Asymptotic Behaviour of The Heat Equation as The Solution of The Black-Scholes Model

A. O Akeju ${ }^{1}$

Abstract We carry out the reduction of the Black - Scholes equation via series of transformations to obtain the heat equation by reversing the direction of time,so that the pay-off of the Black-Scholes become the initial value condition of the heat equation. The solution of the obtained heat equation is generalized as the solution of the Black-Scholes equation.Here we examine the 1-dimensional case and its extension to the multi-dimensional case.

Keywords:Black-Scholes Equation,Heat Equation,Ito's Formula.
Mathematics Subject Classification (2010) : 35K10,35K35,60H15

Introduction

The Black-Scholes equation has a passing similarity to the more common heat equation.The solution to the Black -Scholes equation subject to a general payoff function $C\left(S_{T}, T\right)=f\left(S_{T}\right)$ at the expiry date T for a general European payoff assuming that the drift Volatility and interest rate are both constant, can be obtained [1].By a series of transformations,the Black-Scholes equation can be reduced to the heat equation which implies that the derivative price can be obtained by first solving the equation with initial condition $A(x, 0)=f(x)$. Once the Black -Scholes equation has been transformed to the heat equation, then the solution of the heat equation becomes the solution of the Black -Scholes equation .In [7],the analytical solution of the fractional Black-Scholes Equation is calculated using the Laplace transform. [6] provide a solution to the price of an Option on a dividend paying equity with the aid of general Fourier transformation when the parameters in the Black-Scholes PDE are time dependent.We consider a case of multiple underlying assets.

[^0]
The Model

We consider assets paying a known dividend rate q_{i} for each asset i which possess a SDE [4]
$d s_{i}(t)=\left(r-q_{i}\right) S_{i}(t) d t+\sum_{i, j=1}^{n} \sigma_{i, j} S_{i}(t) d W_{j}(t)$
Let $V \in C^{2,1}\left(\mathbb{R}^{n} X[0, T]\right)$ be a continuous function with continuous partial derivatives, then we obtain the Ito's-formula

$$
\begin{align*}
d V=(& \frac{\partial v}{\partial t}+\sum_{i=1}^{n}\left(r-q_{i}\right) S_{i} \frac{\partial v}{\partial S_{i}} \\
& \left.+\frac{1}{2} \sum_{j, k=1}^{n} \sigma_{i, k} \sigma_{j, k} S_{i} S_{j} \frac{\partial^{2} V}{\partial S_{i} S_{j}}\right) d t+ \\
& \sum_{j=1}^{n} \sigma_{i, j} S_{i} \frac{\partial V}{\partial S_{i}} d W_{j}(t) \tag{2}
\end{align*}
$$

If we form a portfolio Π consisting of one option V and Δ_{i} of the underlying assets S_{i} by shorting the contingent claim (option) V and long Δ_{i} unit of the underlying assets S_{i}, we obtain the Multi-dimensional Black-Scholes formula for asset paying cer-
tain known dividend.

$$
\begin{align*}
& \frac{\partial v}{\partial t}+\frac{1}{2} \sum_{i, j=1}^{n} C_{i, j} S_{i} S_{j} \frac{\partial^{2} V}{\partial S_{i} S_{j}} \\
& +\sum_{i=1}^{n}\left(r-q_{i}\right) S_{i} \frac{\partial v}{\partial S_{i}}-r V=0 \tag{3}
\end{align*}
$$

with terminal condition $V\left(S_{1}, \ldots S_{n}, T\right)=P\left(S_{1}, \ldots, S_{n}\right), 0 \leq S_{i} \leq \infty$ We attempt to derive the heat equation from the Black-Scholes by series of transformation.
Let $x_{i}=\ln \left(s_{i}\right)$, then $\frac{\partial x_{i}}{\partial S_{i}}=\frac{1}{S_{i}}$ and

$$
\begin{aligned}
& \frac{\partial v}{\partial S_{i}}=\frac{\partial v}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial S_{i}}=\frac{1}{S_{i}} \frac{\partial v}{\partial x_{i}} \\
& \Longrightarrow \frac{\partial v}{\partial x_{i}}=S_{i} \frac{\partial v}{\partial S_{i}} \\
& \text { Also, }
\end{aligned}
$$

$$
\frac{\partial^{2} v}{\partial S_{i} \partial S_{j}}=-\frac{1}{S_{i} S_{j}} \frac{\partial v}{\partial x_{i}}+\frac{1}{S_{i} S_{j}} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}
$$

Substitute these into the equation (3),we have

$$
\begin{align*}
& \frac{\partial v}{\partial t}+\frac{1}{2} \sum_{i, j=1}^{n} C_{i, j} S_{i} S_{j}\left[-\frac{1}{S_{i} S_{j}} \frac{\partial v}{\partial x_{i}}+\right. \\
& \left.\frac{1}{S_{i} S_{j}} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}\right]+\sum_{i=1}^{n}\left(r-q_{i}\right) \frac{\partial v}{\partial x_{i}}-r V=0 \tag{4}
\end{align*}
$$

Re-arrange and simplify, we have

$$
\begin{align*}
\frac{\partial v}{\partial t} & +\frac{1}{2} \sum_{i, j=1}^{n} C_{i, j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \\
& +\sum_{i=1}^{n}\left(r-q_{i}-\frac{1}{2} C_{i, j}\right) \frac{\partial v}{\partial x_{i}}-r V=0 \tag{5}
\end{align*}
$$

This expression is equivalent to

$$
\frac{\partial v}{\partial t}+\frac{1}{2} D_{s}^{T} C D_{s} V+b D_{s} V-r V=0=(6)
$$

Where,

$$
D_{s}=\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\cdot \\
\cdot \\
\dot{\partial} \\
\frac{\partial x_{n}}{}
\end{array}\right], b=\left[\begin{array}{c}
r-q_{1}-\frac{1}{2} C_{1, j} \\
\cdot \\
\cdot \\
\cdot \\
r-q_{n}-\frac{1}{2} C_{n, j}
\end{array}\right]
$$

C is a positive definite matrix.If there exist orthonormal matrix B such that
$B C B^{T}=D=\left[\begin{array}{lllll}\lambda_{1} & - & - & - & 0 \\ \cdot & & & \\ \cdot & & & \\ \dot{0} & & & & \\ 0 & - & - & - & \lambda_{n}\end{array}\right] \geq 0$ where
$\lambda_{1},---\lambda_{n}$ are the eigenvalues of C with corresponding eigenvector

$$
\vec{\xi}=\left[\begin{array}{c}
\xi_{i 1} \\
\cdot \\
\cdot \\
\cdot \\
\xi_{i n}
\end{array}\right]
$$

If we use the change of variable $\vec{Z}=B \vec{s}$,so that
$D_{s}=B^{T} D_{z}$ and $D_{s}^{T}=B D_{z}^{T}$, then the equation (6)become

$$
\begin{equation*}
\frac{\partial v}{\partial t}+\frac{1}{2} B D_{z}^{T} C B^{T} D_{z} V+b^{T} B^{T} D_{z} V-r V=0 \tag{7}
\end{equation*}
$$

$\frac{\partial v}{\partial t}+\frac{1}{2} D_{z}^{T}\left(B C B^{T}\right) D_{z} V+(B b)^{T} D_{z} V-r V=0$
with $V\left(Z_{1}---Z_{n, T}=P\left(Z_{1}---Z_{n}\right)\right.$, the terminal condition, we have
$\frac{\partial v}{\partial t}+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \frac{\partial^{2} V}{\partial Z_{i}}+\sum_{i=1}^{n}\left(\xi^{T} \vec{b}\right) \frac{\partial v}{\partial Z_{i}}-r V=0$
with terminal condition assumed to be the Dirac delta function.

Let $V=\exp \left(W^{T} T+\beta(T-t)\right) W$
Differentiating V with respect to t and Z_{i}, we obtain
$\frac{\partial w}{\partial t}+\sum_{i=1}^{n}\left[\lambda_{i} w_{i}+\left(\xi^{T} \vec{b}\right)\right] \frac{\partial w}{\partial Z_{i}}+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \frac{\partial^{2} w}{\partial Z_{i}}$ $-\left[r+\beta-\frac{1}{2}\left(W^{T} D W\right)-\vec{b}^{T} B^{T} \vec{w}\right] w=0$

If $w_{i}=-\frac{1}{\lambda_{i}}\left(\xi^{T} \vec{b}\right)$ and
$\beta=-r+\frac{1}{2}\left(W^{T} D W\right)+\vec{b}^{T} B^{T} \vec{w}$, then we obtain an equation without $\frac{\partial w}{\partial Z_{i}}$

$$
\begin{equation*}
\frac{\partial w}{\partial t}+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \frac{\partial^{2} w}{\partial Z_{i}}=0 \tag{11}
\end{equation*}
$$

which is a Heat equation.

Solution of The Heat Equation

Let W_{t} be a standard Brownian motion.If we consider a function $f\left(x+w_{t}\right)$,such that $f \in C^{2,1}\left(\mathbb{R}^{n},[0, T]\right)$, by Ito's formula
$d f\left(x+w_{t}\right)=\frac{\partial f\left(x+w_{t}\right.}{\partial w_{\tau}}+\frac{1}{2} \frac{\partial^{2} f\left(x+w_{t}\right)}{\partial w_{\tau}^{2}} d \tau$
Here, we assume x to be a parameter.If we integrate with respect to τ, we have

$$
\begin{gather*}
f\left(x+w_{\tau}\right)=f(x)+\int_{0}^{\tau} \frac{\partial f}{\partial w_{s}} d w_{s} \\
\quad+\frac{1}{2} \int_{0}^{\tau} \frac{\partial^{2} f\left(x+w_{s}\right)}{\partial w_{s}^{2}} d s \tag{13}
\end{gather*}
$$

where $f\left(x+w_{\tau}\right)=f(x)$ at $t=0 \Longrightarrow w_{\tau}=0$ If we differentiate $f\left(x+w_{\tau}\right)$ with respect to x, we have
$d f\left(x+w_{t}\right)=\frac{\partial f\left(x+w_{\tau}\right.}{\partial x} d x+\frac{1}{2} \frac{\partial^{2} f\left(x+w_{\tau}\right)}{\partial x^{2}} d x$

Comparing (12) and(14), we have

$$
\begin{align*}
f(x & \left.+w_{\tau}\right)=f(x)+\int_{0}^{\tau} \frac{\partial f\left(x+w_{s}\right)}{\partial x} d w_{s} \\
& +\frac{1}{2} \int_{0}^{\tau} \frac{\partial^{2} f\left(x+w_{s}\right)}{\partial x^{2}} d s \tag{15}
\end{align*}
$$

Taking expectation of both sides of (15),we have
$E\left(f\left(x+w_{\tau}\right)=f(x)+\frac{1}{2} \int_{0}^{\tau} \frac{\partial^{2} E\left[f\left(x+w_{\tau}\right)\right]}{\partial x^{2}} d s\right.$
Since $E\left(d w_{s}\right]=0$.
Let $A(x, \tau)=E\left(f\left(x+w_{\tau}\right)\right.$, then

$$
\begin{equation*}
A(x, \tau)=f(x)+\frac{1}{2} \int_{0}^{\tau} \frac{\partial^{2} A(x, \tau)}{\partial x^{2}} d s \tag{16}
\end{equation*}
$$

Differentiate (16) with respect to τ, we obtain

$$
\frac{\partial A(x, \tau)}{\partial \tau}=\frac{1}{2} \frac{\partial^{2} A(x, \tau)}{\partial x^{2}}
$$

which is also the Heat equation [5].If we evaluate $A(x, \tau)$ at $\tau=0$, we have

$$
\begin{aligned}
A(x, 0) & =E\left[f\left(x+w_{0}\right)\right. \\
& =E[f(x)] \\
& =f(x)
\end{aligned}
$$

Hence $A(x, \tau)$ satisfied the initial condition $A(x, 0)=f(x)$.

Result

Let $\tau \in[0, T], A \in C^{2,1}\left(\mathbb{R}^{n},[0, T)\right)$.If $A(x, \tau)$ satisfied the heat equation (PDE) subject to the initial condition [2]
$A(x, 0)=f(x)$, then

$$
\begin{aligned}
A(x, \tau) & =E\left[f\left(x+\sigma w_{\tau}\right)\right. \\
& =\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(x+\sigma \xi) e^{-\frac{\xi^{2}}{2 \tau}} d \xi
\end{aligned}
$$

Proof;
Let

$$
\begin{aligned}
A(x, \tau)= & E\left[f\left(x+\sigma w_{\tau}\right)\right. \\
= & E\left[f(x)+\int_{0}^{\tau} \frac{\partial f\left(x+\sigma w_{\tau}\right)}{d x} d w_{s}\right. \\
& \left.\quad+\frac{1}{2} \int_{0}^{\tau} \frac{\partial^{2} f\left(x+\sigma w_{\tau}\right)}{\partial x^{2}} d s\right] \\
= & f(x)+\frac{1}{2} \sigma^{2} \int_{0}^{\tau} \frac{\partial^{2} E\left[f\left(x+\sigma w_{s}\right)\right]}{\partial x^{2}} d s \\
& \frac{\partial A(x, \tau)}{d t}=\frac{1}{2} \sigma^{2} \frac{\partial^{2} A(x, \tau)}{\partial x^{2}}
\end{aligned}
$$

Next, we show that $A(x, \tau)=E\left[f\left(x+\sigma w_{\tau}\right)\right]$ satisfies the heat equation as follows

$$
\begin{aligned}
A(x, \tau) & =E\left[f\left(x+\sigma w_{\tau}\right)\right] \\
& =\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(x+\sigma \xi) e^{\frac{-\xi^{2}}{2 \tau}} d \xi
\end{aligned}
$$

Let $x+\sigma \xi=\eta, d \xi=\frac{d \eta}{\sigma}$, then

$$
\frac{\partial^{2} A}{\partial x^{2}}=\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(\eta) \frac{-1}{\sigma^{2} \tau} e^{-\frac{(\eta-x)^{2}}{2 \tau \sigma^{2}}} \frac{d \eta}{\sigma}
$$

$$
+\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(\eta) \frac{(\eta-x)^{2}}{\sigma^{4} \tau^{2}} e^{-\frac{(\eta-x)^{2}}{2 \tau \sigma^{2}}} \frac{d \eta}{\sigma} \quad A\left(x_{i}, 0\right)=F\left(e^{x_{i}}\right)
$$

Comparing $\frac{\partial A}{\partial \tau}$ and $\frac{\partial^{2} A}{\partial x^{2}}$, we observe that

$$
\frac{\partial A}{\partial \tau}=\frac{1}{2} \sigma^{2} \frac{\partial^{2} A}{\partial x^{2}}
$$

$$
\begin{aligned}
& A(x, \tau)=\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(\eta) e^{-} \frac{\left(\frac{\eta-x}{\sigma}\right)^{2}}{2 \tau} d \eta \sigma \\
& =\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(\eta) e^{-\frac{(\eta-x)^{2}}{2 \tau \sigma^{2}}} \frac{d \eta}{\sigma} \\
& \frac{\partial A}{\partial \tau}=-\frac{1}{2 \sqrt{2 \pi} \tau^{\frac{3}{2}}} \int_{-\infty}^{\infty} f(\eta) e^{-\frac{(\eta-x)^{2}}{2 \tau \sigma^{2}}} \frac{d \eta}{\sigma} \\
& +\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(\eta) \frac{(\eta-x)^{2}}{2 \tau \sigma^{2}} e^{-\frac{(\eta-x)^{2}}{2 \tau \sigma^{2}}} \frac{d \eta}{\sigma} \\
& =\frac{1}{\sqrt{2 \pi \tau}} \int_{-\infty}^{\infty} f(\eta) \frac{(\eta-x)}{\sigma^{2} \tau} e^{-\frac{(\eta-x)^{2}}{2 \pi \sigma^{2}}} \frac{d \eta}{\sigma}
\end{aligned}
$$

Now, we could solve for the derivative price $V\left(s_{1}, \ldots, s_{n}\right)$ subject to the terminal condition $V\left(s_{1}, \ldots, s_{n}, T\right)=F\left(s_{1}, \ldots, s_{n}\right)$ where $F\left(s_{1}, \ldots, s_{n}\right)$ is a prescribed function that is the payoff function of the derivative.
$T-t=\tau, \quad$ if $\tau=0$ then $T=t$ for the terminal payoff function of the derivative to be an initial condition for $A(x, t)$.If we follow through the various transformation, we observe that the relationship between $V\left(s_{1},---, s_{n}, T\right)$ and $A\left(x_{1} \ldots, x_{n}, \tau\right)$ is

$$
\begin{aligned}
V\left(s_{1}, . ., s_{n}, T\right) & =\alpha\left(s_{1}, \ldots, s_{n}, \tau\right) \\
& =\beta\left(s_{1}, \ldots, s_{n}, \tau\right) e^{-r \tau} \\
& =\gamma\left(\ln \left(\left(s_{1}, \ldots, s_{n}\right), \tau\right) e^{-r \tau}\right) \\
& =A\left(\ln \left(s_{1}, \ldots, s_{n}\right)\right. \\
& \left.+\left(r-\frac{1}{2} \sum_{j=1}^{n} C_{i, j}\right) \tau, \tau\right) e^{-r \tau}
\end{aligned}
$$

In particular, the derivative payoff function can be written as

$$
\begin{aligned}
F\left(s_{1}, . ., s_{n}\right) & =V\left(s_{1}, \ldots, s_{n}, T\right) \\
& =A\left(\ln \left(s_{1}, . ., s_{n}\right), 0\right), \tau=0, T=t
\end{aligned}
$$

Hence, the initial condition on $A\left(x_{i}, \tau\right)$ at $\tau=0$ is ,
$A\left(x_{1}, \ldots, x_{n}, 0\right)=F\left(e^{x_{i}}\right), \quad i=1,2 \ldots n$
For example, in the case of a call option on multiple assets, we have
$A\left(x_{i}, 0\right)=\max \left(e^{x_{i}}-k, 0\right) \quad i=1 \ldots n$ as the payoff.
For heat equation with initial conditions,

$$
\begin{aligned}
A\left(x_{i}, 0\right) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F\left(e^{x_{i}}+\sigma \sqrt{i} \xi\right) e \frac{-1}{2 \xi^{2}} d \xi_{i} \\
& =\frac{1}{\sqrt{2 \pi}} \Pi_{i=1}^{n} \int_{-\infty}^{\infty} F\left(e^{x_{i}}+\sigma \sqrt{i} \xi\right) e \frac{-1}{2 \xi^{2}} d \xi_{i}
\end{aligned}
$$

Using the value of $A\left(x_{i}\right)$,we can write the derivative price as

$$
\begin{aligned}
V\left(s_{1}, ., s_{n}, T\right)= & A\left(\left(\operatorname{In}\left(s_{i}, . ., s_{n}\right)+\right.\right. \\
& \left.\left.r-\frac{1}{2} \sum_{j=1}^{n} C_{i, j}\right) \tau, \tau\right) e^{-r \tau} \\
= & \Pi_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F\left[e \left(\operatorname{In}\left(s_{i}, ., s_{n}\right)\right.\right. \\
+ & \left(r-\frac{1}{2} \sum_{j=1}^{n} C_{i j}\right) \tau \\
+ & \sigma \sqrt{i} \xi)] e \frac{-1}{2 \xi^{2}} d \xi_{i} \\
= & \Pi_{i=1}^{n} \frac{e^{-r \tau}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F\left(S_{i} e^{r \tau+\sigma \sqrt{\tau} \xi}\right. \\
- & \left.\frac{1}{2} \sum_{j=1}^{n} C_{i, j} \tau\right) e \frac{-1}{2 \xi^{2}} d \xi_{i}
\end{aligned}
$$

$$
=\Pi_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F\left[e \left(\operatorname{In}\left(s_{i}, ., s_{n}\right)_{\text {at time } t=0 \text { can be determined with our }}^{\text {The out }}\right.\right.
$$

At $t=0$, we obtain the initial price of the derivatives
$V\left(s_{1}, . ., s_{n}\right)=\Pi_{i=1}^{n} \frac{e^{-r \tau}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F\left(S_{i}(0) e^{r \tau+\sigma \sqrt{\tau \xi}}\right.$ Meries.Bocconi University Press.pp int ind 494

$$
\left.-\frac{1}{2} \sum_{j=1}^{n} C_{i, j} T\right) e \frac{-1}{2 \xi^{2}} d \xi_{i}
$$

We observe that the present value of the derivative depends on the expiry date T , the initial asset price $S_{i}(0)$, the volatility $C_{i, j}$,the risk free interest rate r and the specification of the payoff function $F\left(S_{i}(T)\right)$.The derivative price can also be written in terms of expectation
$V\left(s_{1}, \ldots, s_{n}\right)=e^{-r T} \Pi_{i}^{n} E\left[F\left(S_{i}(T)\right)\right.$
$=e^{-r} E\left[\left(F\left(S_{1}(T)\right)\right) E\left(\left(S_{2}(T)\right)\right) . . E\left(F\left(S_{n}(T)\right)\right)\right][$ where

$$
\begin{aligned}
& S_{i}(T)=S_{i}(0) e^{-r T+\sigma \sqrt{T \xi_{i}}-\frac{1}{2} \sum_{j=1}^{n} C_{i, j} T} \\
& \quad=S_{i}(0) e^{-r T+\sigma W_{i}(T)-\frac{1}{2} \sum_{j=1}^{n} C_{i, j} T}
\end{aligned}
$$

$W_{i}(T)$ is a random variable $\sim N(0, T)$ with respect to some new probability measure p called the risk-neutral measure [3]. $S_{i}(T)$ is the value of the derivative at time T for each underlying asset.
$F\left(S_{i}(T)\right)$ is the payoff function of the derivative with respect to each underlying asset.

Conclusion

 solution.For a call option that delivers S_{T} at time T, that is $F\left(S_{T}\right)=S_{T}$ for instance, $C_{0}=e^{-r T} E\left[F\left(S_{T}\right)\right]$, with S_{T} define earlier $C_{0}=e^{-r T} E\left[S_{T}\right]$ $C_{0}=S_{0}$ which is what we expect.
References

[1] Andrea Pascucci (2011).PDE and Martingale
[2] Barucci,E.,Polidoro,S.,and Vespri,V.(2001). Some Result on Partial Differential Equations and Asian Options.Math Models Methods Appl.Sci $11,3,475-497$
[3] Bensoussan,A.(1984) .On the theory of option pricing. Acta Appl,Math 2, 2139-158
[4] Black,F.and Scholes,M.(1973). The pricing of option and corporate liabilities. J.Political Economy 81,637-654
[5] Friedman.A.1964.Partial differential equations of Parabolic Type.Prentice Hall Inc.Englewood Cliffs,N.J,
[6] Marianito.R.Rodrigo and Rogemar.S.Mamoh.(2006)
Applied Mathematics Letter,19, 398-402
[7]Sunil Kumar,A.Yildirim,.(2012).Analytical Solution of Fractional Black-Scholes European Option Pricing Equation by Using Laplace Transform.Journal of Fractional Calculus and Applications.Vol.2, No8, pp1-9.

[^0]: ${ }^{1}$ A.O Akeju
 Department of Mathematics
 University of Ibadan.Ibadan,Nigeria
 ao.akeju@ui.edu.ng

