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Abstract 

With digital imagery fast becoming a part of our daily lives and the exponential development of image 

processing technologies, new challenges and problems are also rising. One such problem is that of identifying 

the source device of an image. Previous attempts to do this were focused on identifying sources for which there 

were some information about attacking the problem from a Supervised Learning standpoint. In this research, we 

present an alternative model for image source identification, in the absence of any information about the images, 

using properties generated during the image processing pipeline, which is the dominant Photo Response Non-

Uniformity (PRNU), along with other impurities combined to form the contaminated sensor pattern noise or 

Polluted PRNU (POL-PRNU). Results showed a relatively low accuracy of 46% achieved by our model. It was 

also observed that there was a higher level of misclassification between cameras from the same manufacturer 

although the models were different and this affected the overall accuracy of the model. While Sensor pattern 

noise can be used to cluster images, it would require some more refinements in order to obtain a higher 

clustering accuracy. 
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1. INTRODUCTİON 
 

Image clustering is a fundamental task in 

computer vision with various applications 

including image retrieval, image segmentation, 

and object recognition. Traditional clustering 

techniques rely heavily on visual feature 

extraction, such as colour and texture 

descriptors. However, these methods often 

suffer from high computational complexity and 

inadequate performance. The widespread use 

of digital imaging technology, coupled with 

advanced image processing and computer 

graphics capabilities, presents new challenges 

in ensuring the accountability and credibility 

of digital images due to concerns about 

authenticity, credibility, accountability, and 

privacy [12]. 

 
The problem of image source identification has 

attracted significant  attention over the years as 

it serves as a viable means of authenticating 

images, especially in forensics image analysis 

[1]. To this effect, various methodologies have 

been developed to solve this problem, all of 

which are based on different aspects of the 

image processing pipeline. 

In the analogue world, a photograph or an 

image has become generally acceptable as a 

proof of the occurrence of a depicted event. In 

this digital age, creating and manipulating 

digital images had been simplified by powerful 

digital processing tools that are readily 

available even on smart mobile phones. As a 

result of this, the authenticity of images, 

whether they are analog or digital, can no 

longer be assumed. This becomes even more 

important with legal photographic evidence. In 

this context, Image Forensics is therefore 

concerned with determining certain underlying 

facts about an image [10]. For instance, 

suppose there is an ongoing court case and the 

prosecuting counsel presents, as evidence, 

some images that allegedly place the defendant 

at the scene of the crime, or worse, holding the 

murder weapon. The defending counsel is then 
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faced with the task of certifying the 

authenticity of that image. It is decided that, to 

achieve this, the source of the images should 

be ascertained. That is, identifying which 

camera or cameras took those images. 

Image forensics comprises a range of 

techniques aimed at offering definitive 

responses to inquiries such as: 

1. Is this image genuinely "original," or 

was it produced through copying and 

pasting elements from different 

images? 

2. Which camera manufacturer produced 

the device that captured this image? 

3. Is this image an accurate depiction of 

the original scene, or has it been 

digitally altered to mislead the viewer? 

For instance, was a coffee stain 

manipulated to appear as if it were a 

bloodstain that had been recolored? 

There are different sources of imperfection and 

noise that enter an image at different stages of 

the image processing pipeline. One of these is 

a deterministic component that stays 

approximately the same if multiple pictures of 

the exact same scene are taken and is present 

in every image taken by a particular sensor. It 

is called the Sensor Pattern Noise (SPN) and it 

is made up of the Fixed Pattern Noise (FPN) 

and the Photo Response Non-Uniformity 

(PRNU). The FPN is caused by dark current 

and is basically the pixel-to-pixel differences 

when the sensor is not exposed to light; it is 

sometimes suppressed automatically in some 

middle to high-end cameras. The PRNU is 

caused by the heterogeneity of the silicon 

wafers used in manufacturing camera sensors 

and some imperfections during the 

manufacturing process. It is the dominant part 

of the sensor pattern noise and some research 

works have called it the “fingerprint” of a 

digital camera. 

This research seeks to use this fingerprint to 

cluster images without any prior information 

about them. The premise is that the PRNU 

from images that come from the same sensor 

would exhibit more correlation between them 

than images from different cameras. 

2.      RELATED WORKS 

There have been previous research efforts to 

identify image sources from camera noise 

patterns. Most previous works can be broadly 

categorized into Supervised and Unsupervised 

approaches. 

Research in image source identification, over 

the years, has mostly been geared towards 

images about which there is sufficient 

information (supervised learning). But images 

in the real world do not come with any 

information about them asides from the 

metadata. While the metadata provides some 

information about the source of an image, it 

can easily be altered and thus cannot be trusted 

as proof of authenticity. 

Depending on the available prior knowledge, 

the task of identifying a digital camera from 

photographs could take different forms. 

However, there is often little or no prior 

information on the devices possibly involved 

let alone on their PRNU pattern. Usually, an 

analyst is given a few images without much 

useful metadata associated with them and with 

little or no relationship between the images 

making device identification more difficult 

with such approaches. Nevertheless, it may 

still be very useful to understand, even in such 

cases, which images are from the same camera 

and which are not [5]. 

Due to technological advancements, image 

acquisition devices are becoming more 

pervasive and image editing tools are 

becoming more common and easy to use. It 

therefore, becomes very important to be able to 

reliably verify the integrity of images. Image 

forensics involve techniques for preventing the 

malicious tampering of images for illegitimate 

benefits. Of particular interest in multimedia 

forensics is source camera identification and 

its purpose is to trace the sources of images. 

This can indeed help identify the sources of 

images emanating from crime scenes or 

terrorist attack scenes and thus ensure the 

security and integrity of such digital 

information. 

Most of the basic methods of individual 

camera identification focus mostly on Sensor 

Pattern Noise (SPN). Due to manufacturing 

imperfections, the difference between the 



87   UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627 

 

parameters of the MOSFET (Metal–Oxide–

Semiconductor Field-Effect Transistor) and the 

photodiode in each pixel can cause minor 

distortions in the final output signal of each 

pixel. Researchers believe that these indelible 

marks left by a camera as a result of slight 

manufacturing defects can be exploited as 

“fingerprints” for source camera identification 

from pictures. Thus, individual camera 

identification is often carried out using SPN-

based methods. 

Shen et al., [13] applied direct SPN-based 

clustering and achieved promising results in 

terms of both accuracy and stability. Similarly, 

employing SPN-based feature extraction 

combined with traditional clustering 

algorithms has demonstrated improved 

clustering accuracy and stability. Meng et al., 

[11] utilized ICA to extract SPN-based 

features and applied k-means clustering on the 

feature vectors, achieving superior 

performance compared to direct SPN-based 

clustering. However, the limitation of this 

approach lies in the selection of appropriate 

feature extraction algorithms and parameter 

optimization 

In Timmerman and Alegre [15] work, a 

constrained convolution net was developed to 

identify the source camera of a video based on 

the specific sensor noise patterns extracted 

from video frames. using this approach, their 

network classified individual images (video 

frames) and then used majority voting to 

identify the source camera of the video. They 

reported a 93.1% accuracy on the VISION 

dataset containing 1539 videos from 28 

different cameras.  

In Hui et al., [3], the objective was to tackle 

the challenge of device identification based on 

Sensor Pattern Noise (SPN) and introduce an 

innovative approach called the Multi-Scale 

Feature Fusion Network (MSFFN) to enhance 

the accuracy of attributing source cameras 

based on sensor patterns. The MSFFN, 

structured as a multi-scale encoder-decoder, 

plays a pivotal role in suppressing image 

content, thereby improving source 

identification. Following this, the content-

independent SPN features from different scales 

were combined, and ultimately, these fused 

features were employed for the purpose of 

identifying the source of the image. 

In Kirchner and Johnson [7] work, a Sensor 

Pattern Noise Convolutional Neural Network 

(SPN-CNN) was developed for improving the 

process of extracting sensor pattern noise from 

images. They reported an average 

identification accuracy of 82% on the VISION 

dataset. 

In Bernacki [2] work, the robustness of digital 

camera based on a Convolutional Neural 

Network (CNN) was discussed. In this context, 

robustness pertained to the network's ability to 

identify a camera even when presented with 

visually distorted images. To evaluate this, the 

CNN was trained on "normal" images captured 

by certain cameras and subsequently tested on 

images from the same cameras that had 

undergone degradation via Gaussian blur, 

Poisson noise, random noise, and the removal 

of the Least Significant Bit (LSB) of pixel 

intensities. The outcomes of this analysis 

revealed that the CNN could effectively 

attribute significantly altered images to their 

respective camera sources. 

In Freire-obregon et al., [4] work, the authors 

proposed a Convolutional Neural Network 

(CNN) architecture that could deduce the noise 

patterns inherent in mobile camera sensors. 

The primary objective was not only to 

accurately detect and identify the mobile 

device that captured an image (achieving a 

98% accuracy rate) but also to determine 

which embedded camera within the device was 

responsible for capturing the image. 

In Lukas et al., [6] work, it was stated that the 

camera identification problem need to be 

approached from multiple dimensions by 

combining evidences from different methods. 

Hence, this research explores a different 

approach to camera identification which can be 

used as a means of validating the authenticity 

of an image or images. 

Li et al., [8] introduced a methodology aimed 

at distilling the reference Photo Response Non-

Uniformity (PRNU) by eliminating 

interference noise through the utilization of 

Principal Component Analysis (PCA) 

technology. Specifically, the reference PRNU 

noise was represented as white Gaussian noise, 

whereas the interference noise induced 

correlations between pixels and their 

neighboring elements within the reference 
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PRNU noise. In the context of local pixel 

regions, a pixel and its neighboring pixels were 

treated as a vector and employed block 

matching to select PCA training samples that 

shared similar content. Subsequently, PCA 

transformation was utilized to estimate the 

interference noise within the local pixel region 

and implemented coefficient shrinkage in the 

PCA domain to enhance the accuracy of 

interference noise estimation.  

 

In Shokunbi et al., [14] a machine learning 

approach inspired by the Bayer filter and the 

demosaicing procedure employed in digital 

color cameras to enable the colorization of 

grayscale images was discussed. Their method 

entailed training a multilayer perceptron model 

on a dataset of color images that share 

semantic similarities. Subsequently, the model 

demonstrated the ability to add color to 

grayscale images that share semantic 

similarities with those in the training dataset.  

 

Upon a thorough review of the existing 

literature related to camera identification and 

the analysis of sensor noise, several significant 

trends and findings have surfaced. Researchers 

have delved into a variety of methodologies, 

including the utilization of Sensor Pattern 

Noise (SPN)-based clustering, convolutional 

neural networks (CNNs), and conventional 

clustering algorithms to associate digital 

images with their originating cameras. While 

these methods have shown promise in 

accurately discerning the source of images and 

managing variations in them, a substantial 

research gap becomes evident in their ability to 

handle challenges arising from images 

originating in different domains or those that 

have been visually altered, whether through 

noise, blurriness, or other modifications. Our 

research endeavors to address this void by 

introducing an innovative approach that 

combines the merits of SPN-based feature 

extraction and photo response non-uniformity 

to augment the resilience and precision of 

camera identification across diverse domains 

and amidst a spectrum of image distortions.  

3 METHODOLOGY 
 

As earlier stated, this study aims to utilize 

PRNU, in conjunction with other image 

characteristics, to group images into clusters, 

by grouping together all images captured by 

the same camera within the same cluster. 

Typically, the PRNU itself is determined by 

averaging the noise residuals from several 

images known to be produced by the same 

camera. This also suppresses the other random 

low-frequency noise components resulting in a 

stronger estimate of the PRNU. Our 

methodology explores the correlation between 

the POL-PRNU (Polluted Photo Response 

Non-Uniformity) from random images in a 

dataset to create clusters such that, each cluster 

would represent images most likely taken by 

the same camera. Figure 1 shows an overview 

of our methodology. 

 
Digital camera sensors often contain several 

photo-detectors (pixels) which are responsible 

for converting photons (light rays) into 

electrons. Each pixel in the sensor of a digital 

camera is designed to record the amount of 

incident light striking it and this together forms 

an image. However, slight manufacturing 

imperfections sometimes introduce small 

amounts of noise into the resultant image. This 

noise has a stochastic nature, is unique for each 

sensor and yet spatially variant and consistent 

over time, making it suitable for use for 

forensic purposes such as camera identification 

from photographs. Typically, most PRNU-

based camera identification methodologies 

extract residual noise from images by 

subtracting the denoised version of an image 

from the original (noisy) image as shown in 

equation 1. 

 

P = I – WF(I)     (1) 

where I is the image, WF(I) is the denoised 

image, and WF is a wavelet filter. 



 
 

Figure 1: Overview of the methodology 

A wavelet-based denoising filter is often 

recommended and it is used in most cases 

because it provides the least amount of traces 

of the scene. Residual noise is actually a sum 

of different noises, one of which includes the 

sensor pattern noise, PRNU. Other types of 

noise, which are also a part of the residual 

noise, such as image content, may also pollute 

the PRNU. An example of this is presented in 

Figure 1 showing an image and its residual 

noise or POL-PRNU.  

3.1 Extraction of the POL-PRNU 

 

First of all, each image is split or decomposed 

into its three color channels, and then, a central 

block of 1024 x 1024 pixels is extracted since 

a small block of pixels from the original image 

size can significantly reduce computational 

complexity and speed up processing. The 

extraction process is conducted individually on 

each of the three-color channels, namely Red, 

Green, and Blue.  

 

To mitigate any artifacts arising from color 

interpolation and JPEG compression, a 

periodic signal known as the linear pattern L is 

derived by subtracting the average row from 

each row and the average column from each 

column of N, separately for each color 

channel. This yields three distinct linear 

patterns: Lr for the Red channel, Lg for the 

Green channel, and Lb for the Blue channel. 

Ultimately, these three patterns are merged 

using the grayscale conversion formula as 

outlined in equation 2. Using the recombined 

linear patterns will be more reliable because 

the three linear patterns (Lr, Lg and Lb) are 

highly correlated and they provide compact 

information. 

P = 0.3Lr + 0.6Lg + 0.1Lb  (2) 

The extraction process is described in Figure 1 

and the resulting POL-PRNU is shown in 

Figure 3. 

 

 
Figure 2. POL-PRNU extraction 
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Figure 3. Original image and its extracted POL-PRNU 

3.2  Clustering 

Typically, images are mapped to their source 

cameras by generating a reference pattern for 

each camera under observation and comparing 

the pattern extracted from each image to this 

reference pattern. Because the sensor pattern 

noise is a weak signal, the reference pattern is 

generated or, in other words, estimated, by 

averaging the sensor pattern noise from lots of 

images known to have been taken by a 

particular camera. The premise is that pattern 

noise from images taken by a particular camera 

would exhibit a much higher correlation with 

the reference pattern of that camera than with 

any other camera. Hence, we can say that the 

image was most likely taken by that camera. 

Based on this premise we consider the 

correlation between each of the extracted POL-

PRNU for each of the images under study. We 

assumed that since pattern noises from images 

would show a higher correlation with reference 

patterns from their source camera, then these 

images will also show a higher correlation with 

other images taken by the same camera. Our 

approach is to cluster images such that each 

cluster represents images most likely taken by 

the same camera. 

To facilitate image clustering, we construct an 

M by M pairwise correlation matrix, which 

signifies the correlation between each image 

and every other image within the dataset, with 

M representing the total number of images in 

the dataset. 

The degree of correlation between data sets 

serves as a metric for their relationship. 

Pearson's Correlation is the most widely used 

statistical correlation measure, revealing the 

linear association between two data sets. It 

yields a value within the range of (-1, 1), 

where -1 signifies a robust negative 

correlation, 1 indicates a strong positive 

correlation, and 0 denotes no correlation, often 

referred to as zero-correlation. The calculation 

of ‘Pearson's correlation coefficient’ is detailed 

in equation 3. 

  (3) 

The resulting correlation matrix is then 

subjected to an agglomerative hierarchical 

clustering algorithm which uses the single link 

technique to update the correlation matrix. 

This is done by merging clusters with the 

highest correlation with every iteration. In 

other words, each image is regarded as a 

cluster on its own and then the clusters are 

merged based on the updated correlation 

matrix. 

3.3 Dataset 

For this research, images were gathered from 3 

different digital cameras, two of which are 

from the same manufacturers but of different 

models: 

1. Nikon D1500 

2. Nikon D1200 

3. Canon EOS 1200D 
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Fifteen images were gathered for each camera 

and these were random images of different 

scenarios and different conditions, this was 

done so as to test the robustness of the model 

being developed. Thus, we had a total of 45 

images obtained by taking shots of random 

scenes with each of these cameras. 

After the POL-PRNU has been extracted from 

each image as previously described, the POL-

PRNU is then cropped and flattened to a 1-

Dimensional vector which is then put in a data 

frame structure as shown in Figure 3, so as to 

be able to calculate the correlation between the 

images and cluster them thereafter. 

4 RESULTS 

Utilizing a smaller pixel block from the 

original image size considerably diminishes 

computational complexity and expedites the 

matching procedure. In Li and Satta [9] , it was 

demonstrated by the authors that the false-

positive rate (FPR) in camera identification 

diminishes as the pixel block's size increases, 

attaining its lowest point when the pixel block 

size reaches 1024 × 1024 pixels. 

Based on this finding, two iterations of the 

experiment were carried out using:  

1. The 1024 × 1024pixel block 

mentioned above. 

2. A much smaller 32 × 32pixel block. 

The remaining part of this article presents an 

analysis of the results of the experiments. 

To evaluate the performance of both iterations 

of our model, we provide answers to two 

questions: 

1. How well did our clustering do? 

2. Did we predict the correct number of 

clusters in our dataset? 

To answer the first question, the cophenetic 

correlation coefficient (or simply the 

Cophenetic coefficient) was calculated. The 

cophenetic correlation coefficient is a measure 

of how well a dendrogram preserves the 

pairwise distances between the original 

unmolded data points. Although it has been 

mostly applied in Biostatistics, it is also 

suitable for use in other fields where raw data 

tends to occur in clusters. The cophenetic 

Correlation Coefficient is simply the 

correlation coefficient between the distance 

matrix and the Cophenetic matrix. The closer it 

is to 1 or 100%, the better the clustering fits. 

Figure 4 shows the cophenetic coefficient for 

the two iterations of our experiments and it can 

be clearly seen that our model performs better 

with the smaller block than with the much 

larger one as the experiment with the 32 × 32 

pixel block obtains a higher cophenetic 

coefficient. 

 

 

Figure 4: Copehenetic coefficient for both experiments 

 



To answer the second question, we provide 

heatmaps to find out if the correct number of 

clusters have been predicted from the images. 

After clustering, it is observed that, plotting the 

heatmap of the clusters, as seen in Figure 5, 

shows that there are no visible clusters for the 

larger block. The two heatmaps in Figure 5 

represents the level of correlation between the 

images taken by the different cameras. It is 

obvious that the smaller block-sized (32 × 32) 

images show much visible patterns in the 

heathmap and thus higher correlation than the 

larger block-sized (1024 × 1024) images. More 

precisely, three clusters are visible in the 

heatmap of the 32 × 32 block-sized images 

indicating that the images have come from 

three different sources. However, no such 

patterns are obvious in the heatmap of the 

1024 × 1024 block-sized images. 

 

The dendrograms in Figure 6a and 6b give a 

more detailed view of the clustering and it 

shows that for both iterations of the 

experiments, there were three clusters which 

correspond to the three different cameras used 

to populate the dataset. Again, once can see 

that the dendogram of the first iteration of the 

experiment where, 1024 × 1024 blocks (Figure 

6a) were used, do not have well defined 

clusters like we have with the 32 × 32 blocks 

(Figure 6b). This is consitent with the 

observations in Figures 4 and 5. The 

dendograms of the larger block size identify all 

images as originating from nearly the same 

source, showing all lines in the same colour, 

while the dendograms of the smaller blocks 

show three distinct colours for the clusters 

indicating that the images originate from three 

different cameras. 

 

 

Figure 5: Heat maps showing Correlation-based clustering for both experiments 



 
 

Figure 6a: Dendograms for both 1024 × 1024 block 

 
 

Figure 6b: Dendograms for both 32 × 32 block 

Figure 7 further reinforced our findings 

showing that the smaller block-size of 32x32 

pixels achieved better clustering accuracies 

across all three clusters and even overall than 

the larger block-size of 1024x1024 pixels 

which was supposed to have the best false 

positive rate. Overall, the smaller block-size 

achieved an accuracy of 46% as against 33% 

achieved by the larger block-size. This finding 

holds the promise of a more effective and less 

computational method of identifying image 

sources. It was also observed, during 

clustering, that there was a higher level of 

misclassification between cameras from the 

same manufacturer (Nikon) even though they 

were of different models. This, along with the 

relatively small sample size, affected the 

overall accuracy of the model, but we have still 

been able to establish the fact that clustering 

can reveal the differences in image sources, 

especially at low pixel block sizes. The 

relatively-low accuracy is quite expected, 

given that we only tested with a relatively 

small number of images, but we consider the 

differences in the performance based on the 

different block-sizes a significant finding.



 

 
 

Figure 7: Clustering accuracies of the 32 x 32 block (solid bars) and the 1024 x 1024 block (outlined 

bars) 

 

5.   CONCLUSİON  
 

In the real world, images do not come with 

much information besides the metadata. With 

the availability of applications like Adobe 

Photoshop, it is quite easy to alter the metadata 

of images hence it cannot be trusted. This 

research provides such a clustering-based 

model for identifying images sources using the 

impurities inserted into images in the image 

sensor of digital cameras. It was observed that 

images obtained from different camera sources 

could be identified more accurately at a lower 

pixel block sizes of 32x32 than at a higher 

pixel block sizes of 1024x1024. This provides 

an advantage of less computational demand as 

well as improved identification accuracy. 

Future works could experiment with different 

pixel block sizes between the two as well as on 

a larger dataset. 
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