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Abstract  

Travelling Salesman Problem (TSP) is a well-known and mostly researched problem in the field of combinatorial 

optimization. In this study, an attempt was made to model an improved Ant Colony Optimization (ACO) algorithm 

that has a fast convergence speed and very good global optimization ability when solving TSP based on Nigeria52 

dataset. The proposed improved ACO algorithm was tested using the MATLAB (R2018a) software, with TSP 

conceived as a complete weighted Hamiltonian cycle of 52 cities, and with Abuja as the starting point of the 

salesman's tour. The results of an improved ACO simulation show that the algorithm was able to improve 

convergence by avoiding local minima with an optimal path length (cost) of 5866.9249 when the value of 

exploitation (α) is less than that of exploration (β). The results also considerable improvement compared against 

tradition ACO algorithm with 98% precision. 
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1.     INTRODUCTION 

The travelling salesman problem (TSP) is a 

popular, and well-studied problem in the field 

of combinatorial optimization that draws the 

attention of computer scientists, 

mathematicians, and other experts [1, 2, 3]. Its 

statement appears straightforward, but it is one 

of the sufficiently difficult practical problems in 

operational research. It is also an optimization 

problem in terms of determining the shortest 

closed tour that visits all the given cities. It is 

referred to as a classical NP-complete problem 

because it has extremely large search spaces 

and it is extremely difficult to solve. 

 

Most area researchers failed to find out 

different technique for solving the problem, 

first algorithm used for given problem was 

linear programming formulation [4]. The 

branch and bound algorithm used to solve TSP 

supports fewer than 100 cities; additionally, as 

the number of cities increases from 10 to 100, 

the branch and bound algorithm fails to provide 

the optimized path due to the algorithm's 

complexity [5, 6]. Dynamic programming was 

a more efficient technique than branch and 

bound for solving the TSP, but the dynamic 

programming algorithm did not support cities 

larger than 100. The complexity of the dynamic 

programming method is higher than that of the 

branch and bound lower bound, but for the 

upper bound, this algorithm fails to outperform 

other methods. 

 

Dorigo et al. [7, 8] proposed ant colony 

optimization (ACO) in 1991 as a novel nature-

inspired meta-heuristic solution to difficult 

combinatorial optimization (CO) problems. 

The ACO is a type of meta-heuristic, which are 

approximate algorithms used to find good 

enough solutions to difficult CO problems in a 

reasonable amount of time [7, 8]. ACO is a 

probabilistic technique for solving 

computational problems that can be reduced to 

finding food paths through a graph. It is 
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inspired by the behaviour of natural ants 

foraging for food and returning to their nest at 

the end of their search, usually via a shorter 

route [9, 10, 11]. This algorithm belongs to the 

class of swarm intelligence algorithms. ACO 

attempts to solve this problem by utilizing a 

population of ants to construct tours that allow 

them to move from one city to another on the 

graph and by applying pheromone trails to the 

arcs that connect the nodes (cities). The ants can 

use the pheromone trail information to create 

effective TSP solutions. 

 

The TSP can be defined as an undirected 

weighted graph, with cities serving as the 

graph's vertices, paths serving as the graph's 

edges, and a path's distance serving as the 

edge's length. It is a minimization problem that 

begins and ends at a specified vertex (node) 

after visiting each other vertex only once. There 

are many conventional graph-based algorithms 

for finding the shortest path, the most common 

of which are Bellman-Ford and Dijkstra's 

algorithms; however, due to their slow 

computational capabilities and routing of a 

single vertex more than once, these algorithms 

could not produce optimal solutions to TSP, 

thereby violating the requirement of TSP [12, 

13]. Meanwhile, improving the convergence 

speed of swarm intelligent algorithms for 

optimal performance is still a work in progress 

[14], hence the need for this effort. 

 

The TSP is formally defined based on the graph 

shown in Figure 1, where the red dots represent 

the set of cities and the blue lines connecting 

them represent the roads which connect them: 

 

TSP Definition: Find the shortest path through 

a series of cities, visiting each only once. 

Input:  A map of cities, roads connecting cities, 

and distances between cities.  

 

Output: A road sequence that will take a 

salesman through each city on the map, 

ensuring that he visits each city exactly once 

and travels the shortest total distance. 

 

The problem outlined above can be approached 

by simply following the four steps below: 

i. Using a mathematical model, 

determine the maximum number of 

tours applicable to the TSP. 

ii. Make a list of every possible path. 

iii. Determine the length (distance or cost) 

of each tour. 

iv. Choose the shortest tour that provides 

the best/optimal solution. 

 

Keeping the above steps in mind, we 

mathematically model and simulate the 

behaviour of virtual ants in this paper to solve 

TSP, using the Nigeria52 dataset, which 

includes latitude and longitude data as well as 

maps of 52 different cities in Nigeria. 

Furthermore, exploitation, exploration, and 

pheromone trails are critical parameters that 

must be properly adjusted to improve the ACO 

algorithm's convergence [14]. The study 

experimentally adjusts these parameters in 

order to achieve the above while modelling TSP 

solutions using the improved ACO. Therefore, 

the objective of this paper is to simulate the 

optimal cost a salesman incurs while touring 52 

major cities in Nigeria using an improved ACO 

algorithm. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of USA showing a set of cities (red dots) and roads connecting them (blue lines)



160   UIJSLICTR Vol. 6 No. 2 June, 2021 ISSN: 2714-3627 

 

 

2.    RELATED WORKS 

In the last few decades, a number of methods 

for solving TSP have been developed, based on 

optimization algorithms and data from various 

sources, with the goal of predicting optimal 

solutions in terms of time, distance, and cost. 

These methods include, but are not limited to, 

the genetic algorithm (GA), the evolutionary 

algorithm, particle swam optimization (PSO), 

the innovative search, ACO, and bee colony 

optimization (BCO) algorithm.  

 

Moon et. al. [15] present a study that uses a GA 

to solve TSP with precedence constraints. In 

this study, they used topological sort to 

determine which vertices should be visited by 

the salesperson. They also provide a new 

crossover operator that is similar to the natural 

moon in many ways, such as the 

implementation of half-moon and full-moon.  

 

This crossover operator chooses a random 

subset from the population and combines it with 

the chosen parents to produce offspring. The 

authors compared their newly developed moon 

crossover (MX) operator to earlier operators 

such as order crossover (OX) and position-

based (PX) operators, discovering that their 

performance is nearly equivalent, but the OX 

and PX operators do not provide optimal results 

for the trials. Their approach is much more 

efficient for small and medium-sized problems; 

however, for larger problems, it provides the 

best solution, but there is no guarantee of 

optimality. One significant limitation of their 

study is that the topological sort they proposed 

for selecting vertices only works when the 

graph does not contain any cycles. 

 

Tsai et. al. [16] proposed the heterogeneous 

selection evolutionary algorithm (HeSEA) for 

solving the large TSP. They first investigated 

the strengths and limitations of several well-

known genetic operators, as well as local search 

methods for TSPs based on solution qualities 

and mechanisms for preserving and adding 

edges. 

 

Shi et. al. [17] presented a novel PSO algorithm 

for solving TSP. When compared to the 

dominant algorithms for solving TSP using 

swarm intelligence, an undetermined searching 

approach and a crossover elimination method 

were used to increase the speed of convergence. 

It has been demonstrated that the presented 

algorithm can solve problems of large size. 

Furthermore, the generalized chromosome 

technique was used to extend the algorithm 

even further. 

 

Li et. al. [18] proposed an improved ACO 

method for solving the TSP. In the study, they 

proposed a selection mechanism based on the 

Held-Karp (HK) lower bound to find the best 

path for TSP. It obtains information from 

pheromone deposition as well as heuristic 

information and employs the HK method to 

determine the best route. 

 

Bifan et. al. [19] proposed ACO algorithm in 

which new ants remember the best solution 

presented thus far. Ants with Memory (AwM) 

was the name given to the model that was 

presented. They did some important work in 

this study, such as introducing previous 

knowledge of the TSP, ant system (AS), and ant 

colony system (ACS), defining the parameters 

used, explaining about AwM and merging them 

in ACS, and then the results were obtained by 

modified ants and comparing the efficiency of 

each algorithm. This algorithm can quickly 

combine into at least a proximate optimal 

solution. The presented algorithm is both 

simple and effective. This algorithm is suitable 

for small and medium-sized problems; 

however, for larger problems, it may trap in 

local optima. 

 

Hlaing and Khine [20] proposed a system based 

on the basic ACO algorithm to improve 

performance in solving TSP using strategies 

such as sound distribution and information 

entropy, which were then applied to the 

configuration policy to modify the prior 

informational parameter. Also, Hlaing and 

Khine [20] further proposed an improved ACO 

algorithm that addresses the problems of high 

cost and solution traps in local optima. To find 

the best solution for TSP, two features are used: 

a candidate set strategy and a dynamically 

updated rule for heuristic parameter based on 

entropy. A number of preferred nodes are stored 

in a static list and in a dynamic candidate list. 

When an ant moves from one node to another, 

it chooses the node that is in the preferred list. 

This strategy is used to set up an ACS’s 

searching scheme on larger data sets. The 
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improvement was based on entropy and the 

convergence of a solution. 

 

Stutzle et al. [21] conducted an experiment on 

computation time, taking different parameter 

values which can boost the performance of an 

algorithm in two ways - prescheduled and based 

on search progress. The two most common 

themes in evolutionary algorithms are 

parameter control and parameter. According to 

Geng et. al. [22], improved adaptive Simulated 

Annealing with greedy search was used for the 

solution of TSP, and they came up with three 

different mutation strategies for the generation 

of new solutions. 

 

Hingrajiya et. al. [23] proposed a novel 

approach to ACO enhancement. In the study, 

they proposed an even distribution of initial 

ants, with at least one ant at each node. This 

expands the search space for solutions and 

increases the likelihood of finding the best 

results. Initially, the ants use heuristic 

information to choose their route. In this case, 

they use a large number of heuristic parameters 

to reduce the effect of pheromones, allowing 

ants to choose other paths in generating 

solutions. It encourages them to choose closer 

cities, which means they are more likely to 

travel along small edges. The study depicts a 

study for preventing stagnation and premature 

convergence by using an even distribution of 

initial ants. 

 

According to Singh and Narayan [24], the BCO 

is used to solve the TSP due to its basic 

mechanism of bee foraging behaviour and its 

efficiency in determining the shortest path 

among various routes. When exploitation is 

desired, a neighbourhood search is useful. It can 

be used after each bee cycle to improve the 

quality of the solutions. Guo et. al. [25] 

investigated and evaluated several ACO 

algorithms that use various improving methods, 

and then synthesize two types of strategies (an 

improvement on solution construction and an 

update of pheromone trails) from them. They 

investigate and demonstrate the effectiveness of 

performance and application of the two 

strategies through experiments. 

 

Panwar and Gupta [26] proposed an improved 

GA for TSP. In their research, they use the 

Euclidean formula to compute the distances 

between various cities visited and create a 

matrix from the data collected. They operate on 

a symmetric TSP, which means that the 

distance between two cities is the same in both 

directions when moving from city A to city B 

and vice versa. They generated a random 

population and then assigned them a fitness 

value, which is used to calculate the distance 

between the cities. Following that, they used the 

tournament selection method to select the best 

population from the given set, and they used the 

two-point crossover method to solve the TSP by 

combining knowledge from heuristic methods 

and GA. Finally, interchange mutation was 

used to create a new population. It appears to 

find better solutions for symmetric TSP, but not 

for asymmetric problems. 

 

Cui and Han [27] describe the foundation of the 

ACO using the TSP problem, its model, 

benefits, and drawbacks. The existing ACO 

understanding process was used in solving TSP, 

and the simulation results show that ACO 

works better than others, with advantages such 

as fast and high precision of convergence speed, 

strong robustness, and many others. However, 

this is only possible if the number of ants is 

small, and the search time will be longer if there 

are more ants. 

 

In their research, Khatter and Gosawmi [28] 

concluded that the GA can be used to solve the 

TSP. Depending on how the problem is 

encoded and which types of crossover and 

mutation methods are used, the GA finds the 

best solution for the TSP. Wei [29] selects the 

best parameter combination by combining the 

efficient selection technique. Use the improved 

ACO in conjunction with the best preservation 

policy ant system, the max-min ant system, ant-

based sorting systems, and the best-worst ant 

system. Then, using the same TSP and 

parameters, perform the performance 

evaluation. The results of the experiment show 

that the planned method of parameter 

combination significantly improves the rate of 

convergence. 

  

Gunduz et al. [9] proposed a new hierarchical 

method for solving the TSP based on swarm 

intelligence algorithms. In the hierarchical 

method, the swarm intelligence algorithms 

implemented combined the optimality 

efficiency of ACO with the time efficiency of 
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artificial bee colony (ABC) algorithm. ACO 

was specifically used to provide a better initial 

solution for the ABC, which used the path 

improvement technique to achieve near-

optimal results. In terms of processing time, the 

authors claimed that combining ACO and ABC 

produces better quality solutions than either 

approach alone. Jiang [30] proposed an ABC 

optimization algorithm to solve TSP in another 

study and demonstrated that the algorithm can 

efficiently and quickly find optimal or 

suboptimal solutions. 

 

Asmar et al. [31] attempt to conduct a 

comparative study using various ACO 

algorithms. The outcomes clearly show that AS 

rank provides the best solutions for the entire 

specified target due to its ability to travel 

around and successfully utilize the solution 

space. They also compare the performance of 

ACO algorithms on the TSP to that of other 

meta-heuristics such as GRASP, Tabu Search, 

GA, and simulated annealing. 

 

Hertono et al. [1] proposed three modifications 

to the TSP method based on the ACO, PSO, and 

3-Opt algorithms. The ACO was used to find 

the optimal solution to TSP while the PSO was 

used to determine the best value of parameters 

used by ACO. The 3-Opt was used at each 

iteration to reduce the total tour length obtained 

by ACO from the feasible, entire, and different 

solutions. The results of implementing the three 

modifications revealed that only the second and 

third modifications provide satisfactory 

solutions, though the second converges at a 

slower rate than the third. 

 

To compensate for the slow convergence and 

low efficiency of traditional ACO in solving 

TSP, Gao [32] proposed a new ACO algorithm 

that allows for the ants' search space to be 

expanded and potential solutions to be 

diversified. To diversify the solution space, a 

strategy of combining pairs of searching ants 

was used, while a threshold constant was 

introduced to reduce the influence of having a 

limited number of ants meeting. The results of 

a comparison with 16 state-of-the-art 

algorithms show that the proposed algorithm is 

a highly suitable method for solving the TSP, 

and its performance is superior to that of most 

algorithms. 

 

Qamar et al. [2] present a novel TSP-solving 

algorithm based on the Best-Worst Ant System 

(BWAS). To improve the display of the TSP 

arrangement, the BWAS algorithm 

incorporated arrangement as a high-level type 

of ACO and PSO-ACO. The results for TSP 

arrangement show that initial trail setup for the 

best particle can result in a considerable 

shortening of the accumulated process of 

optimization. The mathematical test results 

demonstrate the viability of the proposed 

computation over regular ACO and PSO-ACO-

based methods. 

 

Consequently, this study proposed the 

implementation of an improved ACO algorithm 

for solving TSP based on the strengths and 

weaknesses of existing CO algorithms for 

solving TSP and the need to further improve the 

convergence of existing ACO-based methods. 

TSP was envisioned as a graph of well-

connected nodes (i.e., cities) with coordinate x 

and y representing their latitude and longitude 

and using parameter tuning to determine the 

shortest optimal path distance. 

   

 

3.   METHODOLOGY  

  

The ACO was inspired by ant foraging 

behaviour. The ants' behaviour is controlled by 

two main parameters: Alpha (α), which is the 

attractiveness of the pheromone to the ant, and 

Beta (β), which is the ant's exploration 

capability.  If α is very large, the pheromones 

left by previous ants in a particular path will be 

deemed very attractive, causing the majority of 

the ants to divert their paths toward only one 

route, a concept known as exploitation. If β, on 

the other hand, is large, ants are more self-

sufficient in determining the best path, a 

concept known as exploration. The illustrations 

above explain how the traditional ACO 

presented in Algorithm 1 (shown in Figure 2) 

works. 

 

Figure 3 depicts the flowchart of an improved 

ACO modelling paradigm for solving TSP. 

According to Figure 3, an improved ACO for 

TSP searches for the best solution by placing 

each ant on the first node of the TSP graph. 

Initialize parameters such as exploitation (α), 

exploration (β), and pheromone trails (ρ), then 

incrementally construct solution space by 
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applying a state transition rule to each ant to 

build a solution. Pheromone trails are 

continuously updated until all ants have 

constructed a complete solution. While the 

salesman tours the number of cities until the last 

city, the number of iterations is updated 

accordingly to obtain the best solution. TSP can 

be solved in graph theory by locating the 

Hamiltonian cycle with the smallest sum of 

weights for a given complete weighted graph. 

A TSP can be represented by a complete 

weighted graph G= (N, E), where N is the set of 

cities (nodes) and E is the set of edges (paths) 

fully connecting all cities. Each edge (𝑖, 𝑗) ∈ 𝐸 

is assigned a cost 𝑑𝑖𝑗 , which is the distance 

between cities i and j. The 𝑑𝑖𝑗, can be defined 

in the Euclidean space given in Equation (1). 

Algorithm 2 (Figure 4) depicting an improved 

ACO for solving TSP is coined from Figure 3. 

 

𝑑𝑖𝑗 = √(𝑥𝑖 −𝑥𝑗 )
2 + (𝑦𝑖 −𝑦𝑗 )

2      (1) 

 

The improved ACO implementation employs 

the AS variant, in which the movement from 

node i to node j is defined as follows by 

Equation (2): 

𝜌𝑖𝑗
𝑘 (𝑡) = {

𝑟𝑖𝑗
𝛼(𝑡)𝜂𝑖𝑗

𝛽
(𝑡)

∑ 𝜇𝜖Ɲ𝑖
𝑘(𝑡)𝑟𝑖𝜇

𝛼 (𝑡)𝜂
𝑖𝜇
𝛽

(𝑡)
, 𝑖𝑓 𝑗 ∈ Ɲ𝑖

𝑘(𝑡)

0, 𝑖𝑓 𝑗 ∉ Ɲ𝑖
𝑘(𝑡)

   (2) 

 

where 𝜂𝑖𝑗 = 1
𝑑𝑖𝑗

⁄ and α, β ≥ 0  

 𝜌𝑖𝑗
𝑘  = represents the choice probability of ant k 

transferred from position i to position j. 

𝑑𝑖𝑗 = distance between cities/nodes i and j  

𝜏𝑖𝑗  = intensity of pheromone trail between 

cities/nodes i and j  

𝜂𝑖𝑗 = representing the heuristic information to 

travel to the city j from the city i, i.e., the closer 

the city, stronger the wish to visit it.  

𝒩𝑖
𝜅 = set of nodes connected to point i, without 

the last visited point before i, 

𝛼 = parameter that decides the relative control 

or weight of the pheromone trail.  

β = parameter to show visibility when selecting 

the route. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Traditional ACO algorithm. Source: Dorigo et al. [7]. 
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Figure 3. Modelling of an improved ACO for solving TSP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. An improve ACO algorithm for TSP.
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4.   EXPERIMENTAL SETUP, RESULTS 

AND DISCUSSION 

 

4. 1 Experimental Setup 

 

The proposed improved ACO algorithm was 

tested using MATLAB (R2018a) software on a 

GPU-based processor with a processing speed of 

2.70 GHz and 8.00 GB of RAM. In our case, the 

TSP is conceived as a problem of finding the 

shortest tour distance given a list of cities 

represented by their x and y coordinates, each of 

which is visited only once.  The Nigeria52 dataset, 

which maps 52 different cities in Nigeria, was 

used in this study. Nigeria52 dataset was created 

using the Nigeria Cities Database, which can be 

found online at https://simplemaps.com/data/ng-

cities.  The original dataset's attributes include a 

city's latitude, longitude, state, and other variables 

of interest. Appendix 1 contains a list of cities and 

their coordinates (latitude and longitude). The 

implementation was carried out through a process 

of parameter turning during the experiment on 

different values of alpha (α) which represents 

exploitation, beta (β) which represents 

exploration, and pheromone (ρ) in order to 

balance the exploitation-exploration tradeoff. 

Throughout the simulation, a maximum iteration 

rate of 500 epochs was maintained, with a 

maximum colony size of 52. For all simulation 

runs, the Federal Capital Territory, Abuja (Node 

37), is set as the starting point for the salesman's 

tour.  

 

4.2 Experimental Results and Discussion 

 

Table 1 shows the minimum costs (distances) 

obtained for five different simulations at different 

exploitation (α), exploration (β), and pheromone 

(ρ) values. According to Table 1, the optimal 

solution for an improved ACO algorithm 

simulated for solving TSP in this experiment 

based on the Nigeria52 dataset has a minimum 

path length (cost) of 5866.9249, as shown in 

Simulation_1 and Simulation_5 when α = 15 and 

β = 20, respectively. A change in the value of has 

no effect on the optimal cost. The improved ACO 

exhibits fast convergence speed and very good 

global optimization ability when the above 

parameters are tuned, thereby avoiding the 

situation's local convergence. When α = 20 and β 

= 15, the minimum cost is 6573.5154 

(Simulation_2), while when α = β = 15, the 

minimum cost is 6113.4710 and 6743.0167 

(Simulation_3 and Simulation_4), respectively. 

All our experiments show that the improved ACO 

algorithm performs optimally when dealing with 

the TSP. Figure 5-9 provide graphical 

illustrations of the simulation results shown in 

Table 1. 

 

By attempting to solve the TSP, the proposed 

improved ACO algorithm achieved 98% 

precision when compared to the typical 

traditional ACO. The results demonstrate that the 

proposed algorithm can achieve a better solution 

with greater accuracy and less effort. The findings 

of this study are consistent with the cutting-edge 

solutions proposed by Gao [32] and Qamar et al. 

[2]. The implication of the above is that, for the 

52 simulated cities, the proposed improved ACO 

algorithm can find much shorter path lengths. 

 

Table 1. Simulated optimal cost by improved ACO algorithm 

Simulation_id α β ρ Minimum cost (dij) 

Simulation_1 15 20 0.15 5866.9249 

Simulation_2 20 15 0.15 6573.5154 

Simulation_2 15 15 0.08 6113.4710 

Simulation_4 15 15 0.01 6743.0167 

Simulation_5 15 30 0.01 5866.9249 
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Figure 5. Graphical illustration of Simulation_1 result. Parameters: α = 15, β = 20, ρ= 0.15. 

 

 

 

 

Figure 6. Graphical illustration of Simulation_2 result. Parameters: α = 20, β = 15, ρ= 0.15 
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Figure 7. Graphical illustration of Simulation_3 result. Parameters: α = 15, β = 15, ρ= 0.08. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Graphical illustration of Simulation_4 result. Parameters: α = 15, β = 15, ρ= 0.01. 
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Figure 9. Graphical illustration of Simulation_5 result. Parameters: α = 15, β = 20, ρ= 0.01. 

 

5.  CONCLUSION 

In this study, an attempt has been made to proffer 

optimal solution to an age-long intractable TSP 

using an improved ACO algorithm and Nigeria52 

dataset. ACO is a type of meta-heuristic, which 

are approximate algorithms used to solve difficult 

CO problems in a reasonable amount of time. 

ACO is a probabilistic technique for solving 

computational problems that can be reduced to 

locating food paths in a graph. It is based on the 

behaviour of natural ants foraging for food and 

returning to their nest at the end of their journey, 

which is usually via a shorter route. Through the 

process of parameter tuning, our newly 

introduced improved ACO simulated in this study 

exhibits fast convergence speed and very good 

global optimization ability, achieving an optimal 

distance of 5866.9249 and 98% precision. Future 

research should attempt to implement the 

proposed ACO algorithm on larger datasets and 

compare its performance to that of other 

optimization algorithms. 
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Appendix 1 

List of Cities and their Coordinates. 
S/N City Latitude Longitude 

1 Umuahia 29.68 40.60 

2 Yola 12.59 43.40 

3 Uyo 20.27 34.09 

4 Akwa 37.90 20.21 

5 Bauchi 37.15 37.97 

6 Yenagoa 36.30 3.50 

7 Makurdi 1.50 17.00 

8 Maiduguri 59.99 60.00 

9 Calabar 32.15 37.02 

10 Asaba 53.66 54.73 

11 Abakaliki 29.46 49.25 

12 Benin 17.34 32.70 

13 Ado-Ekiti 23.84 15.13 

14 Enugu 35.87 56.22 

15 Gombe 22.88 2.24 

16 Owerri 34.72 33.07 

17 Dutse 22.25 20.26 

18 Kaduna 35.08 19.64 

19 Kano 0.43 0.19 

20 Katsina 26.95 6.37 

21 Birnin Kebbi 57.88 58.29 

22 Lokoja 48.77 25.73 

23 Ilorin 0.00 60.00 

24 Ikeja 47.44 31.38 

25 Lafia 38.04 55.15 

26 Minna 54.86 51.15 

27 Abeokuta 20.56 42.32 

28 Akure 9.22 35.23 

29 Osogbo 15.74 25.13 

30 Ibadan 7.06 2.33 

31 Jos 42.56 31.63 

32 Port Harcourt 38.71 48.24 

33 Sokoto 21.14 51.19 

34 Jalingo 37.21 34.56 

35 Damaturu 49.09 38.99 

36 Gusau 12.86 50.83 

37 Abuja 20.15 28.69 

38 Ijebu Ode 9.98 2.32 

39 Ogbomosho 31.79 42.67 

40 Ilesa 40.40 29.80 

41 Owenna 45.88 10.37 

42 Kabba 37.88 30.07 

43 Sango Ota 42.76 19.83 

44 Zaria 40.61 21.72 

45 Ile Ife 59.99 59.99 

46 Ikere Ekiti 50.93 49.48 

47 Ondo 0.02 30.12 

48 Auchi 3.22 48.96 

49 Warri 59.99 59.99 

50 Oshodi 51.09 31.24 

51 Ikotun 11.04 10.84 

52 Sagamu 60.00 59.99 

 

 

 

 

 

 


