
CONTRACTUAL LIABILITIES IN SOFTWARE TRANSACTIONS: AN
OVERVIEW

M.A. Araromi
Faculty of Law

University of Ibadan, Ibadan
Phone number: 08052236247

Email Address: marcdexa@yahoo.com

Abstract
Software technology has taken an important position in the information
technology environment. Basically, computing equipment may be
useless without putting the softwares to drive it in place. The
development of software has therefore taken a centre stage in the
information technology market. The importance of computer in the
society cannot be underestimated, as virtually all organizations, trades
and professions cannot operate efficiently without having something to
do with computers. Most of these organizations, trades and profession
sometimes need customized softwares to drive their computers. No
doubts, software development seems to be a money making ventures,
especially for experts in this field. However, this juicy advantage may
turn into a daunting nightmare for unguarded software developer who
may not understand the legal terrain in which he operates. It is on this
note that the probable liabilities software developers may incur in the
process of plying his trade are discovered and discussed in this work.

Introduction
It is important to know that information technology has had a far
reaching impact in our society. It can be considered as one of the
instruments of modernization. The introduction of computer in the
early twentieth century has brought about a land slide development in
the information technology world. It is trite that with use of computers
many old things are now being done in a new way and many novel
things are also introduced through the invention of computers. In the
words of Bainbridge D. (2004): computer has had a permeative effect in
virtually every professional, commercial and industrial activity, and
many organizations and establishments would find it difficult, if not
impossible, to function without relying heavily on computers. Many

40 African Journal of Educational Management – Vol. 12, Nos. 2

activities are now being carried out these days with the aid of computer
technology. These activities vary from accounting, computation,
weather forecasting, electronic mailing, electronic commerce, banking,
diagnosis, publishing, record keeping to data analysis, etc. Computer
can also be used as an electronic store house which helps to stock
avalanche of information in the computer memory and other electronic
and magnetic storage media.

Computer hardware, though representing the physical hard
parts or components of the computer, may constitute a mass of useless
substance if the necessary software to drive it to work is not installed
into the memory of the computer. Software refers to a set of programs
or instructions that enables the computer to perform specific tasks or
functions. In other words, software makes the hardware to work.

Software can be of two categories based on the types of
function they perform. These are the Operating Systems (system
software), which controls the working of the computer, and the
Application Software which addresses the multitude of tasks for which
people use computers. An Application Software can also be of two
forms; either a programming software or an application (A.B Adepoju,
2005). The term ‘computer software’ includes computer programmes,
data bases, computer files, preparatory design materials, all manner of
works stores digitally and accessible by computer and associated
printed documentation such as manuals for users (Bainbridge D., 2005).
The scope of the software to be treated in this work will only cover
software programmes. There are different types of contract which can
relate to computer software. These include inter alia contract for the
sale or lease of software; contracts licensing software; contracts for the
maintenance of software (which may be referred to as support
contracts); distribution agreements between manufacturers and
distributors of software; bureau services contracts, where one party
which has computer software supplies computer services or facilities to
a party which does not have its own software (Rowland D. and
Macdonald E., 2000).

Another important differentiating factor in software is the
difference between the bespoke software, i.e. software written for a
particular user, and the software made en-masse and is purchasable off
the shelf by prospective users. This latter software is referred to as
standard software. However, this standard software may be modified

M.A. Araromi 41

to some extent to meet the needs of the individual user. This division
may aid in considering whether a contract for the supply of software
should be regarded as a contract for the sale of goods or the supply of
services (or something else).

There are apparently possible ways in which software can be
protected under the law. These are by patent, under copyright and by
contract. We are mostly concerned with the third method of protection
of software because it is so far the surest way to protect the software
developer’s interest in the software (Michele Rennie M.T., 1991). It is
not unusual that parties to a contract will not always find it smooth
with each other as far as meeting specification and observance of the
terms of the contract are concerned. So there is bound to be conflicts
between the parties in situations like this. This may especially be true of
software development contracts. One particular difficulty with the
software development contract is identifying exactly what the acquiring
party requires. In the words of Staughton L.J in the case of Saphena
Computing Ltd. V Allied Collection Agencies Ltd (1995) FSR 616, he
said:

Just as no software developer can reasonably expect a
buyer to tell him what is required without a process of
feedback and reassessment, so no buyer should expect
a supplier to get his programs right first time. He, too,
needs feedback on whether he has been successful.
This is why the buyer needs to run acceptance tests
using typical business transactions to ensure that each
works correctly. Inevitably, though, some will not. This
may be the supplier’s fault but it is equally possible that
the buyer may have got his requirements wrong, have
expressed them badly or unwittingly have used terms
which were open to different interpretations.
Whatever the cause, the programs have to be modified
and then retested until the correct result is achieved.

 In essence, what the above points signify is that an acquirer
may want particular software tailored to certain specifications, i.e. a
bespoke software, unlike off the shelf software. What he needs do is to
approach a developer of software telling him his needs and
specifications. It is the duty of the supplier or the software engineer or
developer to develop software to meet those specifications. If after the

42 African Journal of Educational Management – Vol. 12, Nos. 2

delivery of the software, the acquirer is not satisfied with it, disputes
may naturally arise. However, software has been described not to be a
commodity which is delivered once and for all, but one which will
necessarily be accompanied by a degree of testing and modification
(Rowland D. and Macdonald E., 2000). It is possible that an acquirer not
satisfied with the delivered software may for the first time of such
delivery bring legal action against the supplier on the ground that the
delivered software does not confirm with specifications and therefore
not fit for the purpose for which it is intended to be used. This is not an
advisable first approach style, rather the software has to be subjected
to modification and testing at intervals before the final delivery. Thus,
the selection of software is the most important part of the planning of a
computer system; this is because it is the software that performs the
basic functions for which the system is acquired (Reed Chris, 1993). It is
therefore important that the selection process of software, especially
bespoke software, should start with the user defining in writing his
needs and requirements. This document can be referred to as the
functional or requirements specification and is a crucial document. The
document will serve as a guide or a standard bearer for the user to be
able to compare with the software delivered to him by the software
developer. In other words, the document will serve as an initial
blueprint for the software developer and the benchmark upon which
his work will be measured. It is therefore important that the user makes
his intention clear to the developer. Thus, in the case of Micron
Computer Systems Ltd V Wang (U.K) Ltd (1990) unreported, 9 May, the
plaintiff’s claim included, inter alia, that the computer system they
bought from the defendant did not provide ‘transaction logging’. It was
observed per Steyn J. as follows:

The acknowledged absence of a transaction logging
facility is not in reality a fault in the system which was
sold. Micron can only complain about its absence if
Micron can establish a contractual term, express or
implied, of an actionable representation, to the effect
that the system included such a facility. In order to
make good its case on transaction logging, Micron must
therefore establish that they made known to Wand
that they required such a facility.

M.A. Araromi 43

The judge went further to hold that Micron (the plaintiff) had not made
its requirement for transaction logging clear to Wang (the defendant),
and accordingly Micron’s claim was bound to fail. It should however be
observed that the subject mater of this suit was that of a system. The
same decision will also be reached if it were software.

After all said and done, it is crucial at this stage to treat the
liability for defective software. One peculiar way of acquiring software
is by licence. The licence sets out what the acquirer could, and could
not, do with the software. Software licensing has been described as a
vehicle by which the acquirer is given rights to use the software
(Rowland D. and Macdonald E., 2000). This phenomenon has also
provided an appropriate approach to the exploitation of software by
the developer. Granting software licence to an acquirer confers certain
rights exercisable on the software by the acquirer, which if not for the
licence such acts could constitute illegality or encroachment upon the
intellectual property right of the developer, which is protectable under
copyright law. Software licence may be exclusive. This means that the
developer cannot make a further grant of licence to another person
where such a licence is granted to an acquirer. This is especially true of
bespoke software. Such software is customized that anybody else
cannot acquire it later. Granting licence in a software contract of this
nature means that the property, or the proprietary interest, in such
software belongs to the developer who retains the source code of the
software but only gives the prepared and readily usable programme
stored in a medium to the acquirer, thus granting the acquirer licence
to use the software based on agreed terms of the contract. In another
way, the software developer may make the grant of the licence non-
exclusive in which case he would have the opportunity to exploit his
work or the software maximally for economic gains.

The crux of software contract is that in most cases the
ownership in the software belongs to or is retained by the developer,
except there is an express term of the contract transferring the
ownership of the software to the acquirer.

In negotiating terms for the formation of software contract, it is
not unusual that there may be exaggerated claims as to the
performance and specification of software and carrying out of
obligations under the contract. This is especially true if the
understanding by the parties of the terms of the contract differs. In

44 African Journal of Educational Management – Vol. 12, Nos. 2

some cases, it may be difficult to know whether the correspondence
that flowed between the parties in form of letters setting out the
client’s requirements or the software developer’s recommendations
constitutes part of the contract, or the terms of the contract are to be
restricted to the ones contained in a formal document constituting the
final agreement between the parties. In order to escape from this
bottleneck, it suffices if the parties can include in their formal written
agreement that the terms, or the entire written agreement, constitute
the whole contract between the parties.

A successful software contract can be achieved only if there is a
full co-operation between the software developer and the client from
the period of the development of the software till the installation. The
required co-operation was emphasized in the case of Anglo Group Plc
Vs Winther Browne & Co. Ltd (2000) 72 Con LR 118. Here the client did
not want a bespoke system and a standard package was delivered
which inadvertently required that the client’s other software systems
would have to be modified to fit with the standard system. Thus, a full
co-operation between the parties was required, especially because the
client did not have a full technical knowledge of a computer
professional. The judge in this case laid down some implied terms that
may be imputed into such a contract thus:
It was an implied term that:

• the purchaser communicates clearly any special needs to the
supplier;

• the purchaser takes reasonable steps to ensure that the
supplier understands those needs;

• the supplier communicates to the purchaser whether or not
those precise needs can be met and if so how they can be met.
If they cannot be met precisely the appropriate options should
be set out by the supplier;

• the supplier takes reasonable steps to ensure that the
purchaser is trained in how to use the system;

• the purchaser devotes reasonable time and patience to
understanding how to operate the system;

• the purchaser and supplier work together to resolve the
problems which will almost certainly occur. If such co-operation
is not present it is likely that the purchaser will not achieve the
desired results from the system.

M.A. Araromi 45

One can safely conclude that the implied terms enumerated by the
learned trial judge are equally important in contracts for the
development of software. Active co-operation of the parties to the
contract is required to enable the parties achieve results. Often time,
software is an abstract phenomenon - it is conceptual in nature, and a
vivid description of the requirements to be met in the software needs
to be drawn. The development of such software needs some
intermittent inspections and trials in order to meet with specifications.
It is important therefore that the parties co-operate effectively to
achieve their desired goals.

Time of delivery of software is also another important term in
software contract. There may be a prior agreement between the client
and the software developer as to the time such software should be
delivered, thereby terminating the contract by way of completion. It is
not unusual that software development may extend beyond the agreed
time of delivery; this occurs especially when the developer is striving to
ensure that the software agree with specifications and special needs of
the client, which may require intermittent checking and test-running of
the software. In a situation like this, the client may agree to extend the
time of delivery of the software. The extension of time may be
evidenced in writing with the new date being firmly stated as a
condition. It is not unusual to find provisions in contracts for late
delivery and late payment. The contract might provide for a specific
amount of money to be paid by the defaulter on a time base. This form
of predetermined amount of money is referred to as liquidated
damages and it is quite different from a penalty. Liquidated damages
are a genuine pre-estimate of loss suffered as a result of the breach.
Penalty on the other hand is meant to punish the erring party and it is
always out of proportion of the damages suffered by the innocent
party. The court will often times refuse to enforce a penalty. It should
be noted that time of payment, unlike time of delivery which is often
termed as a condition, is usually treated as being a warranty unless the
contract states otherwise or the circumstances suggest a different
interpretation (D. Bainbridge, 2004).

It has been stated above that software by its very nature,
especially bespoke software, cannot be boldly delivered as error free
work by the software developer at once. Such software often contains
errors that need to be traced and corrected within a reasonable time.

46 African Journal of Educational Management – Vol. 12, Nos. 2

This issue was considered by the court in the case of Saphena
Computing V Allied Collection Agencies (1995) FSR 616. Here a
contract was terminated on the basis of a breach of contract because of
error in the programs. The Court of Appeal held that it would not be a
breach of contract to deliver software that might initially have errors in
it. The court stated that software was not a commodity that could be
handed over once and for all that it would usually require testing and
further modifications within a reasonable time. This ‘reasonable time’
will only operate where there is no prior agreement between the
parties as to when the corrections are to be effected.

Sometimes error correction services may be available with the
programme which may be at a separate charge. Support or consultancy
services may be available with the more complex programs. Such
services are usually separately chargeable and may constitute a term of
a software developing contract. The support services often cover the
complexities of implementing the program and integrating it into the
client’s operations, as well as ascertaining the cause of operational
difficulties, which may be as a result of hardware or software
malfunction [Edwards Chris et al, 1990].

At this juncture, it is imperative to give a brief exposition on the
ownership of software or programs written by a developer because this
often raises some legal questions. In the absence of any agreement to
the contrary, the ownership of software written by a freelance staff of
an orgnaisation or a software contractor prima facie belongs to the
freelance programmer or the software contractor, as the case may be.
The organisation employing the services of a programmer may want to
own the copyright of a written program or software for its full
exploitation or it may want, on the basis of business strategy, to
prevent its competitors from accessing the program to avoid stifling its
competitive prowess. It is essential therefore that such organisation
includes in its contract for development of software provisions for
determining the ownership of copyright. In the absence of clear
provision of ownership in the contract, the freelance employee
continues to have the ownership of the program and may thus grant
licence to others for its use.

It is plausible that there may be some uncertainty as to the
precise terms of a contract and there is a limit as to how much the
courts may be willing to imply. Uncertainty in the terms of a contract

M.A. Araromi 47

may render the purported contract void and unenforceable. This may
not be palatable for the parties that might have committed some
resources in actualizing or performing the supposed contract. Thus,
taking to litigation in such a situation may not give the best results,
especially where the hands of the court are tied in implying or imputing
terms into the contract, as the court is not expected to dictate terms in
a contract, which must be left to the judgments of the parties to the
contract and must be expressed in clear and definite language. This can
be distilled from the words of HH Judge Richard Seymour QC in the case
of Co-operative Group (CWS) Ltd v International Computers Ltd (2003)
EWHC 1[TCC).

If satisfied that parties did indeed intend to enter into a binding
agreement and sought to do so, it is no part of the function for
the court to seek to frustrate that intention. At the same time it
is no part of the function of the court to impose upon the
parties a contract which they did not, objectively, make for
themselves.

However, the court may have to put into consideration previous cause
of dealing between the parties to provide some clues as to the precise
scope of the parties’ rights and obligations under the contract.
Wherever the terms of a contract are not certain, it could be hazardous
for the party who has committed his resources towards performing
such supposed contract where such a matter is litigated and the court
decides there is no contract in existence. This may be true where the
terms considered as important by the parties have not been objectively
agreed or certain. In some cases, the party who has expended his
resources may be entitled to claim quantum meruit, this may be
possible if the other party has agreed to or at least acquiesced in the
claimant carrying out the work. Be that as it may, litigation will not be
the best option for the parties because it proffers ‘winner takes all’
solution which may truncate the prior good intention of the parties to
enter into a productive contract for a mutual benefit of both parties.

Contractual Liability in Software Contract
A contract cannot confer enforceable rights or impose corresponding
obligations arising under it on any person, except parties to it. Hence,
only parties to a contract may enforce it. This concept is known as
privity of contract. In exceptional circumstances, contracts may be

48 African Journal of Educational Management – Vol. 12, Nos. 2

assigned or novated so that they become enforceable between persons
who are not parties to the original contract. The same legal situations
as stated above are applicable in software contracts. Software
contracts may take two forms, depending on their contents; these are
contracts for the supply of goods or contracts for the provision of
services (Edwards Chris et al, 1990). In contract for the supply of goods,
there is an implied condition that the goods will be of merchantable
quality. The term ‘merchantable quality’ has been described to mean
merely that the goods will be reasonably fit for the purpose for which
such goods are usually supplied but does not extend to fitness for any
unusual or particular purpose. On the other hand, no such condition is
implied in contracts for provision of services, though the conditions
that the services provided will be provided with reasonable skill and
care and in a timely manner can be implied in such contracts (Edwards
Chris et al, 1990). The English law implies strict conditions of quality in
contracts for the supply of goods than it does in the contracts for the
provisions of services. However, strict obligations attached by statutes
to contract for the supply of goods will only apply to software supply
contracts if the software can be described as “goods”. Moreover, there
have been constant academic debates as to the real nature of software
contracts. The practice, however, is to treat each case with its merits,
i.e. whether such a contract is a contract for the supply of goods or
provision of services will depend on the facts of each case. Thus, if
software is provided as a component of a contract under which
computing equipment and other goods are also provided, such a
contract can be categorized as a contract for the supply of goods. On
the other hand, if a software developer is engaged to write software to
a particular specification, the software is most likely to be categorized
as a product of a contract for the provision of services. Consequently,
the English strict condition of quality in contracts for the supply of
goods may not apply.

Conditions, Warranties and Other Terms in Software Contracts
A condition is a term of a contract that goes to the root of such contract
and its breach can give the injured party an option to treat the contract
as terminated. Warranty, on the other hand, may be only subsidiary to
the main purpose of the contract; even though it is an important term
of the contract in its own respect, it can only give the injured party a

M.A. Araromi 49

right to damages. ‘Innominate or intermediate term’ was evolved by
the court in recent times and it is a hybrid between a condition and a
warranty, a breach which could lead either to damages or to
repudiation, depending on the effects of the breach. Thus if the breach
is so devastating as to deprive the injured party of substantially the
whole benefit as was intended from the contract, the remedy would be
repudiation for the contract, otherwise it would be damages (Sagay I.E.,
1997). It must be noted that the same legal regime as it is applicable to
other regular contracts is also applicable to software contract. The
terms of contract as expressed above will obviously apply in software
contracts. It is however a common practice in the information
technology industry, especially in the developed world, like the U.K, for
suppliers to seek to limit or entirely exclude their liability for damages
for breach of contract. In such a situation, breach of a warranty which
usually gives rise to a claim of damages will be of no value to the
injured party, whereas the right to treat the breach as condition which
entitles the injured party either to withhold payment or to reclaim
payment already made is a more effective remedy. Under the common
law rule, the commonest exclusions or limitation of liability clause can
be linked to a breach of description or quality of software, thus it is
particularly common to exclude all liability for loss consequential on a
breakdown or malfunctioning of the software or equipment it is used to
drive (Reed Chris, 1993). The exclusion clause under the common law
rule is strictly interpreted. The agreement under which it reflects must
be contractually binding on the buyer. It is most easily effected if it is
contained in a written contract signed by “the buyer”.

Aside the distinction between conditions, warranties and
innominate terms, there is the possibility that a subsidiary agreement,
either between the parties to the contract or between one of them and
a third party, may be a collateral contract related to, but independent
of, the principal contract. A collateral might arise if a user before
demanding for an equipment from a manufacturer asks the software
house if particular software developed by the software house will be
suitable for running on the equipment. If the software house gives its
assurance of the quest and the user relied on this in buying the
equipment, the only parties to the contract of purchase of the
equipment will be the equipment manufacturer and the user.
Therefore, the user cannot complain to the equipment manufacturer

50 African Journal of Educational Management – Vol. 12, Nos. 2

that he relied on the faulty recommendation of the software house for
purchasing the equipment. However, a court may input a collateral
contract as being in existence between the user and the software
house. In such a circumstance, although the user could not set aside
the equipment purchase contract, it might then be able to recover from
the software house the losses incurred in reselling the equipment
basing its claim on a breach by the software house of its collateral
contract as to compatibility between the equipment and the software
required.

Repudiatory Breach of Software Development
Apart from a breach of condition which goes to the root of a contract
and a breach of warranty which gives the innocent party an opportunity
not to repudiate the contract but only to obtain damages for the
breach, there is also another breach which may occur in software
contract which is known as repudiatory breach. This breach occurs
where a party either expressly or impliedly refuses to be bound by his
obligations under the contract, or takes a voluntary step which disables
him from performing the contract in accordance with its terms
(Edwards Chris et al, 1990). For instance, if a software house was
contracted to develop an application for the working of a particular or a
unique machine disposed of the machine that it makes it impossible to
develop such software any longer, such a software house could be said
to have repudiated the contract. In such a case, the other party who
has requested for the services of the software house to develop the
software may affirm the contract and continue to request for its
performance, or he may choose to treat the contract as terminated. In
either case, the client has additional right to claim damages, unless the
contract included a provision which effectively excused the software
house from all liability for damages in any event (Edwards Chris et al,
1990).

Termination due to Frustration
Frustration occurs whenever the law recognizes that without the fault
of either party a contractual obligation has become incapable of being
performed, because a change of circumstances makes it legally,
physically or commercially impossible to fulfil the contract.

M.A. Araromi 51

In other words, a contract may be discharged by frustration. Frustration
occurs when some underlying fundamental fact or condition on which
the contract has been based changed or ceased to exist. This common
law rule is also applicable in software contracts. This is especially true
where there is accidental loss or destruction of the equipment on which
the software to be made is to run, especially where such an equipment
is unique.

Standard of Care in Software Development
 Though there are standards of care for doctors, lawyers, architects and
other professionals, but no generally accepted standard has yet been
established in development of softwares. Standards of good practice in
the software industry continue to change by the day and this makes it
difficult to identify at a particular point in time a reasonable required
standard. However, proper system of working, quality assuring
software product and diligence in creation of the software are
necessary to avoid liability for negligence.

The Consumer Protection Act 1987 of the U.K. passed in
compliance with an European Economic Community Directive on
defective products has created a new strict liability for certain classes of
damage caused by defective products. For this purpose, the U.K Act
defined product “any good or electricity”. There has been no consensus
as of damage as to whether software falls within this definition. Be that
as it may, the approach to be adopted in treating software cases or
contractual matters will depend on individual view of the facts of each
case, i.e. each case must be treated on its own merits, as earlier stated.
It is suggested that software development contract should not be
generally placed under the burden of strict liability, as doing so will mar
the interest of developers in venturing into this exercise when they
weigh their accruing benefits vis-ą-vis the apparent risks. This may stifle
growth in this area of technology and it can spell doom to technology
development of many nations, especially the developing jurisdiction,
considering the fact that supply of software is apparently a new
phenomenon compared to other products. The issue of bespoke
software is another stead where strict liability can be considered
compared to on the shelf software. When making a bespoke software,
the developer must act with care and diligence to ensure accuracy in
carrying out the biddings of the user. Though it is not always the case

52 African Journal of Educational Management – Vol. 12, Nos. 2

that software will accurately meet specifications at first attempt, but
the developer must make sure that at every delivery such software will
not cause any damage to the user’s hardwares or data. Rather than
importing strict liability into software contracts, the liability of the
developer should be base on ‘reasonable standard of care’ expected of
a developer, and this should go in line with the standard of practice of
software development required in the trade which changes with time.

Conclusion
The importance of software and its development cannot be
underestimated in the world of technology. Many computing
equipment are operating on the power of driving softwares which
make such equipment mass of empty figures without the availability of
the required softwares to spur them into actions. Many computer
applications cannot be carried out if the necessary softwares are not in
place to facilitate them. The use of computer in virtually every
establishment cannot be over emphasized, even in educational
institutions. Many schools have adopted the use of softwares for
registration of students; recording and computing students’ results,
provision of students’ transcripts, etc. Hence, manual way of collecting
data and computation is frizzling out. Therefore, computer software
has in no small measure promoted technology development which has
given the society at large a soaring profile in the area of advancement.
As such, there have been constant demands for softwares and
software-related services in this technology-driven world, so much so
that such demands are fast out running physical computation
equipment. As investments in softwares and software-related services
are increasing, so is the need to safeguard the intellectual property
rights of the software developers and/or owners. Also, there is a dare
need to protect the software developers from unsolicited claims on
their accrued profits from their software development exercise. As
Christ Edwards et al, (1990) puts it: just as investments in software, and
returns on these investments, are increasing, so is the risk of claims
arising and converting potentially profitable investment into a loss-
making liability. Success in software marketing can no longer be hinged
upon marketing skill, but also on the risk management skills. Therefore,
those who develop and market software need to be abreast with the
constant changes in laws relating to information generally, and trade

M.A. Araromi 53

practices in that area. Unlike the later, changes in the law may be
unexpected, and may have unexpected consequences for those
involved with information technology (Chris Edwards, et al 1990).
Though a good law does not operate retrospectively, there may be
constant need for software developer to be conversant with his legal
environment, as this will avoid his being caught unawares.

References
Adepoju A.B (2005). Computer and Computer Use Made Easy for

Beginners, 1st Ed., Atman Publisher Ltd, Osun State
Bainbridge D. [2004). Introduction to Computer Law, 5th Ed. Pearson

Education Ltd, England.
Edwards Chris et al, (1990). Information Technology and the Law 2nd Ed,

Macmillan Publishers Ltd, Great Britain.
European Union Council Directive of 25th July 1985 on Product Liability.
Michele Rennie M.T. (1991). Computer Contracts Handbook, 2nd Ed.

Sivect and Maxwell, London.
Reed Chris (1993). Computer Law, 2nd Ed., Blackstone Press Ltd,
London.
Rowland, D. and Macdonald, E. (2000). Information Technology Law, 2nd

Ed. Cavendish Publishing Ltd, London Sydney.
Sagay I.E. (1997). Nigerian Law of Contract, Ed. Spectrum Books Ltd.
Sales of Goods Act (1979) of the U.K.
Supply of Goods and Services Act 1982 of the U.K.

