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Abstract

This study aims to numerically solve several first-order delay differential equations (DDES) for step numbers k =
2, 3, and 4 by employing the Extrapolated Block Backward Differentiation Formulae Method (EBBDFM). This
is accomplished by using a recently developed mathematical formula to evaluate its delay term. The continuous
form of each step number was used to generate discrete schemes, which were then constructed using a matrix
inversion technique and a linear multistep collocation approach. Applying this suggested method yielded results
demonstrating the accuracy and efficiency of the step number incorporated with an extrapolated future point,
which outperformed the other existing methods at Lower Computational Processing Unit Time (LCPUT),
particularly when compared to step numbers of K =3 and 2.
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studies by researchers, including [1, 2, 3, 4, 5,
6], have demonstrated the real-world uses of
numerical approaches in solving delay
differential equations. These researchers used
interpolation techniques to evaluate the delay
term in medicine, engineering, physics, and
economics. However, they encountered

1. Introduction

The extrapolated block backward
differentiation  formulae  methods  were
introduced to modify the performance of the
existing conventional BDF in terms of
efficiency, accuracy, consistency, convergence

and stability. In recent years, many rigorous
numerical studies have been carried-out in
obtaining the approximate solutions of delay

obstacles in the process of obtaining accurate
results. Equating the orders of the interpolating
polynomials and using numerical methods—

which are incredibly challenging to implement
to find a numerical solution for any modeled
Chibuisi C., Osu B. O., lIhedioha S. A. and Chikwe C. F. system—are among the Cha"?nges th_ese
(2023). Numerical Solution of First Order Delay researchers _face- When the mterpolat-lon
Differential Equation Using a Newly Developed method shifts throughout the numerical
Mathematical Expression for Evaluation of Delay Term. integration from the beginning function to
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Research (UIJSLICTR), Vol. 10 No. 2, pp. 136 -, 151 earlier values and when thg initial function
does not totally cooperate with the rest of the

differential equations which revealed its
advantages in real life applications. Several
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modeled system, discontinuities are produced.
Discontinuities can also occur when the
beginning function is not correctly modeled.
Regarding mathematics, DDEs are distinct
from ODEs due to the development of DDEs
comprises a series of previous values of
dependent variables and derivatives. The
development of ODEs, on the other hand,
depends entirely on the values now being held
by these quantities. Discovering discrete
solutions to first-order delay differential
equations (DDEs) of the type defined by [7] is
the objective of this research project that we
are working on.

P'(t) =q(t, p(t), p(t—7)),fort >t 7 >0
p(t) = 4(t), fort <t, (1)

where @(t) is the initial function, 7 is called the
delay, (t—7) is called the delay term
and p(t—7) is the solution of the delay term.

The formula from [15] was utilized by
researchers [8, 9, 10, 11, 12, 13, 14] to
investigate the delay term of first-order delay
differential  equations. The  researchers
discovered that the formula is less precise,
requires more computation time, and cannot be
utilized to solve various DDEs. Different types
of delay differential equations, such as
stochastic, advanced, Riccati, partial, and
stochastic partial delay differential equations,
are included in these classes. It is necessary
that a precise mathematical formulations need
to be developed to handle these problems and
the ones that scholars have run across while
using the formula from [15] to assess the delay
term.

2. Development of The Method

The k-step Linear Multistep Method (LMM)
was created by [16]. We plan and describe the
discrete schemes of the Extrapolated Block
Backward Differentiation Formulae Method
(EBBDFM) for steps 2, 3, and 4. Furthermore,
we use the matrix inversion technique to do
this.

For k =2 of (EBBDFM)

—Ez —ﬂz +iz +
pu+l 12 qu+l 3 qu+2 12 qu+3 pu

L
pU+2 23 pU 23 pU+l 23 qU+2 23 qu+3
—_i +§ +%Z +£Z (2)

pU+3_ 23 pU 23 pU+1 23 qU+2 23 qU+3

For k =3of (EBBDFM)
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=— P, =Pt — +—82 +@z (3)
pu+4 197 pu 197 pu+1 197 pu+2 197 qu+3 197 qu+4

pu+2 =

For kK =4 of (EBBDFM)

ML 18 2 68 T4 9%

pu+1__quu+l+®zqu+4_%zqu+5_%pu+mpu+2_]]_7pu+3
RE N A S
Pua™ g Mg o g s g g P g P
1503 963 333 413 1467 10539
pm—quu.s'mz%ﬁmzqmmPU-MDM%PM
U8 24 4008 164 144
pu—4__ﬁpu+ﬂpu+l_mpu+2+mpu—ﬁﬁzqu%_ﬁzqwﬁ
2 225 1000 3300 3600 780
pu+5:_ﬁpﬁﬁpufﬁpu-2+mpu+3+mzqu+4+ﬁzqu+s
(4)

2.1 Essential Characteristics of the Approach

In this case, we follow the conditions given by
[17] and [18] to compute the regions of
absolute stability for equations (2), (3), and (4),
as well as the orders, error constants,
consistency, and zero stability.

2.1.1 Order and Error Constant
To find the order and error constants for
equation (2), these steps were taken:

Co=Ci=C.=C.=(0 0 0) but

(.3 17 3Y
€78 138 46
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Therefore, (2) has order n=3 and error

317 3
constants, ————
8138 46

Applying the same step to (3), we
obtained:

C0:C1=Cz:C3=C4:(O 0O O O)T

but
(19 413 111 12
¢\ 7150 4950 1970 985

Therefore, (3) has order n=4 and error

19 413 111 12

constants, — 150 49501970 985

Implementing the same step to (4), we
have:

c,=c.=(0 0 0 0 0) bu
( 5 2065 1665 180 85525)T
C.= 14

5703 8018 4009 8018
Therefore, (4) has order n=1 and error
5 20651665 180 85525

constants, 14 57038018 4009 8018

2.1.2 Consistency

Following the condition stated by [17], if the
order is more than 1, i.e. n>1, then the Linear
Multistep Method is considered consistent. Our
suggested method, EBBDFM, is consistent
since its order, as evaluated using (2), (3), and
(4), is higher than 1, i.e.n>1.

2.1.3 Zero Stability Investigation

According to [18], EBBDFM is considered
zero stable if and only if the initial
characteristic polynomial has no

rootsrsS=1,2,3,...,Nthat are either simple
or distinct and have an expression gzs
E(r) =det(rX{ — X®) higher than 1
which satisfies |l‘i| <1 and the roots |ri|
The zero stability for (2) is analyzed as

follows:

B 45
100 00 -1 VRN
pu+1 pufz 12 3 12 qu+1 O O O qufz
-2—810 -00E +ZOQ—A +200 0 0
23 Emz 23 ppu-1 23 23 ZM O O O qqu»l
3 u U3 U
PA) 3 PARA]
where
1 0 0 0 0 -1
28 5
H_1_2% 1 0 W_|lop o 2 |a
X 2 23 ) Xl 23
_2T g 1 00 2
23 23
28 4 5
12 3 12
ndyo_| o 2 _4
Ve 23 23
)
23 23

The first characteristic polynomial is given
by;
E(r)=det(rx - x&)

(5)
|rx - x 8] =0.
Now we have,
1 00|00 -1 r 00|00 -1
E(r):r—§ 1 oo o 2|3 roljoo 2
23 23 23 23
Aoy loo L) 1-Er o] foo X
23 23 23 23
r 0 1
=E(r)= —ﬁr r S
23 23
—zr 0 r—i
23 23

The following are obtained using Maple 18
software,

E(N=r’+r*=r+r’=0
=r1=-1r;=0,r;=0 since

‘ri‘ <1, 1=123,(2) is zero stable.
By the same procedure for (3)
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197 197
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The first characteristic polynomial is presented as;
E(r) =det(rx{—x{?)

~lrx P - x@|=o0. o

Now we have,
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Foolfooe B c Zroolfooo B
I I 4 4 P8, B8
40 40
oo X% 0oflooe 2 64 9
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E(r)=
B8y gl ggo LB T g g TTEO % a9 1T
197 197 97) |97 197 197 97" 197 197
A N R A T o4, 22 4,9
197 197 97) N9 197 197 197 197 197
Adopting Maple 18 software, we have:
197 , 197
E(ry =197 o 197 oy 1970 297 5
275 275 275 275

= r=-1r,=0,r;=0,r,=0. Following that‘ri‘ <1, 1=12,3/4, (3) is zero stable.
Following the same procedure for (4)
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The first characteristic polynomial is presented as;
E(r) =det(rx®—x{)

(7)
3 3
=[rx®-x{|=0.
Now we have,
1 A 9% 50l (00 0 0 268
413 177 1239
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_| 1467 . _10539r . 0o ol-lo 0 0 0 - 413
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728 2124r __4008r r o 0600 0 111
2501 2501 2501 2501
225 1000r __3300r o r 000 O 24
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——r —r o —-
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—_— r ——r O —
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S E(r) = 1467 r <_10539r r 0 413
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Adopting Maple 18 software, we have:
93825015 . 93825015 , 93825015 . 93825015 ,

E(r)= r’+ r‘= r’+ r‘=

46360076 46360076 46360076 46360076

= r1=-1r,=0,r;=0,r,=0,r,=0.Since|r{| <L i =12,3,4,5, (7) is zero stable.
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2.1.4 Convergence Figures 1 through 6 illustrate the plotting of the

Looking at the suggested technique, we could G- and H- regions of absolute stability of (2),
say it is convergent having seen that equations (3), and (4). These plots were created using
(2), (3), and (4) are not only consistent but Map 18 and the MATLAB program, as shown
stable at zero. in the following figure; 1-6

2.1.5 Region of Absolute Stability

Im(z)

-20 -15 -10 -5 ) 5
Re(z)

S _ 2ol Fig.4.H -stability Region (EBBDFM) in
Fig.1. G -stability Region (EBBDFM) in @)

2 , .

e e o] - 750—60 -50 - -4-0 -30 'T-EZ(OZ) -10 0] 10 - 20
Fig.2. G -stability Region (EBBDFM) in Fig.5. H -stability Region (EBBDFM) in
(3) 3)

o] - 15?150 —10ti - -50 r\:e(z) [} 50 -100
Fig.3. G -stability Region (EBBDFM) in Fig.6. H -stability Region (EBBDFM) in
(4) (4)

3. EVALUATION OF THE DELAY TERM
Within the open-ended zone, lies the G- (t—1)
stability regions as shown in Figures 1-3, while The newly  developed mathematical
within the enclosed H -stability region, are expressions used in [19] to calculate and
shown in Figures 4-6. Consequently, our evaluate the delay term (t—7) differ from
proposed method's region of absolute stability those earlier researchers used as seen in online
is fulfilled. literature. It allows
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better and faster evaluations, calculations,
performances, and gives accurate results.
Before carrying-out the numerical experiments
with a constant size of z = 0.01 to get

numerical solutions ofPl(t) in Maple 18

software, the new mathematical expression for
evaluation of the delay term shall be put into
first-order DDEs with the (2), (3), and (4) of
the proposed method.

1. Numerical implementation and
Computation

Utilizing equations (2), (3), and (4) with a
fixed step size of z = 0.01, this section aims to
solve some first-order DDEs. To solve this, the
Maple 18 software will be used to get the

numerical solutions of p (t)

Numerical Problems
Problem 1

p (t) =—1000p(t) + p(t - (IN(LO00 1)),
0<t <3

p(t)=et,t<0
Exact solution p(t)=e™"
Problem 2

p (t)=-1000p(t)+997e>p(t—1)+(1000-997¢e ),
0<t<3

p(t) =1+e t<0
Exact solution p(t) =1+e~t

We derived and applied the step numbers k =
2, 3 and 4 discrete schemes of the proposed
method to obtain the most accurate numerical
solutions of some first order delay differential
equations. The step number of the proposed
method with the Least Minimum Absolute
Error at Lower Computational Processing Unit
Time (LCPUT) of the two first order delay
differential equations above indicates higher
and better performance in terms of accuracy
and efficiency than other step numbers of the
method and other existing methods. The
numerical solutions are presented in a tabular
formin Table 1;

Table 1: Problem 1 Approximate Solutions

t Exact Solution | k =2 Approximate Solution | k =3 Approximate Solution | k= 4 Approximate Solution
0.1 | 0.990049834 | 0.990049834 0.990049835 0.990049835
0.2 | 0.980198673 | 0.980198674 0.980198674 0.980198674
0.3 | 0.970445534 | 0.970445536 0.970445534 0.970445534
0.4 | 0.960789439 | 0.96078944 0.960789439 0.96078944
0.5 | 0.951229425 | 0.951229425 0.951229425 0.951229426
0.6 | 0.941764534 | 0.941764532 0.941764534 0.941764534
0.7 | 0.93239382 0.932393821 0.93239382 0.93239382
0.8 | 0.923116346 | 0.923116347 0.923116348 0.923116347
0.9 | 0.913931185 | 0.913931183 0.913931186 0.913931185
1 0.904837418 | 0.904837419 0.904837418 0.90483742
1.1 | 0.895834135 | 0.895834135 0.895834136 0.895834136
1.2 | 0.886920437 | 0.886920434 0.886920437 0.886920437
1.3 | 0.878095431 | 0.878095431 0.878095432 0.878095431
1.4 | 0.869358235 | 0.869358236 0.869358235 0.869358236
1.5 | 0.860707976 | 0.860707976 0.860707977 0.860707977
1.6 | 0.852143789 | 0.85214379 0.852143789 0.852143789
1.7 | 0.843664817 | 0.843664817 0.843664817 0.843664817
1.8 | 0.835270211 | 0.835270211 0.835270211 0.835270212
1.9 | 0.826959134 | 0.826959135 0.826959134 0.826959134
2 0.818730753 | 0.818730754 0.818730754 0.818730753
2.1 | 0.810584246 | 0.810584245 0.810584247 0.810584246
2.2 | 0.802518798 | 0.802518798 0.802518798 0.802518798
2.3 | 0.794533603 | 0.794533603 0.794533603 0.794533603
2.4 | 0.786627861 | 0.786627862 0.786627861 0.786627861
2.5 | 0.778800783 | 0.778800784 0.778800783 0.778800783
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2.6 | 0.771051586 | 0.771051586 0.771051586 0.771051586
2.7 | 0.763379494 | 0.763379493 0.763379495 0.763379495
2.8 | 0.755783741 0.755783742 0.755783741 0.755783742
2.9 | 0.748263568 | 0.748263568 0.748263569 0.748263568
3.0 | 0.740818221 0.740818219 0.740818221 0.74081822

CPUT of EBBDFM fork =2is0.4s,k=3is0.2and k=4 1is 0.1s

Table 2: Problem 2 Approximate Solutions
k = 2 Approximate | k = 3 Approximate

t Exact Solution | Solution Solution k = 4 Approximate Solution
0.1 1.970445534 1.970445542 1.970445533 1.970445533
0.2 1.941764534 1.941764528 1.941764534 1.941764534
0.3 1.913931185 1.913931195 1.913931187 1.913931185
0.4 1.886920437 1.886920444 1.886920432 1.886920436
0.5 1.860707976 1.86070797 1.860707978 1.860707984
0.6 1.835270211 1.835270223 1.83527021 1.835270211
0.7 1.810584246 1.810584253 1.810584246 1.810584246
0.8 1.786627861 1.786627856 1.786627862 1.78662786
0.9 1.763379494 1.763379504 1.763379495 1.763379494
1.0 1.740818221 1.740818227 1.74081822 1.740818224
1.1 1.718923733 1.718923728 1.718923733 1.718923733
1.2 1.697676326 1.697676335 1.697676325 1.697676326
13 1.677056874 1.677056881 1.677056874 1.677056874
1.4 1.65704682 1.657046816 1.657046819 1.65704682
1.5 1.637628152 1.637628158 1.637628152 1.637628153
1.6 1.618783392 1.618783397 1.618783393 1.61878339
1.7 1.600495579 1.600495575 1.600495579 1.600495579
1.8 1.582748252 1.582748258 1.582748252 1.582748252
1.9 1.565525439 1.565525443 1.565525439 1.565525438
2.0 1.548811636 1.548811632 1.548811637 1.548811638
2.1 1.532591801 1.532591809 1.532591802 1.532591801
2.2 1.516851334 1.51685134 1.516851334 1.516851335
2.3 1.501576069 1.501576066 1.501576069 1.501576068
2.4 1.486752256 1.48675226 1.486752255 1.486752256
2.5 1.472366553 1.472366557 1.472366552 1.472366555
2.6 1.458406011 1.458406009 1.458406011 1.458406012
2.7 1.444858066 1.44485807 1.444858067 1.444858066
2.8 1.431710523 1.431710528 1.431710523 1.431710524
2.9 1.418951549 1.418951547 1.418951549 1.41895155
3.0 1.40656966 1.406569664 1.40656966 1.406569662

CPUT of EBBDFM fork=2is0.5s, k=3is0.3and k=4 is 0.2s

5. Analysis of Results and Discussions

In this section, we analyzed the absolute errors between the exact and approximate solutions
obtained after the numerical experiment using the proposed method. The results are presented
in Table 3.
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Table 3: Problem 1 Absolute Errors

t k = 2 AbsoluteError k = 3 AbsoluteError k = 4 AbsoluteError
0.1 | 3.51832E-10 8.51832E-10 1.46081E-09
0.2 | 2.92245E-09 5.94245E-09 2.94246E-10
0.3 | 2.06149E-09 4.52492E-09 6.52493E-10
0.4 | 1.05768E-09 1.46677E-09 5.48678E-09
0.5 | 1.98286E-10 4.98286E-09 1.58928E-09
0.6 | 1.39425E-09 8.43487E-10 4.16752E-10
0.7 | 1.38405E-09 2.95052E-09 3.95053E-09
0.8 | 3.14364E-09 1.62336E-09 1.14365E-10
0.9 | 2.58123E-09 4.29772E-09 7.13282E-11
1 4.6504E-10 1.6504E-09 1.97405E-10
1.1 | 1.04472E-10 2.04472E-09 5.04471E-09
1.2 | 2.72716E-09 1.18158E-10 2.83842E-10
1.3 | 3.21561E-09 6.78439E-10 7.94386E-12
1.4 | 1.02194E-09 3.99806E-10 2.02193E-10
1.5 | 5.26058E-09 7.48422E-10 1.75941E-10
1.6 | 1.14379E-09 1.65211E-10 4.34788E-09
1.7 | 6.04616E-09 6.04616E-10 3.04615E-10
1.8 | 2.13272E-09 3.12272E-09 1.89727E-09
1.9 | 1.14664E-09 3.57638E-10 1.57637E-10
2 4.21018E-09 1.03202E-09 4.78981E-10
2.1 | 9.70187E-10 1.03981E-09 3.20812E-09
2.2 | 2.38522E-09 2.63478E-09 1.38521E-10
2.3 | 3.97666E-09 9.6766E-11 1.97665E-10
2.4 | 5.34447E-09 2.67553E-10 3.35465E-11
2.5 | 6.29595E-09 7.15049E-09 2.86952E-11
2.6 | 3.57626E-09 2.04566E-10 5.97433E-10
2.7 | 1.04685E-09 2.62147E-09 2.64146E-09
2.8 | 6.45275E-09 3.54725E-09 2.45275E-10
2.9 | 7.86653E-09 9.22435E-10 1.22434E-09
3 1.89172E-09 8.16179E-10 2.82717E-10

Table 4: Problem 2 Absolute Errors

k =2 AbsoluteError | k =3 AbsoluteError k = 4 AbsoluteError
0.1 8.45149E-09 5.48508E-10 5.48508E-10
0.2 5.58425E-09 4.15751E-10 4,15751E-10
0.3 9.72877E-09 1.72877E-09 2.71228E-10
0.4 7.28284E-09 4.71716E-09 7.17157E-10
0.5 6.42506E-09 1.57494E-09 7.57494E-09
0.6 1.15887E-08 1.41127E-09 4.11272E-10
0.7 7.02981E-09 2.98128E-11 2.98128E-11
0.8 5.06655E-09 9.33447E-10 1.06655E-09
0.9 9.66315E-09 6.63147E-10 3.36853E-10
1 6.31828E-09 6.81718E-10 3.31828E-09
1.1 5.43193E-09 4.31926E-10 4.31926E-10
1.2 8.92897E-09 1.07103E-09 7.1031E-11
1.3 6.50184E-09 4.98165E-10 4.98165E-10
1.4 3.81506E-09 8.15057E-10 1.84943E-10
1.5 6.37823E-09 3.78227E-10 1.37823E-09
1.6 5.19386E-09 1.19386E-09 1.80614E-09
1.7 3.81227E-09 1.87734E-10 1.87734E-10
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1.8 5.62601E-09 3.7399E-10 3.7399E-10
1.9 4.30046E-09 3.00463E-10 6.99537E-10
2 4.09403E-09 9.05974E-10 1.90597E-09
2.1 7.9931E-09 9.93103E-10 6.89737E-12
2.2 5.5083E-09 4.91699E-10 5.08301E-10
2.3 3.06606E-09 6.60556E-11 1.06606E-09
24 4.04003E-09 9.59972E-10 4.00282E-11
2.5 4.25899E-09 7.41015E-10 2.25899E-09
2.6 2.30522E-09 3.05224E-10 6.94776E-10
2.7 3.77706E-09 7.77059E-10 2.22941E-10
2.8 4.57092E-09 4.2908E-10 5.7092E-10
2.9 2.24764E-09 2.47639E-10 7.52361E-10
3 4.2594E-09 2.59401E-10 2.2594E-09

5.1 Graphical Presentation of the Evaluated Absolute Errors in Tables 3 and 4
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Fig. 7: The absolute error results for Example 1 are shown in Figure 7; they are plotted against time
using EBBDFM (as shown by the colors) to illustrate the performance of the approach for step
numbers k=2, 3, and 4 with varying Absolute Errors, the colorful lines indicate the performance.
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Fig. 8: The absolute error results for Example 2 are shown in Figure 8; they are plotted against time
using EBBDFM (as shown by the colors) to illustrate the performance of the approach for step
numbers k=2, 3, and 4 with varying Absolute Errors, the colorful lines indicate the performance.

5.2 Comparison of Results

To prove the advantage of the proposed method, we compared the results we obtained with other
existing methods as shown in Tables 5 and 6.

EBBDFM = Extrapolated Block Backward Differentiation Formulae Method for step numbers
k=2,3 and 4.

RBBDFM = Reformulated Block Backward

Differentiation Formulae Methods for step numbers k =3 and 4 in [15].

CBBDFM = Conventional Block Backward Differentiation Formulae Method for step numbers
k =2and 3 in [16].

MAEs = Minimum Absolute Errors. The compared results are presented in the table below;

Table 5: Comparison between the Minimum Absolute Errors of EBBDFM k =2,3 and 4 with [15,
16] for constant step size z = 0.01 of Problem 1

Compared MAEs with
Numerical Method [15,16]

EBBDFM MAE fork =2 9.70E-10
EBBDFM MAE fork =3 9.67E-11
EBBDFM MAE fork =4 7.94E-12
RBBDFM MAE for k = 3 1.61E-07
RBBDFM MAE fork=4 | 1.54E-08
CBBDFM MAE fork =2 1.66E-05
CBBDFM MAE fork=3 | 2.22E-07
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Table 6: Comparison between the Minimum Absolute Errors of EBBDFMk = 2,3 and 4 with [15, 16]

for constant step size z = 0.01 of Problem 2

Compared MAEs with

Numerical Method [15,16]

EBBDFM MAE for k =2 9.73E-09
EBBDFM MAE for k = 3 6.61E-11
EBBDFM MAE fork =4 6.90E-12
RBBDFM MAE for k=3 1.61E-07
RBBDFM MAE fork=4 | 1.54E-08
CBBDFM MAE fork =2 1.66E-05
CBBDFM MAE fork=3 | 2.22E-07

5.3Graphical Presentation of Compared Results
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Figure 9: Compared Absolute Errors showing that the k — step number 4 performed better than

the k — step numbers 3 and 2 by pr

oducing the Least Minimum Absolute Error.
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Figure 10: Compared Absolute Errors showing that the k — step number 4 performed better
than the k — step numbers 3 and 2 by producing the Least Minimum Absolute Error.

5.4 Comparison of Results Base on the Computational Complexity

Under this sub-section, our focus is
particularly on the Computational Time (CT)
of the proposed method over other existing
methods to prove its advantage. Computational
Time (CT) is generally measured by the
number of needed elementary operations
carried-out using the step numbers k = 2, 3 and
4 discrete schemes of the proposed method to
obtained the numerical solutions of the first
order DDE and the memory storage
requirements of the software and computer
used. The Computational Time (CT) of this
study is called Computational Processing Unit

Time (CPUT). The step number of the

suggested approach that generates the Least
Minimum  Absolute  Error at  Lower
Computational Processing Unit Time (LCPUT)
performs better than other step numbers in
accuracy, efficiency, and faster computational
time. This is because the LCPUT achieves the
lowest possible absolute error.

Therefore, we compared the Computational
Time (CT) of our method with other existing
methods applied by other researchers in
solving first order DDEs numerically to prove
its superiority

Table 7: Comparison of Computational Time (CT) of EBBDFM k =2,3 and 4 with [15, 16] for
constant step size z = 0.01 Using Problem 1

Numerical Method k=2CT(s) | k=3CT(s) K=4CT(s)
EBBDFM 4.00E-01 2.00E-01 1.00E-01
RBBDFM 6.00E-01 4.00E-01 3.00E-01
CBBDFM 7.00E-01 5.00E-01 4.00E-01
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Table 8: Comparison of Computational Time (CT) of EBBDFM k =2,3 and 4 with [15, 16]

for constant step size z = 0.01 Using Problem 2

Numerical Method | k=2CT (s) | k=3CT(s) | k=4 CT (5)
EBBDFM 5.00E-01 3.00E-01 2.00E-01
RBBDFM 8.00E-01 6.00E-01 5.00E-01
CBBDFM 9.00E-01 7.00E-01 6.00E-01
6. Conclusion
We found out if the discrete schemes shown in [2] Seong, H.Y,Majid, Z.A.(2015). Solving

equations (2), (3), and (4) converge, are P-
stable, and are Q-stable by looking at their
corresponding continuous formulations. Tables
3,4,5,6,7, and 8, along with figures 7, 8, 9,
and 10, which include numerical results and
comparisons, showed that the EBBDFM
scheme for step number 4 performed better
than the EBBDFM schemes for steps 1 and 2
compared to other methods. The fact that it
produced the least minimal absolute error at
the smallest possible computational processing
unit time (LCPUT) proved its accuracy and
efficiency. These results were obtained using
the newly developed mathematical
expressions, as shown in tables 5, 6, 7, and 8,
and in figures 7, 8, 9, and 10.

This is why we suggest that the EBBDFM
schemes with more significant step numbers
perform better than the EBBDFM schemes
with lower step numbers. Thus, this study
recommends that the new mathematical
expressions developed for the evaluation of the
delay term different from the existing formulas
in literature performs better in producing
accurate numerical results for first order DDE.
In light of this, the step numbers of and for
EBBDFM are appropriate for the solution of
first-order differential equations. Additional
research needs to be conducted to determine
the step numbers for building discrete
EBBDFM schemes for numerical solutions of
first-order DDEs. This research should use the
recently created formula for evaluating the
delay term.
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