
22 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

A Review of Two-way Approach to Improve Continuous Responsiveness

Provisioning in a Real-Time System

OYEKANMI, E. O.

Achievers University, Owo, Ondo State, Nigeria

e.oyekanmi@achievers.edu.ng

Abstract

A Real-Time (RT) system involves a continual input, process and output of data. This continual operation at a

peak level of a server may cause many missed deadlines due to low responsiveness of server in such a real-time

system. Continuous responsiveness of an application system means that the system can provide a good quality of

service (QoS) and that there is little or no delay in the delivery which can adversely affect the user’s experience.

In this paper, two distinct webservers’ responsiveness were reviewed and two-ways approach namely: job

scheduling and admission control were suggested to improve the responsiveness of the underlying hardware used

by servers at a peak level.

Keywords: Responsiveness, Real-Time System, Job Scheduling, Admission Control, WebServer

1. INTRODUCTION

Responsiveness provisioning is the ability to

consistently and effectively making appropriate

and timely decisions on customer’s requests,

short term fluctuations in operating conditions,

changes in the overall system environment and

how these decisions are executed. A system

environment with array of servers could

experience fluctuations during processing

especially when critical applications are

running [1]. This makes servers redundant,

because the relevant available information to

make the best possible decisions must be

routinely applied while still optimizing the

underlying hardware component, (like single or

dual processor, Random Access Memory

(RAM), Hard Drive Disk (HDD), a number of

Local Area Network (LAN) cards, Redundant

Array of Independent Disk (RAID) controller)

or software (like applications and operating

system (OS)), on which the functionality of the

server depends. In order to maintain continuous

responsiveness at peak level, when system is

faced with enormous pressure and is to

optimize performance and guarantee quality of

service, the problem of responsiveness,

bottlenecks and process breakdowns in such a

system must be addressed to gain competitive

advantage.

The world is going online as a result of convid-

19 pandemic. Several online lectures are

needed to be accessed by various persons from

different place. Addressing bottlenecks at peak

level of requests on server in a real-time system

is the focus of this paper. The objective of this

research is to describe the different

classification and characteristics of real-time

request/task from customers, review the

performance of web servers, and provide the

mechanisms to improve on the continuous

responds to client’s real-time tasks from a

server.

1.1 Classification of Real-Time Tasks and their

Characteristics

Real-time tasks can be categorised into three,

based on the way real-time tasks recur over a

period of time. These are periodic, sporadic and

aperiodic tasks. Periodic task has 4 tuples

which include (∅𝑖,𝑝𝑖, 𝑒𝑖,𝑑𝑖). A task with phase

∅𝑖 is periodic if it is released for an execution

time 𝑒𝑖 repeatedly at every 𝑝𝑖 seconds which

must be completed within a relative deadline 𝑑𝑖

time units such that for 𝑒𝑖 ≤ min(𝑝𝑖 , 𝑑𝑖) from

the time it was issued. Periodic task execute

with execution time 𝑒𝑖 at regular intervals and

Oyekanmi, E. O. (2021). A Review of Two-way Approach to

Improve Continuous Responsiveness Provisioning In a Real-

Time System. University of Ibadan Journal of Science and

Logics in ICT Research (UIJSLICTR), Vol. 6 No. 2, pp. 22-

31

©U IJSLICTR Vol. 6, No. 2, June 2021

23 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

can be assigned different priorities with relative

deadline 𝑑𝑖 in a real-time system. Each of the 4

tuples is greater than zero (0).

1.1.1 Periodic Task

A task is a combination of related jobs. Jobs

could be combined in a certain order depending

on its type. Jobs that repeat themself after

certain period of time are usually periodic in

nature. The recurrence time of these set of Jobs

is defined by the clock interrupts, hence the task

is called a clock-driven task. Periodic task can

be represented with 4 tuples as 𝑇𝑖 (∅𝑖,𝑝𝑖, 𝑒𝑖,𝑑𝑖)

where ∅𝑖 is the release time of the first job, 𝑝𝑖 is

the period of the task, 𝑒𝑖 is the execution time

and 𝑑𝑖 is the relative deadline of the task. Each

tuple is greater than zero (0). Each task 𝑇𝑖

issues periodic requests for 𝑒𝑖 ≤
min(𝑝𝑖 , 𝑑𝑖) time units of execution, separated

by 𝑝𝑖 time units. Every such request, known as

job, must complete within 𝑑𝑖 time units from

the time it was issued. The ratio of the execution

cost of 𝑇𝑖 to its period,
𝑒𝑖

𝑝𝑖
⁄ is defined as

utilization [2]. Most of the tasks processed

presently in a typical real-time system are

periodic in nature. For instance, in chemical

engineering, the temperature of a generating-

plant, its pressure and chemical concentration

are different tasks that normally generated

through timer’s interrupt [3]. This kind of task

is referred to as a static periodic task because it

exists from the time of system initialization.

However, a periodic task can be dynamically

generated during air traffic monitoring as well.

This occurs when flight detection flag was

raised by the radar at a signal zone.

1.1.2 Sporadic Task

This task repeat itself but not with a fixed

period. Three tuples are used instead of four (in

periodic task) to represent a sporadic task as 𝑇𝑖

(𝑒𝑖, 𝑔𝑖 , 𝑑𝑖). 𝑔𝑖 is the minimum separation

distance. Task will continue to repeat only

when 𝑔𝑖 time is over. 𝑒𝑖 is the worst case

execution time of an instance of the task 𝑑𝑖 is

the relative deadline of the task. The minimum

separation implies that once an instance of a

sporadic tasks arise, the next instance cannot

occur before 𝑔𝑖 time units have elapsed. In

other words, any task that occur whose time of

occurrence cannot be predicted is a sporadic

task. A typical example includes the task that

handles fire conditions in a factory and a task

that is generated in a robot to handle an obstacle

that suddenly appear. As stated in [3], the

criticality of sporadic tasks varies from highly

critical to moderately critical. An I/O device

interrupt or DMA interrupt is moderately

critical compared with the fire condition in a

factory. The latter is highly critical.

1.1.2 Aperiodic Task

An aperiodic task is same as sporadic.

However, the minimum separation (𝑔𝑖)

between two consecutive instances is 0. Also,

two or more instances of an aperiodic task

might occur at the same time instant. The report

in [3] shows that the deadline for an aperiodic

tasks can be expressed either averagely or

statistically. Aperiodic task are generally soft

real-time tasks because it can recur in quick

succession leading to bunching of the task

instances which might lead to a few deadline

misses. Hence, it is very difficult to meet the

deadlines of all instances of an aperiodic task.

An example is a logging task in a distributed

system.

All these tasks need to be attended to

accordingly in a robust system. The

mechanisms that the underlying hardware of the

real-time OS can use to improve continuous

responsiveness of the applications at the

server’s end are discussed in details in the

following section.

 2. REVIEW OF RELATED WORKS

In a real-time system, the work of a webserver

is to respond to clients’ requests (majorly files)

that reside on the local disk [4] of the system.

When a client sends request on network to the

server, it is either to fetch a static file

(.html, .css, .js) or dynamically generate file

using a server-side scripting language. This

request is executed on the webserver in a back

and forth manner until a result is displayed on

the browser. During the back and forth

interaction of client and server, decisions are

always made based on performance, security

and usability. Although the three components

are interwoven, performance optimization of

server has been the focused components by

many researchers in recent years because of its

wide usage on daily basis [5, 6]. It was

discovered in Prakash, et. al. [7] that

performance consideration does not only

24 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

reduce hardware cost, but also ensure flexibility

in hardware and operating system upgrade

which has effect on users’ experience. In web

server, two metrics can be used to measure

performance. These include resource utilization

and response time.

While resource utilization is based on how busy

the resources (central processing unit, local disk

and network bandwidth) in the real-time system

is, response time defines the delay during TCP

connection until the response is received from

the point-of-view of a client after submitting a

request. Response time, most often, depends on

the size of the request submitted to the web-

server. Table1 shows a comprehensive review

on responsiveness on two web servers using the

two measures on Apache and Nginx.

Table 1. Summary of web server performance review-Apache and Nginx [4]

Author Web

Server

Response Time Memory

Usage

CPU

Utilization

Dreamhost, [8] Apache Handles less requests per second

at high concurrency

Increase with

increase in

requests

 Nginx More requests per second even at

high concurrency

Does not

increase with

increase in

requests

Jing & Kishor,

[9]

Apache Handles 350-390 requests per

second

Dabkiewicz,

[10]

Nginx Under static files-single worker,

it handles 7212 requests per

second.

 With four workers, it can handle

7742 requests per second.

 Under dynamic files, it handles

1873 requests per second

 Apache With single worker, it can handle

7367 requests per second

 With four workers, it can handle

7242 requests per second.

 Under dynamic files, it can

handle 5142 requests per second.

Fan & Wang,

[11]

Apache Under dynamic files, it can

handle 5142 requests per second.

 Nginx Outperforms under all workload

concurrency though its

throughput decreases under high

workload concurrency

Prakash, Biju, &

Kamath, [7]

Apache 5000 requests per second Increases with

increased

requests

 Nginx Increases by 50% more requests

per second than Apache

Increases with

increased

requests

He, Karne,

Wijesinha, &

Emdadi, [12]

Apache 6000 requests per second At capacity,

CPU

utilization is

99% and 82%

at bare PC

server

25 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

Peña-Ortiz, et

al., [13]

Apache CPU

utilization

increases with

workload

 Nginx CPU

utilization

does not

increase with

workload

2.1 Initial continuous responsiveness

provisioning approach

Andrew and Albert [14] deduced that kernel

directs all components’ interactions on

operating system. Kernel was built on a

minicomputer foundation and its major

advances including performance, human-

computer interfaces and graphics architecture

are relatively left untouched years back.

The mechanism for continuous responsiveness

according to Andrew and Albert [14] were

manipulations on interrupts, device drivers,

demand paging and the likes with the notion of

not affecting the kernel to prevent rebuilding of

another operating system (OS). This persisted

because the hardware platform to run a new

operating system was not in place. The design

only improve quality-of-service (QoS) of

servers with low responsiveness.

The fact still remain that users will not quench

their thirst for performance increase and

functionality of applications as real-time task

comes in, therefore expanding or manipulating

the number of hardware resources for

continuous provisioning is not a viable solution

compare with the rate at which requests are

increasing [15, 16, 17]. The industry, therefore,

has no choice but to improve the efficiency of

OS architecture with the hope of meeting

customers’ growing expectations [15, 18].

3. MECHANISM FOR CONTINUOUS

RESPONSIVENESS

The following mechanisms are proposed to be

used by operating system to improve the

responsiveness of applications at the server’s

end. The mechanisms are knitted but their

mandate are different. These are job scheduling

and admission control.

3.1 Job Scheduling

Scheduler aim at one or more of many goals.

For example: maximizing throughput (the total

amount of work completed per time unit);

minimizing wait time (time from work

becoming ready until the first point it begins

execution); minimizing latency or response

time (time from work becoming ready until it is

finished in case of batch activity, [19, 20 21] or

until the system responds and hands the first

output to the user in case of interactive activity),

[22].

The work of Job Scheduler (Scheduler) is to

enforce measures to prevent traffic violation

especially at peak level of workflow. Scheduler

manages the sending of different job streams

and resolves contention between job streams of

different classes at a switching point using a set

of queues and other mechanisms like timers

which include job arrivals and departures as

well as buffer occupancies (queue lengths) so as

to satisfy QoS requirements for all classes of

job streams’ queues. Job scheduler estimator

(statistical database) was developed in Jay, et.

al. [23] and used to control outgoing traffic

stream job traffic at the point where jobs are

queued.

In Jay [24], a high volume of job information

and the high speeds of the flow of job in a real-

time system imposes constraints on scheduling

decisions which mandated the use of simple

algorithm with relatively simple information

structures for Job Scheduler.

Every scheduler has a schedulable region

denoted by 𝑅 where 𝑅 is defined as
𝑅 = {𝑗 ∈ Ɲ𝑛} (1)

Such that scheduler guarantees the QoS for all

job classes.

Ɲ is the set of natural numbers, j is the

scheduled job of class i with maximum class n

26 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

The maximum number Ɲ𝑖of class i allowable

into the system from the limits of the

schedulable region can be defined by

 Ɲ𝑖 = 𝑗 ∈𝑅
max 𝑗𝑖

 (2)

R represents admission policy limits at the

scheduling level. This must be enforced by the

scheduler to maintain quality of service.

Different workflow exist and there are

algorithms for scheduling them in a real-time

system. The algorithms for the classification of

these workflow are discussed in the following

section.

3.1.1 Classification of Real-Time Task

Scheduling Algorithm

Real-Time task can be classified based on three

criteria namely: definition of the scheduling

point, task acceptance test and target platform

for the scheduler.

The classification by scheduling point depends

on three schemes: clock-driven, event-driven

and hybrid scheme. In clock-driven schedulers,

jobs are executed at a specific time. Time (the

interrupts received from a clock) is decided

before execution is set. This kind of scheduling

is simple and straight-forward. In the event-

driven ones, the scheduling points are defined

by certain events which precludes clock

interrupts, an example is event-driven web

servers as stated in Voigt [25]. In hybrid

scheme, jobs are to be executed based on time

and event-driven.

Some example of algorithms that belong to

these groups include Clock Driven (e.g. Table-

driven or Cyclic driven); Event Driven (e.g.

Simple priority-based, Rate Monotonic

Analysis (RMA) or Earliest Deadline First

(EDF)); Hybrid (e.g. Round-robin).

The classification based on the task acceptance

test can be divided into two categories:

Planning-based and Best-effort. In planning-

based schedulers, task's dead-lines are first

determined before starting the execution. If the

deadline can be met and already scheduled

tasks will not be interrupted to miss their

respective deadlines, then the task is accepted

for scheduling. Otherwise, such task is rejected.

However, in best effort schedulers, scheduling

takes place immediately as task arrives. But no

guarantee is given as to whether a task's

deadline would be met.

The target platform classification has to do with

the platform on which the tasks are to be run.

This again can be implemented using three

platforms which include: Uniprocessor,

multiprocessor and distributed. In Uniprocessor

platform, tasks are schedule as it comes. In

Multiprocessor platform, decisions are made on

any arrived task to determine which processor

will execute it, then the task is schedule. It has

shared memory and has a global up-to-date

state information of all tasks. In Distributed

platform, decisions are made on any arrived

task to determine which processor will execute

it, then the task is schedule. This platform does

not have shared memory and there is no global

up-to-date state of information of all tasks. The

communication among tasks is through

message passing and this is costly.

3.2 Admission Control

Admission control algorithms guarantee end-

to-end performance by preventing stream

overload. Admission control does not only

guarantee QoS, but other features which may

also be necessary. For example in multimedia

server, security measures is needed to validate

the user before access permission is granted for

the media contents of a video-on-demand server

to be viewed. Also, since the data are a

marketable commodity, accounting services

will be required to charge the users. All these

features are the component of a robust

admission control algorithm.

The task of the admission controller is to accept

or reject arriving called jobs so as to maximize

utility function based on the weighted average

throughput. The information available to the

admission controller includes the boundaries of

the schedulable region R specified by the

scheduler, the job arrival and departure rates

associated with each class of service and the

weights used in the utility function [23]. Getting

this details in reality might be difficult because,

it is the operating system that determines the

arrival and departure time. However, an

algorithm can be designed and implemented to

perform the work of control, thereby increasing

the responsiveness of underlying hardware of

an operating system.

27 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

A server with an admission control scheme will

perform optimally when incoming request are

at its peak level. The mechanism is based on

acceptance or rejection model [26]. A typical

example is logistic regression technique.

Figure. 1. Admission control structural

diagram (Source:

http://www.citeseerx.ist.psu.edu/viewdoc/download)

In Figure1, the structural diagram has three

sections which include: Gate, Controller and

Monitor. 𝑥 is the control variable which is used

by the Controller to capture the proportion of 𝑢

for which a request could be admitted [27]. This

variable is measured by the Monitor. Controller

ensures that the variable is in a best proportion

to the reference value 𝑥𝑟𝑒𝑓 before admission is

granted to the incoming request while Gate

rejects the unadmitted requests. The actual

admittance rate was defined in equation (3) in

term of admittance rate of 𝑢 and arrival rate of

𝜆 as follows:

 �̌�=min [u, λ] (3)

min was used since the admittance rate may

never be larger than the arrival rate.

3.2.1 Gate

Example of gate include Percent blocking and

Token bucket [26]. Percent blocking

mechanism involves the use of fraction or

threshold value for requests to be admitted. In

Ing-Ray [28], percentage blocking type of gate

was used to provide a real-time, continuous

service to each client by characterizing their

computational requirement using a period 𝑇 and

a computation time 𝐶 within the period. A

thread is then created by the server at the time

the client is admitted into the system to invoke

periodically, a fraction 𝐶/𝑇 of the server

capacity until the client completes its required

service.

In the case of token bucket, token comes out at

a definite rate. An arriving request is therefore

admitted if there is a token available for it.

Token bucket, as stated in Wikipedia [29], can

be conceptually understood as follows:

i. A token is added to the bucket every
1

𝑟⁄ seconds, where 𝑟 is the average

rate.

ii. The bucket can hold at the most 𝑏

tokens, where 𝑏 is the token depth. If a

token arrives when the bucket is full, it

is discarded.

iii. When a packet (network layer Protocol

Data Unit) of 𝑛 bytes arrives,

 if at least 𝑛 tokens are in the

bucket, 𝑛 tokens are removed from

the bucket, and the packet is sent to

the network.

 if fewer than 𝑛 tokens are

available, no tokens are removed

from the bucket, and the packet is

considered to be non-conformant.

𝑛 is the maximum size of the

bucket.

Token bucket is used to ensure that the

incoming packet has sufficient tokens before

admitting into the network for processing as

shown in Figure 2. Token rate regulates transfer

of packets and saves permission to send large

bursts. This means that the bursts of up to 𝑛

packets can be sent at once thereby allowing

burstiness in the output stream to be regulated

and gives faster response to sudden bursts of

input.

Figure 2: Token-bucket algorithm sketch

Gate uses a dynamic measure (window size) to

ensure that the number of requests to be

processed or waiting in the system does not

exceeds the upper boundary. There could be

28 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

alternation of window size as the traffic

conditions changes.

3.2.2 Controllers

An admission control mechanism utilizes various

controllers. Some of the most common

controllers are the Static controller, the Step

controller and the Proportional Integrating

Derivative (PID), PID-controller [26]. A static

controller uses a fixed acceptance rate, 𝑢𝑓𝑖𝑥 which

is set so that the average value 𝑥 of the control

variable should be equal to the reference

value 𝜌𝑟𝑒𝑓. In this case, 𝑢𝑓𝑖𝑥 is given by

 𝑢𝑓𝑖𝑥 =
𝜌𝑟𝑒𝑓

𝑥
 (4)

The main objective in Step controller as stated in

[26] is to keep the control variable between an

upper and a lower level. Usually, in this case, the

value of the variable is inversely proportional to

the admittance rate. The control law is as follows:

𝑢(𝑡 + 1) = {
𝑢(𝑡) − 𝑠

𝑢(𝑡) + 𝑠

𝑦(𝑡) > 𝑦𝑟𝑒𝑓 + 𝜀

𝑦(𝑡) > 𝑦𝑟𝑒𝑓 − 𝜀
 (5)

where the value of 𝑠 decides how much the rate is

increased/decreased and the value of 𝜀 decides

how much the control variable may deviate from

the reference value.

The PID-controller uses three actions: one

proportional, one integrating, and one derivative.

The control law in continuous time is as follows:

𝑢(𝑡) = 𝐾𝑒(𝑡) +
𝐾

𝑇𝑖
∫ 𝑒(𝑣)𝑑𝑣

𝑡

0
+ 𝐾𝑇𝑑

𝑑

𝑑𝑡
𝑒(𝑡) (6)

where 𝑒(𝑡) is the error between the control

variable and the reference value, that is

 𝑒(𝑡) = 𝑦𝑟𝑒𝑓 − 𝑦 (𝑡). (7)

The gain 𝐾, the integral time 𝑇𝑖, and the

derivative time 𝑇𝑑 are the controller parameters

that are set so that the controlled system behaves

as desired.

A large value of 𝐾 makes the controller faster, but

weakens the stability. The integrating action

eliminates stationary errors, but may also make

the system less stable. The derivative action

improves the stability, however, in a system with

a bursty arrival process the derivative action may

cause problems. Therefore, the derivative action

is usually either deleted (i.e. 𝑇𝑑 = 0) or low pass

filtered to remove the high frequencies.

3.2.3 Monitor

The Monitor oversees server utilization on a

continuous control interval. During the last

control interval, fraction of time of an idle process

is calculated. The result is subtracted from one

and this makes the server utilization value [26].

The Central Processing Unit (CPU) is not needed

when a process is idle. The priority level of an idle

process is usually set to the lowest possible value

as a quantizing measure in server utilization. With

this approach, the operating system, where the

admission control mechanism runs, performs

certain time resolution as regards function calls

during this process. This means that there has to

be a logical control interval for the smooth

running of the process. It has to be long enough

not to be affected by the time resolution effects,

and short enough so that the controller responds

quickly.

A typical example where admission control is

needed is in a multimedia real-time server. The

innumerable quest for continuous multimedia

today has contributed to users’ expectancy in the

area like high-quality multimedia, snappy

operation and interactive applications. The

responsive user interfaces and stringent real-time

guarantees from the systems that host the

resources is of great importance. However, there

are components that make up a multimedia server

that does the real-time streaming, these are

explained in the next section

3.2.4 Architecture of Admission Control in a

Media Server

Media server has some certain components which

are shown in Figure 3. These include Platform

Manager (PM), Admission Control Unit (ACU),

Resource Manager (RM) and Monitor. The front

end of media server is the PM, with the help of

which user sends a request for a video file. ACU

accepts request from PM and check for the

availability of the resources that will guarantee

the continuous responsiveness of the requested

file from server. RM records available resources

and its update and provides ACU with it when

needed. After a machine is assigned to a user, the

Monitor maintains the state of the machine and

responds back to the RM. The media server

components are explained in detail as follows.

29 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

Figure 3: Media Server Architecture

a) Platform Manager (PM)

Platform Manager (PM) acts as an interface

between the user and the system. It provides user

with the ability to initiate a request and then

define the user’s specific resource requirement

which is divided into two parts. One is the Host

requirement and other is Environment

requirement.

The host requirement part consists the type of

processor, number of Central Processing Unit

(CPU) cores, Random Access Memory (RAM)

size and Internet Protocol (IP) address. The

environment requirement part consist the type of

Operating System (OS), runtime environment and

so on. Once these information are obtained, PM

communicates Admission Control Unit (ACU) in

a bidirectional way. It is the interface through

which users communicate the media server.

Communications that involve scaling or stopping

the machine is also done via this interface.

b) Admission Control Unit

The Admission Control Unit (ACU) is

responsible for managing the user’s requests and

sending instruction to other units for provisioning

of a platform. As the request comes from the PM,

the Availability Checker passes the information

to Resource Manager (RM) and asks to check for

the user’s required resources. The required

resources and environment are sent to the ACU

by the RM if the duo are available and compatible

with the users system. This checked information

are then forwarded by the Availability Checker

Unit to the Machine Scheduler. Machine

Scheduler is responsible for dispatching the job to

the best-fit resource to process it. It notifies the

PM of the successful allocated resource’s status

and machine ID. It also informs the Monitor so

that it makes an entry in its table to keep track of

running systems.

c) Resource Manager

Resource Manager (RM) archives information of

all available machines and their runtime

environment. The resource information stored in

a table-like form include RAM size, CPU

capacity and Disk size. Requests from ACU about

any of these resources are checked from RM to

ensure that virtualization does not occur because

of their limited number. In other words, RM

matches user’s request with the available

resources to guarantee continuous responsiveness

provisioning.

d) Monitor

The essence of monitor component is to keep

track of the state of each machine computation till

the point of being available for another user. It

updates the free list of machines maintained by

the RM.

Continuous responsiveness majorly depends on

the underlying hardware, however software

approach could be used to make the work done.

With consideration of the two mechanisms:

Request/Job scheduling and Admission Control,

the responsiveness of the underlying hardware in

a server would be improved.

4. CONCLUSION

The objective of resource provisioning is to detect

and provide the appropriate resources to the

suitable workloads on time, so that applications

can utilize the resources effectively. However, it

is constantly complex to make selection for an

appropriate approach that could provide

continuous responsiveness for applications

system. Distinctly, this paper has discussed Job

scheduling and Admission Control as two major

mechanisms that could improve continuous

responsiveness provisioning in a real-time

application system. Admission control schemes

does not have mathematical model in queuing

theory However, with control theory, analysing

queuing systems will be possible to model using

control theoretic methods. With this, a good

admission control mechanisms can be designed

for a real-time systems.

30 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

References

[1] Amies, A., Sanchez, J., Vernier, D., Zheng X.

 D. (2011). Monitor services in the cloud IBM

 developer Works.

[2] UmaMaheswari C. D. (2003). An Improved

Schedulability Test for Uniprocessor

Periodic Task Systems. In Proceedings of the

15th Euromicro Conference on Real-

Time Systems (ECRTS’03), IEEE

computer Society

[3] Kharagpur (2019). Real-Time Task

 Scheduling.Version 2 CSE

 IIT,URL:http://www.nptel.ac.in/courses/We

bcourse-

contents/IIT%20Kharagpur/Real%20time%2

0system/pdf/Module2.pdf

[4] Douglas, K., Sipiwe, C., Muwanei, S. (2017).

 Web Server Performance of Apache

and Nginx: A Systematic

Literature Review. Computer

Engineering and Intelligent Systems,

8(2).

[5] Xianghua, X., Tingting, X., Yuyu-Yin, J. W.

 (2013). Performance evaluation model of

Web servers based on response time.

IEEE Conference Anthology, 1-5

[6] Zhaoyang, Q.,Wei-Wang, Z. L. (2010). Web

 Server Optimization Model Based on

 performance analysis. IEEE, 1-4.

[7] Prakash, P., Biju, R., Kamath, M. (2015).

 Performance Analysis of Process Driven and

 Event Driven Web Servers. IEEE Sponsored

 9th International Conference on Intelligent

 Systems and Control (ISCO) , 1-7

[8] Dreamhost [online]

 http://www.dreamhost.com (2016)

[9] Jing, Z., Kishor, S. T. (2011). Performance

 Modeling of Apache Web Server Affected by

 Aging. Third International Workshop on

 Software Aging and Rejuvenation, 1-6

[10] Dabkiewicz, S. (2012). Web Server

 Performance Analysis. Lia project, 1-14

[11] Fan, Q., Wang (2015). Performance

Comparison of Web Servers with

Different Architectures: A Case

Study using High Concurrency

Workload. Third IEEE Workshop on Hot

Topics in Web Systems and Technologies,

37-42

[12] He, L., Karne, R., Wijesinha, A., Emdadi, A.

(2009). A Study of Bare PC Web Server

Performance for Workloads with Dynamic

and Static Content. 11th IEEE

International Conference on High

Performance Computing and

Communications, 1-6

[13] Peña-Ortiz, R., Gil, J., Sahuquillo, J., Pont A.

 (2012). Analysing web server performance

 under dynamic user workloads. Computer

 communications, vol 36, No. 4, pp. 386-395

[14] Andrew, S. T., Albert, S. W. (2005).

Operating Systems Design and

Implementation (3rd Edition). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc

[15] Christos, K. (2013). Resource efficient

computing for warehouse-scale datacenters.

In: Design, Automation Test in Europe

Conference Exhibition, 1351–1356

[16] Kushagra, V. (2010). Datacenter Power

 Efficiency: Separating Fact from Fiction.

 Invited talk at the 2010 Workshop on Power

 Aware Computing and System

[17] Mark, H. (2005). Scaling, power, and the

future of CMOS. In: Electron Devices

Meeting, IEDM Technical Digest.

IEEE International.

[18] Luiz, A. B. (2011). Warehouse-Scale

Computing: Entering the Teenage Decade.

In: Proceedings of the 38th Annual

International Symposium on Computer

Architecture. ISCA ’11. San Jose,

California, USA: ACM

[19] Liu, C., James W., Layland (1973).

Scheduling Algorithms for

Multiprogramming in a Hard- Real-

Time Environment. Journal of the ACM.

ACM. 20 (1): 46–61

[20] Kleinrock, L. (1976). Queueing Systems,

 Computer Applications, Wiley-

 Interscience, 2(1) , p. 171

[21] Feitelson, Dror G. (2015). Workload

Modeling for Computer Systems

Performance Evaluation. Cambridge

University Press. Section 8.4 (Page 422)

[22] Silberschatz, A., Galvin, P. B., Gagne, G.

 (2012). Operating System Concepts (9ed.).

 Wiley Publishing. p. 187.

31 UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627

[23] Jay, M. H., Aurel, A. L.,Giovanni P. (1993). A

 Separation Principle between Scheduling and

 Admission Control for Broadband Switching.

 IEEE J.Select. Areas Community, Vol.

 11, No 4, pp. 605-615

[24] Jay, M. H., Aurel A. L., Giovanni P. (1991).

 Real-time scheduling with quality

of service constraints. IEEE J.Select.

Areas Community, Vol. 9, pp. 1052-1063

[25] Voigt, T. (2002). Overload behaviour and

 protection of event-driven web servers, In

 Proceedings of the International Workshop

on Web Engineering, May 2002, Pisa,

Italy

[26] Mikael, A., Maria, K., Anders, R. (2019).

 Modelling and Design of Admission Control

 Mechanisms for Web Servers using Non-

linear Control Theory. Lund Institute of

Technology Box 118, SE-221 00 Lund,

Sweden

[27] Kihl, M. (1999). Overload control strategies

for distributed communication

networks, Ph.D thesis, Dep. of

Communication Systems, Lund Institute

of Technology, Sweden

[28] Ing-Ray C. Chi-Ming C. (1996). Threshold-

 Based Admission Control Policies for

 Multimedia Servers. Computer Journal.

[29] Wikipedia contributors. (2019, June 5).

Token bucket. In Wikipedia, The Free

Encyclopedia. Retrieved 08:39,

September 6, 2019, from

 https://en.wikipedia.org/w/index.php?title=T

oken_bucket&oldid=900385526

