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Abstract  

In natural language understanding (NLU), situations are identified as well as the causal and temporal relations between them. In 

Episodic Logic (EL), a knowledge representation scheme for NLU, both atomic situations (characterized by simple assertions 

like “tom greets mary”) and complex situations (characterized by complex assertions such as “everyone greets mary) are allowed 

as they naturally arise in narrative texts. The problem of allowing both kinds of situation in EL, is that operators extraneous to 

first order logic are used which interpretation yield statements that treat complex propositional statements as terms  the such as: 

PC(x.Greet(x, mary), s) where the predicate PC represents the relation partially-characterizes. This paper develops a formalism 

based on the situation calculus that expresses simple and complex situations of the same nature as those in EL without leaving 

the confines of first-order logic as needed when using EL. The approach taken here is to use a reified form of McCarthy and 

Hayes‟ situation calculus(SC) as the basis for expressing complex situations.  The ability of the reified SC-like formalism to 

correctly interpret situations involving complex as well as simple propositions is demonstrated. The achievement of this paper is 

a major step towards making FOL an adequate semantic representation language for narrative texts.  

Keywords- Component,  Natural language understanding,  Knowledge representation, Semantic interpretation, Complex  

          Situations,  Situation semantics 

 

 
I    INTRODUCTION   

Language for semantic representation of natural 

language texts was recently revisited by Schubert [14]. 

While Allen [2] had voted with using first order 

predicate logic (FOL) for semantic interpretation, 

Hwang and Schubert[7] had invented the Episodic 

Logic as a means of doing semantic interpretation. One 

of the key add-ons in EL, is the * and the ** operators 

used to associate propositions with episodes or 

situations. These operators can associate complex 

propositions with situations in a way that makes them 

extraneous to FOL. A first step in arguing for the 

adequacy of FOL as a formalism for the semantic 

interpretation of natural language is to find a way of 

associating complex propositions with situations within 

the confines of FOL. One advantage of limiting 

semantic representation within the confines of FOL is 

that it becomes possible to take advantage of its 

standard semantics and proof system.  

 

. This paper therefore presents a reified form of 

situation calculus that allows us to interpret the 

complex situations of the sort described within episodic 

logic (EL) without necessarily going through atomic 

situations as done by Schubert[12] in his work on 

FOL** and without leaving the confines of first order 

logic. A clear understanding of the various 

interpretations of complex situations becomes 

particularly important in the light of attempts at 

refining the inferential mechanism of EL [14, 16]. This 

paper is especially apt now that there is renewed debate 

as to the ideal semantic representation language for 

natural language text [14].  

 

The rest of the paper is organized as follows. Section 

2 provides a background of the existing literature. This 

is followed by an axiomatic delineation between 

Davidson‟s atomic events and McCarthy and Hayes 

situations. Section 3 focuses on the methodology for 

developing the formalism. It starts by using lambda 

expressions to define a taxonomy of complex assertions 

or propositions, and then shows the development of the 

formalism using a standard FOL template that 

recognizes situations as a first class object as becoming 

of a typical situational calculus(SC) –like language.  

Section 4 demonstrates the outcome of applying the 

formalism developed in section 3 to representing 

sample text involving complex situations.

.  
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II. LITERATURE REVIEW 

The interest in representing situations in such a way 

that they can be quantified over and reasoned with have 

spanned many decades, starting with philosophical 

literature [3, 11], and then in AI literature [1, 4, 6, 12] . 

The substantial body of literature built up in the 1980s 

and 1990s on the subject of „reified logic‟, was borne 

out the need to talk and reason about situations or (as 

Galton[5] called them, eventualities) arising in time. 

Such situations arise naturally in narrative texts as 

demonstrated by Schubert[12]. 

 

Logical descriptions of an assertion that defines a 

situation can be simple or atomic in nature such that 

they can be represented by simple factual propositions 

expressible as a simple relation between known objects 

in the domain. An example of this is: 

 

John looks at Mary 

 

On the other hand, the logical descriptions of 

assertions that define other situations require referring 

to relations among non-specific individuals in the 

world such as: 

 

Someone touched Yesh  

Everyone looked at Josh  

The former class of situations can be represented as 

simple atomic logical statements requiring no 

quantification over any variable, such as Look-at(john, 

mary), while the latter class will require the use of a 

quantification such as is the case in x. Touch(x, 

yeshua) or x. Look-at(x, josh). 

 

While in the earliest paper written about this subject, 

Reichenbach [11] approach is to allow assertions of any 

type to be associated with specific situations as they 

may arise in narrative texts, denoting that a logical 

assertion is associated with a situation. Schubert[12] 

concludes that this implies that the relation between 

assertions and situations is like the entailment relation 

in situation semantics i.e.  

 

situation ╞ assertion 

 

Such an association is rather loose, suggesting that 

an assertion holds (among possible many others) true in 

a certain situation. This association is known as “partial 

characterization” in Schubert‟s work on Episodic 

Logic. However because of the need to reason about 

causational relationship between situations arising in 

narrative texts, a tighter association between assertions 

and situations is specified in Hwang and Schubert‟s 

work on Episodic Logic[7]. This relation is known as 

“full characterization”. This means a situation is fully 

defined by an assertion. Davidson [3] motivated by an 

inquiry into logical forms of sentences, would only 

allow atomic assertions to be associated with situations 

in a form that is essentially a full characterization as in 

Episodic Logic. There are no references to complex 

assertions in Davidson‟s paper whatsoever.  

 

In the AI literature, two similar lines of thought to 

Reichenbach‟s and Davidson‟s emerged in the 1980s 

and 1990s when trying to associate assertions to times 

for which they are true, in reified temporal logic. While 

it appears that Allen‟s properties , and events  

associated with time interval t as in the formulae 

Holds(, t) and Occurs(, t) respectively, is allowed to 

be either atomic or complex, Galton[4] precisely 

limited  to atomic assertions. According to 

Shoham[15], Allen‟s position requires assigning the 

status of functions to predicates and higher-order 

functions to quantifiers in order to stay within the 

syntactic confines of first order logic.    

 

In Schubert(2000) FOL**[12], a calculus is 

developed that allows one to treat complex situations as 

joins of atomic ones of the sort described by Davidson. 

This resulting logic provides a formal semantics for 

Episodic Logic[7]. In FOL**, a situation can be part of 

or concurrent part of or segment of another. When a 

situation s is concurrent part of another situation s and 

the assertion  fully characterizes situation s (i.e. **s), 

then s╞ . FOL** stops short of offering a first order 

language syntax for representing narrative text, Thus 

leaving us with the debacle of how to deal with the 

operators * and ** within the context of any kind of 

predicate logic. They are neither first order nor second-

order predicates. Schubert apparently, wishes to treat 

all assertions as terms in a first order logic. However, 

the expressions of complex assertions require 

quantifications implying the need to go beyond the 

confines of FOL.  

A. Axiomatic Delineation of Literature’s Situations 

Now we will examine two existing first order 

logical languages that capture the notion of situations. 

Although the logical statements used for the two of 

them are not significantly different, their semantics are 

different in the sense the one by Davidson[3] treats 

situations as atomic while the other named situation 

calculus due to McCarthy and Hayes[8,9]. As an 

example of Davidson‟s atomic situations, one can 

express the fact that: Bola holds office of HoD as: 

 

Holds-office(bola, hod, e) 

 

The representation of the same, in McCarthy and 

Hayes‟ situation calculus is similar: 

 

Holds-office(bola, hod, s)  

 

The semantic difference between the two languages 

is that while the situation calculus allows us to 

associate other propositions such as Olu holds office of 

PG coordinator with the same situation as the one in 

which Bola held the office of HOD, Davidson‟s 

language does not. As such in situation calculus it is 

also possible to also have: 

 

Holds-office(olu, pgcoord, s). 
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As such e is an atomic situation while s is a 

complex one. From the point the second statement is 

introduced, e and s no longer describe the same 

situation. Thus for Davidson‟s domain of atomic 

propositions we can have the following first order 

logical axiom: 

 

Axiom 2.1 

x, y, e, x1, y1, e1. 

Holds-office(x, y, e)  

Holds-office(x1, y1, e1)  

(x x1  y  y1  e  e1) 

 

In a more general sense, if P and Q are not related 

predicates then: 

 

Axiom 2.2 

x, x1, e, e1. P(x, e)  Q(x1, e1)  e  e1  

 

These foundational axioms are inherently absent in 

the situation calculus. The implication of this is that if 

wish to express the fact that bola held office of HOD 

and that Olu held office of PG-coordinator in the same 

situation using a Davidsonian language, the best we can 

do is to create contexts in which Davidsonian situations 

hold so that we can write: 

   

Holds-office(bola, hod, e)  

Holds-office(olu, pgcoord, e1)  

context(e) = context(e1) 

 

In that case, a context may include information 

about organization and dates. For example, 

(Computer_Science_Dept_UI, 2016-2018). 

 

The good side of the situation calculus 

representation is that it allows the use of first order 

logical language for associating a complex situation 

involving quantifications. For example, a situation s in 

which “everyone looked at Mary” can be expressed as: 

 

x. Looked-at(x, Mary, s) 

 

This statement here is equivalent to episodic logic‟s 

(x. Looked-at(x, Mary)) * e. Note that the situation is 

not fully characterized by “everyone looked at Mary”. 

This is the case because situation calculus leaves out a 

way of completely describing a situation as discussed 

earlier. However, there is no way of letting a complex 

assertion fully characterize a situation in situation 

calculus, such as in the episodic logic statement: (x. 

Looked-at(x, Mary)) ** e 

 

The purpose that a fully characterized situation 

plays in natural language discourse is that they 

facilitate the representation of causation, such as in the 

short narrative text: 

 

Every one looked at Mary. This made her blush. 

 

If the best we can do is have situations partially 

characterized by the complex assertion, then we will be 

compelled to state that everything that is part of that 

situation made Mary blush. That is not what we wish to 

express. 

 

In order to unify the notion of situations, a 

proposition is made here for a reified situation calculus 

language that associates assertions or fluents with 

situations using the predicate holds. The language will 

reify fluents so that they can be quantified and talked 

about. The only difference between our language and 

the reified situation calculus used in Pinto(1994) is that 

our language is silent about the actions that effect 

transition between situations. Our language is adequate 

in providing first-order logic interpretation for 

Schubert‟s Episodic logic.  

III   METHODOLOGY 

The approach taken to solve the problem involves 
first formalising the various kinds of complex assertions 
that one may deal with in natural language discourse, 
and then developing a situation calculus like language 
that allows us to reify those assertions while factoring 
the quantifications implied in the complex assertions. 

A. Assertion Typing by Lambda Calculus 

An assertion or fluent, is a propositional element 

that describes a situation or eventuality. There is an 

inherent typing of such assertions which we will 

describe in this section. Such types are described as 

lambda expressions. For every type of assertion, there 

is a generic predicate or relation formed around the 

main action in the statement. For example, we can have 

looking situations, greeting assertions, sitting 

assertions. Our running example will describe a looking 

event between two agents.  

 

The generic type describing simple looking 

assertions is described by the lambda expression: 

 

xy.Look-at(x,y)   

………………………………….T1 

 

Type T1 is also equivalent to type T2 below: 

 

yx.Look-

at(x,y)………………………………….T2 

 

Generally a lambda expression can be applied to 

specific constants such as john or mary, or to variables 

in the presence of quantifiers. Statements of this type 

are statements that result from the application of this 

lambda expression to two constants. Subtypes of this 

statement are statements in which one of x or y has 

been fixed by a constant. This assertion type is a sub 

type of the generic type x. y. Look-at(x, y) which 

describes the assertion anyone looks at anyone. An 

example of this subtype is x.Look-at(x, mary) which 

is the assertion type “anyone looks at mary”. Another 

example is y.Look-at(john, y) which is the assertion 

type “john looks at anyone”. That assertion type is 

super type of such assertions as Look-at(john, mary) 
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and Look-at(alice, mary) which can be regarded as the 

products of the following lambda applications: 

 

x. Look-at(x, mary). john     Look-at(john, mary)  

 

x. Look-at(x, mary). alice    Look-at(alice, mary) 

 

The application of a lambda expression to a variable 

in the presence of a quantifier helps to give a 

substantive binding to a variable as in first order logic.  

 

One example each of lambda applications to 

variables in the presence of universal and existential 

quantifiers are given thus: 

 

z(x.Look-at(x, mary)).z   z Look-at(z, mary) 

z( x.Look-at(x, mary)).z    z Look-at(z, mary) 

 

In a sense, we may see “somebody looks at anyone” 

or “everyone looks at anyone” as a subtype of xy. 

Look-at(x, y) in the sense that the role y has been filled 

by the existential or universal quantifier, while the role 

x remains open. These subtypes are expressed as the 

following lambda expressions:  

 

xy.Look-at(x,y)……………………………..T3 

xy.Look-at(x, y)……………………………...T4 

 

Type T3 is derived from the application of the inner 

lambda sub-expression: y. Look-at(x, y) in T1 to the 

variable y in the presence of the existential quantifier 

y thus: 

x(y(y. Look-at(x, y)).y)  xy. Look-at(x, y) 

 

Similarly the type T4 can be derived by the 

application of the inner lambda sub-expression y. 

Look-at(x, y) to the variable y in the presence of the 

universal quantifier y to the lambda expression T1 

thus: 

 

x(y(y. Look-at(x, y)).y)  xy Look-at(x, y) 

 

Instances of the subtype T3 include y. Look-

at(mary, y) while an example of the subtype T4 is y. 

Look-at(ola, y) which means ola looks at everybody. 

 

From the application of the lambda expression T3 

to variable x in the presence of a universal quantifier 

x, we can derive complex assertion: 

 

Everyone looks at someone 

x.y Look-at(x, y) 

 

Similarly by the application of T4 to the variable x 

in the presence of the universal quantifier x, we also 

derive the complex assertion: 

 

Someone looks at everyone 

xy Look-at(x. y) 

 

This lambda description of assertion types becomes 

useful for us in section 4, when we describe how to 

explain our representation of EL relationships between 

assertions and situations. 
  

B. Language for Representing Situations 

The language used in this paper is a many sorted 

reified first order logic with equality. The operators not 

denoted , and denoted , or denoted , imply denoted  

 and if and only if, denoted , all have the standard 

first-order logic interpretations. The same holds for the 

universal quantifier  and the existential quantifier . 

The strongly existential quantifier ! Is also allowed in 

our language and should be interpreted as: 

 

!x. P(x)    x. P(x)  (y. P(y)  x = y)  

 

The sorts include assertions, F situations S and 

domain sort D. Assertions are reified. As such 

assertions which ordinarily are propositional in nature, 

have the de-facto status of terms. Such terms are 

formed from the application of fluent functions.The 

basic predicate involved is Holds with the signatures: 

 

Holds: F  S  Boolean 

 

This predicate expresses the fact that a simple 

assertion holds in a certain situation such as Holds(f, s) 

means a simple assertion f holds in situation s. This 

relation is roughly equivalent to the EL‟s partial 

characterization relation between an assertion and a 

situation.  Each simple assertion is reified into 

functions as shown later. Complex assertions are 

associated with situations by quantifying over variable 

involved in an assertion mentioned in a Holds atom. 

For example the EL representation (x.G(x))*s will be 

represented as: 

 

x. Holds(g(x), s)   

 

The second predicate contained in this language is 

Holds**, which has the same signature as Holds. 

Holds** is roughly equivalent to the EL‟s notion of full 

characterization. The formal definition of Holds** in 

terms of Holds is presented below.  

 

Definition 3.1 

An assertion f Holds** in a situation s if and only if, f 

Holds in that situation and no other assertion does. 

 

f, s. Holds**(f, s)  Holds(f, s)  

 f. (Holds(f, s)  f= f) 

 

The functions in the language include all other 

propositional predicates of the domain of discourse 

used to form fluents. For example, a predicate look-at 

may express the proposition that someone looks at 

another. In that case look-at has the status of a function 

in the language with the following signature: 

 

look-at: D  D  F  
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Another function of this nature is blush used for a 

person is blushing. It has the signature: 

 

blush:   D  F 

 

It is important to note that the formalism described 

here treat situations which are inherently complex as 

first class objects in the language so that they can used 

as objects and they can be quantified over.  
  

IV     RESULTS AND DISCUSSIONS 

 Now the outcome of using the formalism developed 

in this paper will be presented in terms of its adequacy 

for interpreting natural language statements involving 

complex situations. For this cause we will use 

examples that cover every possible kind of 

quantifications that can be used to describe a complex 

proposition. For each example both the EL 

representation and that of the new SC-like formalism 

are presented in that order.   

 

The first example is one in which an atomic 

assertion without any quantification partially 

characterizes a situation. 

 

Example 4.1  

Mary’s blushing partially characterizes the situation s.  

 

This is expressed in EL as:  

 

Blush(mary) *s 

 

In our situation calculus language the representation is: 

 

s. Holds(blush(mary), s) 

 

This particular example raises no problems because 

the situations in situation calculus naturally allow 

partial characterization as discussed in section 3. The 

next example addresses when an atomic assertion fully 

characterizes a situation. 

 

Example 4.2  

Mary‟s blushing is fully characterizes the situation s. 

This is 

fully expressed in EL as: 

 

Blush(mary) ** s. 

 

In our situation calculus language, the representation is: 

 

 Holds(blush(mary), s)  f. (Holds(f, s)  

 f = blush(mary))…….4.1 

 

For this example there is a need in addition to 

associating the fluent with the situation with the 

predicate Holds, there is a need to rule out the 

possibility of associating other assertion with that same 

situation. That is what the second conjunct in the 

statement achieves. 

 

The next example shows the interpretation of a case 

in which a universally quantified complex assertion 

partially characterizes a situation. 

 

Example 4.3 

The situation s is partially characterized by everyone 

looking at Mary. This is expressed in EL as: 

 

(x. Look-at(x, mary))*s 

 

In our situation calculus language, the representation is: 

 

x.Holds(look-at(x, mary), s) 

 

The representation above is made possible by the 

fact that a situation in situation calculus, can be 

associated with several atomic assertions. In this case s 

is associated with every simple proposition of the type 

xLook-at(x, mary). The next example interprets the 

full characterization of a situation by a universally 

quantified complex assertion. 

 

Example 4.4 

The situation s is fully characterized by everyone 

looking at Mary. This is expressed in EL as: 

 

(x. Look-at(x, mary))**s 

 

In our situation calculus language, the representation is: 

 

x.Holds(look-at(x, mary), s)   

f. Holds(f, s)  x. f = look-at(x, mary) 

 

The main difference between the representations in 

examples 4.3 and 4.4 is the second conjunct which 

rules out the possibility of associating any fluent with 

the situation s other than those of the type x. Look-

at(x, mary). The next example shows the interpretation 

of a case in which an existentially quantified complex 

situation partially characterizes a situation. 

 

Example 4.5 

The situation s is partially characterized by someone 

looking at Mary. This is expressed in EL as: 

 

(x. Look-at(x, mary))*s 

 

In our situation calculus language, the representation is: 

 

x. Holds(look-at(x, mary), s) 

 

The expression here is facilitated by the fact that we 

can quantify over an argument of the function resulting 

from the reification of assertions of the type look-at. 

Consider a Davidsonian system in which the 

appropriate variant of Axiom 3.1 holds, i.e. 

 

x, y, e, x1, y1, e1. 

Holds(look-at(x, y), e)  

 Holds(look-at(x1, y1), e1)   
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(x x1  y  y1  e  e1) 

 

It will be hard within such a context to interpret the 

statement: 

 

x. Holds(look-at(x, mary), e) 

 

As such the statement is inappropriate in such a 

system. The next example shows the interpretation of a 

case in which an existentially quantified complex 

situation fully characterizes a situation. 

 

Example 4.6 

The situation s is fully characterized by someone 

looking at Mary. This is expressed in EL as: 

 

(x Look-at(x, mary))**s 

 

In our situation calculus language, the representation is: 

(x Holds(look-at(x, mary), s) )   

(f. Holds(f, s)  x. f = look-at(x, mary) ) 

 

The expression‟s second conjunct rules out 

associating s with any assertion that is not of the type 

x. Look-at(x, mary). Note that the existential 

quantifier  does not rule out the possibility of more 

than one person looking at Mary, as the strict 

existential quantifier, !, in example 4.8 would have 

done. What it rules out is associating any other kind of 

assertion with the situation s. 

In narrative texts, an assertion like “Someone greets 

Mary” is usually interpreted as x.Greet(x, mary). 

However in most cases, a better interpretation of the 

assertion is really !x.Greet(x, mary) which means that 

a particular person greets Mary.  

 

The next example is of the sort in which a complex 

assertion with a strongly existential quantification (i.e. 

!) partially characterizes a situation .  

 

Example 4.7 

The situation s is partially characterized by the 

assertion: a particular person looks at Mary. 

 

(!x. Look-at(x, mary))*s 

 

In our situation calculus language, the representation is 

the same as in Example 4.5 as expressed below: 

 

x. Holds(look-at(x, mary), s) 

 

The next example below is of the sort in which a 

complex assertion with a strongly existential 

quantification (i.e. !) fully characterizes a situation. 

 

Example 4.8 

The situation is fully characterized by the assertion: a 

particular person looks at Mary.  

 

(!x. Look-at(x, mary))**s 

 

The representation in our situation calculus language is 

given as: 

 

x. Holds**(look-at(x, mary), s) 

 

It is important to note the contrast between our 

representation of Example 4.6 and Example 4.8, which 

are both instances of full characterization. In both cases 

an assertion of the type x. look-at(x, mary) holds in 

the situation s. The difference between the two is that 

for the existential quantifier case (in Example 4.6), one 

only needs to rule out any assertion that is not of the 

same type holding in that situation, while in strongly 

existential case (in Example 4.8), we rule out any other 

assertion f, different from look-at(x, mary) where x is 

the same person that known to have looked at Mary in 

the situation s.  

The next two examples show our first order 

representation of two small narrative texts involving 

some sort of anaphoric references that will easily arise 

in narrative text. The next example is one on a situation 

that indicts another.  

 

Example 4.9 

The representation for the following text: 

 

Mary reports to Sam that John kicked Pluto      

 

is given thus: 

 

s. Holds**(kick(john, pluto), s)   

s1. Holds(reports-to(mary, sam, s), s1) 

 

The final example illustrates two situations and a 

causation relationship between them.  

 

Example 4.10 

The representation for the narrative text: 

 

Everyone looked at Timmy. This made her blush 

Is the representation: 

 

s.x.Holds(looked-at(timmy), s)   

s1. Holds(blush(mary), s1)  Cause(s, s1) 

 

The final section revisits the debate of an appropriate 

target language for semantic parsing and shows how 

our representation can be used to help Allen‟s reified 

logic take care of complex assertions.  

 

V. SUMMARY  AND CONCLUSIONS 

This paper has focused on presenting a first-order 

logic representation that is adequate for representing 

complex situations that arise frequently in narrative 

texts. The formalism resolves the difficulty of 

determining the nature of the * and ** operators from 

Episodic Logic, within the context of a predicate logic. 

Using the language of reified situation calculus, it was 

possible to eliminate the need for either of both 

operators through the use of the predicates Holds and 

Holds**. 
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In a wider sense, the formalism described in this 

paper can be adapted to reify such complex 

propositions in Allen‟s reified logic. To state that a 

complex proposition of the type x.P(x) holds at time t 

in a reified logic, one can reify P into a assertion 

function status p and then write x.Holds(p(x), t) 

instead of the first order predicate logic misnomer 

Holds(xP(x), t) that Galton[4] warns against. 

However, it must be noted that Allen‟s time interval are 

more like McCarthy and Hayes‟s situation than 

Davidson‟s event tokens in the sense that many 

assertions can potentially be associated with any time 

interval.   

 

Schubert[14] has argued that EL captures the 

expressiveness of natural language better than first-

order logic except for some restricted application 

domains, and thus it is a better target language for 

semantic parsing.  However this paper moves towards 

closing that gap by providing a way of accommodating 

complex situations within first order logics. 

Nonetheless, there remain a number of issues that will 

bring first-order logic closer to EL in expressive power. 

One poignant example of this is EL‟s power to capture 

hypothetical episodes that can arise in natural language 

discourse such as: 

 

For Tunde to smile is rare. 

 

The representation of this requires that we introduce 

assertion kinds explicitly in any first order logic that 

must serve as a target language for natural language 

text, just as done in EL. That however, is outside the 

scope of the current paper.  

 

Although it can be shown that a version of the 

situation calculus language described here (with a 

slightly enriched ontology) has many of the desiderata 

that Schubert[14] listed for an ideal formalism for 

semantic representation, it lacks as much “language-

like expressivity” as Episodic Logic.   
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