305 0.1153
Original Data -Sub-Series 7 4.232 0.236 0.1027 0.0513

Conclusion
The time plots of the actual data was
scattered and all points fall on the positive
side of the vertical axis, whereas the
decomposed data were evenly distributed on
both sides of the vertical axis.  However, it
was noticed that the clustering of the data
became sparsely distributed as the correlation
of the decomposed data with the original data
became weaker. Optimal performances were
noticed with Hyperbolic Tangent (tanh),
Hyperbolic Tangent Sigmoid (tansig) and
Symmetric Saturating Linear (satlins).
Generally, as the hidden neurons increased,
the error variances reduced, except in some
cases where a V-shape is formed in the
behaviour of the error variances.  The data
was decomposed to continuous wavelet
analysis on a scale of 48 (that is, forty-eight
series).  Ten series were selected on the basis
of high correlation with the original data.
These series included CWT 1, CWT 2, CWT
4, CWT 3, CWT 6, CWT 8, CWT 5, CWT
10, CWT 12, and CWT 7 (according to rank).
The analysis showed that except in extremely
rare cases, all the series performed optimally
compared to the original data.  The result of
the study has been able to show that using the
continuous wavelet transform in the ANN
technique, a better performance of the
network is observed.
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