
136   UIJSLICTR Vol. 10 No.2  Dec. 2023 ISSN: 2714-3627 

 

 

 

University of Ibadan 

Journal of Science and Logics in ICT Research   

 

Numerical Solution of First Order Delay Differential Equation Using a 

Newly Developed Mathematical Expression for Evaluation of Delay Term 
 

1
Chibuisi, C.,

2
Osu, B. O.,

3
Ihedioha, S. A. and 

4
Chikwe, C. F. 

 
1*

Department of Insurance, University of Jos, Jos, Nigeria 
2
Department of Mathematics, Abia State University, Uturu, Nigeria 

3
Department of Mathematics, Plateau State University, Bokkos, Nigeria 

4
Department of Mathematics, University of Calabar, Calabar, Nigeria 

 

Emails: 
1
*chigoziec@unijos.edu.ng (OrcidId/0000-0002-3174-7751) 

2
Osu.bright@abiastateuniversity.edu.ng(Orcidid/0000-0003-2463-430X) 

  3
silasihedioha@yahoo.com 

 4
fernandochikwe@unical.edu.ng 

 

Corresponding author’s e-mail: 
1
*chigoziec@unijos.edu.ng (OrcidId/0000-0002-3174-7751) 

 
Abstract 

This study aims to numerically solve several first-order delay differential equations (DDEs) for step numbers k = 

2, 3, and 4 by employing the Extrapolated Block Backward Differentiation Formulae Method (EBBDFM). This 

is accomplished by using a recently developed mathematical formula to evaluate its delay term. The continuous 

form of each step number was used to generate discrete schemes, which were then constructed using a matrix 

inversion technique and a linear multistep collocation approach. Applying this suggested method yielded results 

demonstrating the accuracy and efficiency of the step number incorporated with an extrapolated future point, 

which outperformed the other existing methods at Lower Computational Processing Unit Time (LCPUT), 

particularly when compared to step numbers of K = 3 and 2. 
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1. Introduction 
 
The extrapolated block backward 

differentiation formulae methods were 

introduced to modify the performance of the 

existing conventional BDF in terms of 

efficiency, accuracy, consistency, convergence 

and stability. In recent years, many rigorous 

numerical studies have been carried-out in 

obtaining the approximate solutions of delay 

differential equations which revealed its 

advantages in real life applications. Several 

studies by researchers, including [1, 2, 3, 4, 5, 

6], have demonstrated the real-world uses of 

numerical approaches in solving delay 

differential equations. These researchers used 

interpolation techniques to evaluate the delay 

term in medicine, engineering, physics, and 

economics. However, they encountered 

obstacles in the process of obtaining accurate 

results. Equating the orders of the interpolating 

polynomials and using numerical methods—

which are incredibly challenging to implement 

to find a numerical solution for any modeled 

system—are among the challenges these 

researchers face. When the interpolation 

method shifts throughout the numerical 

integration from the beginning function to 

earlier values and when the initial function 

does not totally cooperate with the rest of the 
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modeled system, discontinuities are produced. 

Discontinuities can also occur when the 

beginning function is not correctly modeled. 

Regarding mathematics, DDEs are distinct 

from ODEs due to the development of DDEs 

comprises a series of previous values of 

dependent variables and derivatives. The 

development of ODEs, on the other hand, 

depends entirely on the values now being held 

by these quantities. Discovering discrete 

solutions to first-order delay differential 

equations (DDEs) of the type defined by [7] is 

the objective of this research project that we 

are working on.                                

 

' ( , ( ), ( )),( )P q t p t p tt   for 0, 0t t    

( ) ( ),p t t for 0t t    (1) 

 

where ( )t is the initial function, is called the 

delay, ( )t   is called the delay term 

and ( )p t   is the solution of the delay term.  

 

The formula from [15] was utilized by 

researchers [8, 9, 10, 11, 12, 13, 14] to 

investigate the delay term of first-order delay 

differential equations. The researchers 

discovered that the formula is less precise, 

requires more computation time, and cannot be 

utilized to solve various DDEs. Different types 

of delay differential equations, such as 

stochastic, advanced, Riccati, partial, and 

stochastic partial delay differential equations, 

are included in these classes. It is necessary 

that a precise mathematical formulations need 

to be developed to handle these problems and 

the ones that scholars have run across while 

using the formula from [15] to assess the delay 

term. 

 

2. Development of The Method 

 

The k-step Linear Multistep Method (LMM) 

was created by [16]. We plan and describe the 

discrete schemes of the Extrapolated Block 

Backward Differentiation Formulae Method 

(EBBDFM) for steps 2, 3, and 4. Furthermore, 

we use the matrix inversion technique to do 

this.    

For 2k  of (EBBDFM)
 

1 1 2 3

23 4 5

12 3 12
u u u u u

z z zp q q q p
   
   

2 1 2 3

5 28 22 4

23 23 23 23
u u u u u

z zp p p q q
   
    

3 1 2 3

4 27 36 6

23 23 23 23
u u u u u

z zp p p q q
   
     (2) 

 

For 3k  of (EBBDFM) 

1 1 3 4 2

197 17 7 19 59

120 40 60 40 40
u u u u u u

z z zp q q q p p
    
     

2 2 3 4 1

197 76 17 9 64

165 165 165 55 55
u u u u u u

z z zp q q q p p
    
    

3 1 2 3 4

17 99 279 150 18

197 197 197 197 197
u u u u u u

z zp p p p q q
    
    

4 1 2 3 4

9 64 252 288 60

197 197 197 197 197
u u u u u u

z zp p p p q q
    
     (3) 

 

For 4k  of (EBBDFM) 
 

1 1 4 5 2 3

2501 184 29 268 724 95

2478 1239 826 1239 413 177
u u u u u u u

z z zp q q q p p p
     
      

2 2 4 5 1 3

2501 97 31 19 475 1609

336 112 168 42 112 336
u u u u u u u

z z zp q q q p p p
     
      

3 3 4 5 1 2

7503 963 333 413 1467 10539

8018 4009 8018 8018 4009 8018
u u u u u u u

zp zq zq q p p p
     
     

4 1 2 3 4 5

111 728 2124 4008 1644 144

2501 2501 2501 2501 2501 2501
u u u u u u u

z zp p p p p q q
     
      

5 1 2 3 4 5

24 225 1000 3300 3600 780

2501 2501 2501 2501 2501 2501
u u u u u u u

z zp p p p p q q
     
      

                                                        
(4) 

 

2.1 Essential Characteristics of the Approach 

 

In this case, we follow the conditions given by 

[17] and [18] to compute the regions of 

absolute stability for equations (2), (3), and (4), 

as well as the orders, error constants, 

consistency, and zero stability. 

 
2.1.1 Order and Error Constant 

To find the order and error constants for 

equation (2), these steps were taken: 

 0 1 2 3 0 0 0
T

c c c c    but

4

3 17 3

8 138 46

T

c 
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Therefore, (2) has order 3n   and error 

constants, 
3 17 3

8 138 46
  

Applying the same step to (3), we 

obtained: 

 0 1 2 3 4 0 0 0 0
T

c c c c c    

but

5

19 1 2413

49

11 1

150 1970 9850 5

T

c 
 
 





  

Therefore, (3) has order 4n   and error 

constants, 
5

413

4950

19 111 12

150 1970 98
   

Implementing the same step to (4), we 

have: 

 0 1 0 0 0 0 0
T

c c  but

2

5 1665 180 85525

14 801

2065

5703 98 400 8018

T

c 
 
 







 

Therefore, (4) has order 1n   and error 

constants, 
5 1665 180 85525

14 8018 4009 8018

2065

5703
   

 
2.1.2 Consistency 

Following the condition stated by [17], if the 

order is more than 1, i.e. 1n  , then the Linear 

Multistep Method is considered consistent. Our 

suggested method, EBBDFM, is consistent 

since its order, as evaluated using  (2), (3), and 

(4), is higher than 1, i.e. 1n  . 

 

2.1.3 Zero Stability Investigation  

According to [18], EBBDFM is considered 

zero stable if and only if the initial 

characteristic polynomial has no 

roots , 1,2,3,...,s s nr  that are either simple 

or distinct and have an expression as 
( ) ( )

2 1( ) det( )i iE r rX X  higher than 1 

which satisfies 1ir   and the roots ir  

The zero stability for (2) is analyzed as 

follows:  

1 2 1 2

2 1 2

3 3

23 4 5

1 0 0 0 0 1 12 3 12 0 0 0
28 5 22 4

1 0 0 0 0 0 0 0
23 23 23 23

0 0 0
27 4 36 6

0 1 0 0 0
23 23 23 23

u u u u

u u u

u u u

p p q q

z zp p q

p p q

   

  

 

         
           
                          

                 
      

     

1u

u

q

q



 
 
 
 
 

where

   1 1

2 1

1 0 0 0 0 1

28 5
1 0 , 0 0

23 23

27 4
0 1 0 0

23 23

X X

   
   
   
     
   
   
   
   

a

nd  1

2

23 4 5

12 3 12

22 4
0

23 23

36 6
0

23 23

V

 
 

 
  
 
 
 
 
 

 

The first characteristic polynomial is given 

by; 

 (1) (1)
2 1

(1) (1)
2 1

( ) det

       0.

E r r X X

r X X

 

  
(5) 

Now we have, 

 

1 0 0 0 0 1 0 0 0 0 1

28 5 28 5
1 0 0 0 0 0 0

23 23 23 23

27 4 27 4
0 1 0 0 0 0 0

23 23 23 23

r

E r r r r

r r

       
        
       
            
       
       
        
       

 

0 1

28 5

23 23

27 4
0

23 23

r

E r r r

r r

 
 
 
    
 
 
  
 

 

The following are obtained using Maple 18 

software, 
3 2( )E r r r  3 2 0r r  

 

1 2 31, 0, 0r r r     .Since

1,  1,2,3i ir  , (2) is zero stable. 

By the same procedure for (3) 
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1 3

2 2

3 1

4

59 19
1 0 0 0 0 0

40 40

64 9
1 0 0 0 0 0

55 55

99 279 17
1 0 0 0 0

197 197 197

64 252 9
0 1 0 0 0

197 197 197

u u

u u

u u

u u

p p

p p

p p

p p

 

 

 



   
   

   
   

       
            
       
      
   
    
     
 

1 3

2 2

3 1

4

197 17 7
0

120 40 60
0 0 0 0197 76 17

0
0 0 0 0165 165 165

150 18 0 0 0 0
0 0

197 197 0 0 0 0

288 60
0 0

197 197

u u

u u

u u

u u

q q

q q
z z

q q

q q

 

 

 



 
  
 

          
           
      
      
 
 
   

 

where (2) (2)
2 1

59 19
1 0 0 0 0 0

40 40

64 9
1 0 0 0 0 0

55 55
,

99 279 17
1 0 0 0 0

197 197 197

64 252 9
0 1 0 0 0

197 197 197

X X

   
   

   
   
   

    
    
   
   
    
   

and  

 

(2)
2

197 17 7
0

120 40 60

197 76 17
0

165 165 165

150 18
0 0

197 197

288 60
0 0

197 197

V

 
  
 
 
 

  
 
 
 
 
 

 

 

The first characteristic polynomial is presented as; 

 (2) (2)
2 1

(2) (2)
2 1

( ) det

       0.

E r r X X

r X X

 

  
  (6)

 

Now we have, 
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59 19 59
1 0 0 0 0 0 0 0 0

40 40 40

64 9 64
1 0 0 0 0 0 0 0

55 55 55
( )

99 279 17 99 279
1 0 0 0 0 0

197 197 197 197 197

64 252 9 64 252
0 1 0 0 0 0

197 197 197 197 197

r r

r r

E r r

r r r

r r r

     
      

     
      
     

        
       
     
     
       
     

19
0 0

40

9
0 0 0

55

17
0 0 0

197

9
0 0 0

197

 
 
 
 
 
 
 
 
 
 
 

59 19
0

40 40

64 9
0

55 55
( )

99 279 17

197 197 197

64 252 9
0

197 197 197

r r

r r

E r

r r r

r r r

 
  

 
  
 

   
 
 
 
  
 

 

 

Adopting Maple 18 software, we have:

 

4 3197 197
( )

275 275
E r r r  

4 3197 197
0

275 275
r r  

 

1 2 3 41, 0, 0, 0r r r r      . Following that 1,  1,2,3,4i ir   , (3) is zero stable. 

Following the same procedure for (4) 

 

1

2

3

4

5

724 95 268
1 0 0 0 0 0 0

413 177 1239

475 1609 19
1 0 0 0 0 0 0

112 336 42

4131467 10539
0 0 0 01 0 0

4009 8018

728 2124 4008
1 0

2501 2501 2501

225 1000 3300
0 1

2501 2501 2501

u

u

u

u

u

p

p

p

p

p











 
 

 
   
  
  
    
  
  

   
  

 
  
 

4

3

2

1

8018

111
0 0 0 0

2501

24
0 0 0 0

2501

u

u

u

u

u

p

p

p

p

p









 
 
 
  
  
  
  
  
  

  
  

 
 
   

 

1

2

3

4

5

2501 184 29
0 0

2478 1239 826

2501 97 31 0 0 0 0 00 0
336 112 168 0 0 0 0 0

7503 963 333
0 0 0 0 00 0

8018 4009 8018
0 0 0 0 0

1644 144
0 0 0 0 0 0 0 0

2501 2501

3600 780
0 0 0

2501 2501

u

u

u

u

u

q

q

g zq

q

q











 
  
 
   
  
  
   
  
  

  
  

 
 
 

4

3

2

1

u

u

u

u

u

q

q

q

q

q









  
  
  
  
  
  

  
  

where
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(3) (3)
2 1

724 95 268
1 0 0 0 0 0 0

413 177 1239

475 1609 19
1 0 0 0 0 0 0

112 336 42

4131467 10539
, 0 0 0 01 0 0

80184009 8018

111728 2124 4008
0 0 0 01 0

25012501 2501 2501

24225 1000 3300
0 0 0 00 1

2502501 2501 2501

X X

 
 

 
  
 
 
   
 
 
  
 
 
  
  1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

and  3

2

2501 184 29
0 0

2478 1239 826

2501 97 31
0 0

336 112 168

7503 963 333
0 0

8018 4009 8018

1644 144
0 0 0

2501 2501

3600 780
0 0 0

2501 2501

X

 
  
 
  
 
 
  
 
 
 
 
 
 
   

 

The first characteristic polynomial is presented as; 

 (3) (3)
2 1

(3) (3)
2 1

( ) det

       0.

E r r X X

r X X

 

  
(7) 

Now we have, 

724 95 268
1 0 0 0 0 0 0

413 177 1239

475 1609 19
1 0 0 0 0 0 0

112 336 42

4131467 10539
( ) 0 0 0 01 0 0

80184009 8018

111728 2124 4008
0 0 0 01 0

25012501 2501 2501

24225 1000 3300
0 0 0 00 1

25012501 2501 2501

E r r

  
  

  
   
 
 
   
 
 
  
 
 
  

 






 
 
 
 
 
 
 
 
 

  
724 95 268

0 0 0 0 0 0
413 177 1239

475 1609 19
0 0 0 0 0 0

112 336 42

4131467 10539
0 0 0 00 0

80184009 8018

111728 2124 4008
0 0 0 00

25012501 2501 2501

24225 1000 3300
0 0 0 00

25012501 2501 2501

r r r

r r r

r r r

r r r

r r r

 
 

 
  
 
 
   
 
 
  
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
   

724 95 268
0

413 177 1239

475 1609 19
0

112 336 42

1467 10539 413
( ) 0

4009 8018 8018

728 2124 4008 111

2501 2501 2501 2501

225 1000 3300 24
0

2501 2501 2501 2501

r r r

r r r

E r r r r

r r r

r r r

 
  

 
 
 
 
   
 
 
   
 
 
   
 

 

Adopting Maple 18 software, we have:

 

5 493825015 93825015
( )

46360076 46360076
E r r r  5 493825015 93825015

0
46360076 46360076

r r  
 

1 2 3 4 51, 0, 0, 0, 0r r r r r       .Since 1,  1,2,3,4,5i ir  , (7) is zero stable. 
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2.1.4 Convergence 

Looking at the suggested technique, we could 

say it is convergent having seen that equations 

(2), (3), and (4) are not only consistent but 

stable at zero. 

 

2.1.5 Region of Absolute Stability  

Figures 1 through 6 illustrate the plotting of the 

G- and H- regions of absolute stability of (2), 

(3), and (4). These plots were created using 

Map 18 and the MATLAB program, as shown 

in the following figure; 1-6 

 

 

 

 

 
Fig.1. G -stability Region (EBBDFM) in 

(2) 

 
Fig.2. G -stability Region (EBBDFM) in 

(3) 

 

 
Fig.3. G -stability Region (EBBDFM) in 

(4)  

 
Fig.4. H -stability Region (EBBDFM) in 

(2) 

 
Fig.5. H -stability Region (EBBDFM) in 

(3)         

 
 Fig.6. H -stability Region (EBBDFM) in 

(4) 

 

 
Within the open-ended zone, lies the G-

stability regions as shown in Figures 1-3, while 

within the enclosed H -stability region, are 

shown in Figures 4-6. Consequently, our 

proposed method's region of absolute stability 

is fulfilled. 

 

3. EVALUATION OF THE DELAY TERM 

 

The newly developed mathematical 

expressions used in [19] to calculate and 

evaluate the delay term ( )t   differ from 

those earlier researchers used as seen in online 

literature. It allows  
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better and faster evaluations, calculations, 

performances, and gives accurate results. 

Before carrying-out the numerical experiments 

with a constant size of z = 0.01 to get 

numerical solutions of
'( )P t in Maple 18 

software, the new mathematical expression for 

evaluation of  the delay term shall be put into 

first-order DDEs with the (2), (3), and (4) of 

the proposed method. 

 

1. Numerical implementation and 

   Computation 

 

Utilizing equations (2), (3), and (4) with a 

fixed step size of z = 0.01, this section aims to 

solve some first-order DDEs. To solve this, the 

Maple 18 software will be used to get the 

numerical solutions of 
'( )p t  

 

Numerical Problems 

Problem 1 

' ( (ln(1000 1))),( ) 1000 ( )p tt p t p    

0 3t   

0( ) ,t tp t e   

Exact solution ( ) tp t e  

Problem 2 

3 3' ( 1) (1000 ),( ) 1000 ( ) 997 997p p tt p t e e     

0 3t   
3 0( ) 1 ,t tp t e    

Exact solution 3( ) 1 tp t e   
 

We derived and applied the step numbers k = 

2, 3 and 4 discrete schemes of the proposed 

method to obtain the most accurate numerical 

solutions of some first order delay differential 

equations. The step number of the proposed 

method with the Least Minimum Absolute 

Error at Lower Computational Processing Unit 

Time (LCPUT) of the two first order delay 

differential equations above indicates higher 

and better performance in terms of accuracy 

and efficiency than other step numbers of the 

method and other existing methods. The 

numerical solutions are presented in a tabular 

form in Table 1; 

  

Table 1: Problem 1 Approximate Solutions  

 
t Exact Solution k = 2 Approximate Solution k =3 Approximate Solution k= 4 Approximate Solution 

0.1 0.990049834 0.990049834 0.990049835 0.990049835 

0.2 0.980198673 0.980198674 0.980198674 0.980198674 

0.3 0.970445534 0.970445536 0.970445534 0.970445534 

0.4 0.960789439 0.96078944 0.960789439 0.96078944 

0.5 0.951229425 0.951229425 0.951229425 0.951229426 

0.6 0.941764534 0.941764532 0.941764534 0.941764534 

0.7 0.93239382 0.932393821 0.93239382 0.93239382 

0.8 0.923116346 0.923116347 0.923116348 0.923116347 

0.9 0.913931185 0.913931183 0.913931186 0.913931185 

1 0.904837418 0.904837419 0.904837418 0.90483742 

1.1 0.895834135 0.895834135 0.895834136 0.895834136 

1.2 0.886920437 0.886920434 0.886920437 0.886920437 

1.3 0.878095431 0.878095431 0.878095432 0.878095431 

1.4 0.869358235 0.869358236 0.869358235 0.869358236 

1.5 0.860707976 0.860707976 0.860707977 0.860707977 

1.6 0.852143789 0.85214379 0.852143789 0.852143789 

1.7 0.843664817 0.843664817 0.843664817 0.843664817 

1.8 0.835270211 0.835270211 0.835270211 0.835270212 

1.9 0.826959134 0.826959135 0.826959134 0.826959134 

2 0.818730753 0.818730754 0.818730754 0.818730753 

2.1 0.810584246 0.810584245 0.810584247 0.810584246 

2.2 0.802518798 0.802518798 0.802518798 0.802518798 

2.3 0.794533603 0.794533603 0.794533603 0.794533603 

2.4 0.786627861 0.786627862 0.786627861 0.786627861 

2.5 0.778800783 0.778800784 0.778800783 0.778800783 
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2.6 0.771051586 0.771051586 0.771051586 0.771051586 

2.7 0.763379494 0.763379493 0.763379495 0.763379495 

2.8 0.755783741 0.755783742 0.755783741 0.755783742 

2.9 0.748263568 0.748263568 0.748263569 0.748263568 

3.0 0.740818221 0.740818219 0.740818221 0.74081822 

 

CPUT of EBBDFM for k = 2 is 0.4s, k = 3 is 0.2 and k = 4 is 0.1s 

 

Table 2: Problem 2 Approximate Solutions  

 

t Exact Solution 
k = 2 Approximate 
Solution 

k = 3 Approximate 
Solution k = 4 Approximate Solution 

0.1 1.970445534 1.970445542 1.970445533 1.970445533 

0.2 1.941764534 1.941764528 1.941764534 1.941764534 

0.3 1.913931185 1.913931195 1.913931187 1.913931185 

0.4 1.886920437 1.886920444 1.886920432 1.886920436 

0.5 1.860707976 1.86070797 1.860707978 1.860707984 

0.6 1.835270211 1.835270223 1.83527021 1.835270211 

0.7 1.810584246 1.810584253 1.810584246 1.810584246 

0.8 1.786627861 1.786627856 1.786627862 1.78662786 

0.9 1.763379494 1.763379504 1.763379495 1.763379494 

1.0 1.740818221 1.740818227 1.74081822 1.740818224 

1.1 1.718923733 1.718923728 1.718923733 1.718923733 

1.2 1.697676326 1.697676335 1.697676325 1.697676326 

1.3 1.677056874 1.677056881 1.677056874 1.677056874 

1.4 1.65704682 1.657046816 1.657046819 1.65704682 

1.5 1.637628152 1.637628158 1.637628152 1.637628153 

1.6 1.618783392 1.618783397 1.618783393 1.61878339 

1.7 1.600495579 1.600495575 1.600495579 1.600495579 

1.8 1.582748252 1.582748258 1.582748252 1.582748252 

1.9 1.565525439 1.565525443 1.565525439 1.565525438 

2.0 1.548811636 1.548811632 1.548811637 1.548811638 

2.1 1.532591801 1.532591809 1.532591802 1.532591801 

2.2 1.516851334 1.51685134 1.516851334 1.516851335 

2.3 1.501576069 1.501576066 1.501576069 1.501576068 

2.4 1.486752256 1.48675226 1.486752255 1.486752256 

2.5 1.472366553 1.472366557 1.472366552 1.472366555 

2.6 1.458406011 1.458406009 1.458406011 1.458406012 

2.7 1.444858066 1.44485807 1.444858067 1.444858066 

2.8 1.431710523 1.431710528 1.431710523 1.431710524 

2.9 1.418951549 1.418951547 1.418951549 1.41895155 

3.0 1.40656966 1.406569664 1.40656966 1.406569662 

 

CPUT of EBBDFM for k = 2 is 0.5s, k = 3 is 0.3 and k = 4 is 0.2s 

 

5. Analysis of Results and Discussions 

 

In this section, we analyzed the absolute errors between the exact and approximate solutions 

obtained after the numerical experiment using the proposed method. The results are presented 

in Table 3. 



 

145     UIJSLICTR Vol. 10 No.2  Dec. 2023 ISSN: 2714-3627 

 

Table 3: Problem 1 Absolute Errors 

 
t k = 2 AbsoluteError k = 3 AbsoluteError k = 4 AbsoluteError 

0.1 3.51832E-10 8.51832E-10 1.46081E-09 

0.2 2.92245E-09 5.94245E-09 2.94246E-10 

0.3 2.06149E-09 4.52492E-09 6.52493E-10 

0.4 1.05768E-09 1.46677E-09 5.48678E-09 

0.5 1.98286E-10 4.98286E-09 1.58928E-09 

0.6 1.39425E-09 8.43487E-10 4.16752E-10 

0.7 1.38405E-09 2.95052E-09 3.95053E-09 

0.8 3.14364E-09 1.62336E-09 1.14365E-10 

0.9 2.58123E-09 4.29772E-09 7.13282E-11 

1 4.6504E-10 1.6504E-09 1.97405E-10 

1.1 1.04472E-10 2.04472E-09 5.04471E-09 

1.2 2.72716E-09 1.18158E-10 2.83842E-10 

1.3 3.21561E-09 6.78439E-10 7.94386E-12 

1.4 1.02194E-09 3.99806E-10 2.02193E-10 

1.5 5.26058E-09 7.48422E-10 1.75941E-10 

1.6 1.14379E-09 1.65211E-10 4.34788E-09 

1.7 6.04616E-09 6.04616E-10 3.04615E-10 

1.8 2.13272E-09 3.12272E-09 1.89727E-09 

1.9 1.14664E-09 3.57638E-10 1.57637E-10 

2 4.21018E-09 1.03202E-09 4.78981E-10 

2.1 9.70187E-10 1.03981E-09 3.20812E-09 

2.2 2.38522E-09 2.63478E-09 1.38521E-10 

2.3 3.97666E-09 9.6766E-11 1.97665E-10 

2.4 5.34447E-09 2.67553E-10 3.35465E-11 

2.5 6.29595E-09 7.15049E-09 2.86952E-11 

2.6 3.57626E-09 2.04566E-10 5.97433E-10 

2.7 1.04685E-09 2.62147E-09 2.64146E-09 

2.8 6.45275E-09 3.54725E-09 2.45275E-10 

2.9 7.86653E-09 9.22435E-10 1.22434E-09 

3 1.89172E-09 8.16179E-10 2.82717E-10 

 

Table 4: Problem 2 Absolute Errors 

 
t k = 2 AbsoluteError k = 3 AbsoluteError k = 4 AbsoluteError 

0.1 8.45149E-09 5.48508E-10 5.48508E-10 

0.2 5.58425E-09 4.15751E-10 4.15751E-10 

0.3 9.72877E-09 1.72877E-09 2.71228E-10 

0.4 7.28284E-09 4.71716E-09 7.17157E-10 

0.5 6.42506E-09 1.57494E-09 7.57494E-09 

0.6 1.15887E-08 1.41127E-09 4.11272E-10 

0.7 7.02981E-09 2.98128E-11 2.98128E-11 

0.8 5.06655E-09 9.33447E-10 1.06655E-09 

0.9 9.66315E-09 6.63147E-10 3.36853E-10 

1 6.31828E-09 6.81718E-10 3.31828E-09 

1.1 5.43193E-09 4.31926E-10 4.31926E-10 

1.2 8.92897E-09 1.07103E-09 7.1031E-11 

1.3 6.50184E-09 4.98165E-10 4.98165E-10 

1.4 3.81506E-09 8.15057E-10 1.84943E-10 

1.5 6.37823E-09 3.78227E-10 1.37823E-09 

1.6 5.19386E-09 1.19386E-09 1.80614E-09 

1.7 3.81227E-09 1.87734E-10 1.87734E-10 
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1.8 5.62601E-09 3.7399E-10 3.7399E-10 

1.9 4.30046E-09 3.00463E-10 6.99537E-10 

2 4.09403E-09 9.05974E-10 1.90597E-09 

2.1 7.9931E-09 9.93103E-10 6.89737E-12 

2.2 5.5083E-09 4.91699E-10 5.08301E-10 

2.3 3.06606E-09 6.60556E-11 1.06606E-09 

2.4 4.04003E-09 9.59972E-10 4.00282E-11 

2.5 4.25899E-09 7.41015E-10 2.25899E-09 

2.6 2.30522E-09 3.05224E-10 6.94776E-10 

2.7 3.77706E-09 7.77059E-10 2.22941E-10 

2.8 4.57092E-09 4.2908E-10 5.7092E-10 

2.9 2.24764E-09 2.47639E-10 7.52361E-10 

3 4.2594E-09 2.59401E-10 2.2594E-09 

 

5.1 Graphical Presentation of the Evaluated Absolute Errors in Tables 3 and 4 

 

 
 

Fig. 7: The absolute error results for Example 1 are shown in Figure 7; they are plotted against time 

using EBBDFM (as shown by the colors) to illustrate the performance of the approach for step 

numbers k=2, 3, and 4 with varying Absolute Errors, the colorful lines indicate the performance. 
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Fig. 8: The absolute error results for Example 2 are shown in Figure 8; they are plotted against time 

using EBBDFM (as shown by the colors) to illustrate the performance of the approach for step 

numbers k=2, 3, and 4 with varying Absolute Errors, the colorful lines indicate the performance. 

 

5.2   Comparison of Results  

 

To prove the advantage of the proposed method, we compared the results we obtained with other 

existing methods as shown in Tables 5 and 6.  

 

EBBDFM = Extrapolated Block Backward Differentiation Formulae Method for step numbers 

2,3k   and 4. 

 

RBBDFM = Reformulated Block Backward  

 

Differentiation Formulae Methods for step numbers 3k   and 4 in [15]. 

 

CBBDFM = Conventional Block Backward Differentiation Formulae Method for step numbers 

2k  and 3 in [16]. 

 

MAEs = Minimum Absolute Errors. The compared results are presented in the table below; 

 

Table 5: Comparison between the Minimum Absolute Errors of EBBDFM 2,3k   and 4 with [15, 

16] for constant step size z = 0.01 of Problem 1 

 

Numerical Method 

Compared MAEs with 

[15,16] 

EBBDFM MAE for k = 2 9.70E-10 

EBBDFM MAE for k = 3 9.67E-11 

EBBDFM MAE for k = 4 7.94E-12 

RBBDFM MAE for k = 3 1.61E-07 

RBBDFM MAE for k = 4 1.54E-08 

CBBDFM MAE for k = 2 1.66E-05 

CBBDFM MAE for k = 3 2.22E-07 
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Table 6: Comparison between the Minimum Absolute Errors of EBBDFM 2,3k   and 4 with [15, 16] 

for constant step size z = 0.01 of Problem 2 

 

Numerical Method 

Compared MAEs with 

[15,16] 

EBBDFM MAE for k = 2 9.73E-09 

EBBDFM MAE for k = 3 6.61E-11 

EBBDFM MAE for k = 4 6.90E-12 

RBBDFM MAE for k = 3 1.61E-07 

RBBDFM MAE for k = 4 1.54E-08 

CBBDFM MAE for k = 2 1.66E-05 

CBBDFM MAE for k = 3 2.22E-07 
 
 

5.3Graphical Presentation of Compared Results 

 

 
 
Figure 9: Compared Absolute Errors showing that the k – step number 4 performed better than 

the k – step numbers 3 and 2 by producing the Least Minimum Absolute Error. 
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Figure 10: Compared Absolute Errors showing that the k – step number 4 performed better 

than the k – step numbers 3 and 2 by producing the Least Minimum Absolute Error. 

 

5.4 Comparison of Results Base on the Computational Complexity 

 

Under this sub-section, our focus is 

particularly on the Computational Time (CT) 

of the proposed method over other existing 

methods to prove its advantage. Computational 

Time (CT) is generally measured by the 

number of needed elementary operations 

carried-out using the step numbers k = 2, 3 and 

4 discrete schemes of the proposed method to 

obtained the numerical solutions of the first 

order DDE and the memory storage 

requirements of the software and computer 

used. The Computational Time (CT) of this 

study is called Computational Processing Unit 

Time (CPUT). The step number of the 

suggested approach that generates the Least 

Minimum Absolute Error at Lower 

Computational Processing Unit Time (LCPUT) 

performs better than other step numbers in 

accuracy, efficiency, and faster computational 

time. This is because the LCPUT achieves the 

lowest possible absolute error. 

 

Therefore, we compared the Computational 

Time (CT) of our method with other existing 

methods applied by other researchers in 

solving first order DDEs numerically to prove 

its superiority

. 

 

Table 7: Comparison of Computational Time (CT) of EBBDFM 2,3k   and 4 with [15, 16] for 

constant step size z = 0.01 Using Problem 1 

 

Numerical Method k = 2 CT (s) k = 3 CT (s) k = 4 CT (s) 

EBBDFM  4.00E-01 2.00E-01 1.00E-01 

RBBDFM  6.00E-01 4.00E-01 3.00E-01 

CBBDFM  7.00E-01 5.00E-01 4.00E-01 
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Table 8: Comparison of Computational Time (CT) of EBBDFM 2,3k   and 4 with [15, 16] 

for constant step size z = 0.01 Using Problem 2 

Numerical Method k = 2 CT (s) k = 3 CT (s) k = 4 CT (s) 

EBBDFM  5.00E-01 3.00E-01 2.00E-01 

RBBDFM  8.00E-01 6.00E-01 5.00E-01 

CBBDFM  9.00E-01 7.00E-01 6.00E-01 

 
6.  Conclusion 
 

We found out if the discrete schemes shown in 

equations (2), (3), and (4) converge, are P-

stable, and are Q-stable by looking at their 

corresponding continuous formulations. Tables 

3, 4, 5, 6, 7, and 8, along with figures 7, 8, 9, 

and 10, which include numerical results and 

comparisons, showed that the EBBDFM 

scheme for step number 4 performed better 

than the EBBDFM schemes for steps 1 and 2 

compared to other methods. The fact that it 

produced the least minimal absolute error at 

the smallest possible computational processing 

unit time (LCPUT) proved its accuracy and 

efficiency. These results were obtained using 

the newly developed mathematical 

expressions, as shown in tables 5, 6, 7, and 8, 

and in figures 7, 8, 9, and 10. 

 

This is why we suggest that the EBBDFM 

schemes with more significant step numbers 

perform better than the EBBDFM schemes 

with lower step numbers. Thus, this study 

recommends that the new mathematical 

expressions developed for the evaluation of the 

delay term different from the existing formulas 

in literature performs better  in producing 

accurate numerical results for first order DDE.  

In light of this, the step numbers of and for 

EBBDFM are appropriate for the solution of 

first-order differential equations. Additional 

research needs to be conducted to determine 

the step numbers for building discrete 

EBBDFM schemes for numerical solutions of 

first-order DDEs. This research should use the 

recently created formula for evaluating the 

delay term. 
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