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Asymptotic Behaviour of The Heat Equation as The Solution of The
Black-Scholes Model

A.O Akeju 1

Abstract We carry out the reduction of the Black - Scholes equation via series of transformations to

obtain the heat equation by reversing the direction of time,so that the pay-off of the Black-Scholes become

the initial value condition of the heat equation.The solution of the obtained heat equation is generalized

as the solution of the Black-Scholes equation.Here we examine the 1-dimensional case and its extension

to the multi-dimensional case.
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Introduction

The Black-Scholes equation has a pass-
ing similarity to the more common heat
equation.The solution to the Black -Scholes
equation subject to a general payoff func-
tion C(ST , T ) = f(ST ) at the expiry date
T for a general European payoff assuming
that the drift Volatility and interest rate
are both constant,can be obtained [1].By a
series of transformations,the Black-Scholes
equation can be reduced to the heat equa-
tion which implies that the derivative price
can be obtained by first solving the equation
with initial condition A(x, 0) = f(x).Once
the Black -Scholes equation has been trans-
formed to the heat equation,then the solu-
tion of the heat equation becomes the so-
lution of the Black -Scholes equation .In
[7],the analytical solution of the fractional
Black-Scholes Equation is calculated using
the Laplace transform.[6] provide a solution
to the price of an Option on a dividend pay-
ing equity with the aid of general Fourier
transformation when the parameters in the
Black-Scholes PDE are time dependent.We
consider a case of multiple underlying as-
sets.

The Model

We consider assets paying a known dividend
rate qi for each asset i which possess a SDE
[4]

dsi(t) = (r−qi)Si(t)dt+
n∑

i,j=1

σi,jSi(t)dWj(t)

(1)
Let V ∈ C2,1(RnX[0, T ]) be a continu-
ous function with continuous partial deriva-
tives,then we obtain the Ito’s-formula

dV = (
∂v

∂t
+

n∑
i=1

(r − qi)Si
∂v

∂Si

+
1

2

n∑
j,k=1

σi,kσj,kSiSj
∂2V

∂SiSj
)dt+

n∑
j=1

σi,jSi
∂V

∂Si
dWj(t) (2)

If we form a portfolio Π consisting of one
option V and ∆i of the underlying assets
Si by shorting the contingent claim (op-
tion) V and long ∆i unit of the underlying
assets Si,we obtain the Multi-dimensional
Black-Scholes formula for asset paying cer-
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tain known dividend.

∂v

∂t
+

1

2

n∑
i,j=1

Ci,jSiSj
∂2V

∂SiSj

+
n∑
i=1

(r − qi)Si
∂v

∂Si
− rV = 0 (3)

with terminal condition
V (S1, ...Sn, T ) = P (S1, ..., Sn), 0 ≤ Si ≤ ∞
We attempt to derive the heat equation
from the Black-Scholes by series of trans-
formation.

Let xi = ln(si), then
∂xi
∂Si

= 1
Si

and

∂v

∂Si
=

∂v

∂xi
.
∂xi
∂Si

= 1
Si

∂v

∂xi

=⇒ ∂v

∂xi
= Si

∂v

∂Si
Also,

∂2v

∂Si∂Sj
= − 1

SiSj

∂v

∂xi
+

1

SiSj

∂2v

∂xi∂xj

Substitute these into the equation (3),we
have

∂v

∂t
+

1

2

n∑
i,j=1

Ci,jSiSj[−
1

SiSj

∂v

∂xi
+

1

SiSj

∂2v

∂xi∂xj
] +

n∑
i=1

(r − qi)
∂v

∂xi
− rV = 0

(4)

Re-arrange and simplify,we have

∂v

∂t
+

1

2

n∑
i,j=1

Ci,j
∂2v

∂xi∂xj

+
n∑
i=1

(r − qi −
1

2
Ci,j)

∂v

∂xi
− rV = 0 (5)

This expression is equivalent to

∂v

∂t
+

1

2
DT
s CDsV + bDsV − rV = 0 = (6)

Where,

Ds =



∂

∂x1
.
.
.
∂

∂xn


,b =


r − q1 − 1

2
C1,j

.

.

.
r − qn − 1

2
Cn,j


C is a positive definite matrix.If there

exist orthonormal matrix B such that

BCBT = D =


λ1 − − − 0
.
.
.
0 − − − λn

 ≥ 0

where
λ1,− − −λn are the eigenvalues of C with
corresponding eigenvector

−→
ξ =


ξi1
.
.
.
ξin

.

If we use the change of variable
−→
Z =B−→s ,so

that
Ds = BTDz and DT

s = BDT
z ,then the equa-

tion (6)become

∂v

∂t
+

1

2
BDT

z CB
TDzV+bTBTDzV−rV = 0

(7)

∂v

∂t
+

1

2
DT
z (BCBT )DzV+(Bb)TDzV−rV = 0

(8)

with V (Z1−−−Zn,T = P (Z1−−−Zn),the
terminal condition,we have

∂v

∂t
+

1

2

n∑
i=1

λi
∂2V

∂Zi
+

n∑
i=1

(ξT
−→
b )

∂v

∂Zi
−rV = 0

(9)

with terminal condition assumed to be the
Dirac delta function.
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Let V = exp(W TT + β(T − t))W
Differentiating V with respect to t and
Zi,we obtain

∂w

∂t
+

n∑
i=1

[λiwi + (ξT
−→
b )]

∂w

∂Zi
+

1

2

n∑
i=1

λi
∂2w

∂Zi

− [r + β − 1

2
(W TDW )−

−→
b TBT−→w ]w = 0

(10)

If wi = − 1
λi

(ξT
−→
b ) and

β = −r + 1
2
(W TDW ) +

−→
b TBT−→w ,

then we obtain an equation without
∂w

∂Zi

∂w

∂t
+

1

2

n∑
i=1

λi
∂2w

∂Zi
= 0 (11)

which is a Heat equation.

Solution of The Heat

Equation

Let Wt be a standard Brownian motion.If
we consider a function f(x+ wt),such that
f ∈ C2,1(Rn, [0, T ]), by Ito’s formula

df(x+ wt) =
∂f(x+ wt

∂wτ
+

1

2

∂2f(x+ wt)

∂w2
τ

dτ

(12)
Here ,we assume x to be a parameter.If we
integrate with respect to τ , we have

f(x+ wτ ) = f(x) +

∫ τ

0

∂f

∂ws
dws

+
1

2

∫ τ

0

∂2f(x+ ws)

∂w2
s

ds (13)

where f(x+wτ ) = f(x) at t = 0 =⇒ wτ = 0
If we differentiate f(x+wτ ) with respect to
x ,we have

df(x+wt) =
∂f(x+ wτ

∂x
dx+

1

2

∂2f(x+ wτ )

∂x2
dx

(14)

Comparing (12) and(14),we have

f(x+ wτ ) = f(x) +

∫ τ

0

∂f(x+ ws)

∂x
dws

+
1

2

∫ τ

0

∂2f(x+ ws)

∂x2
ds (15)

Taking expectation of both sides of (15),we
have

E(f(x+wτ ) = f(x)+
1

2

∫ τ

0

∂2E[f(x+ wτ )]

∂x2
ds

Since E(dws] = 0.
Let A(x, τ) = E(f(x+ wτ ),then

A(x, τ) = f(x) +
1

2

∫ τ

0

∂2A(x, τ)

∂x2
ds (16)

Differentiate (16) with respect to τ , we ob-
tain

∂A(x, τ)

∂τ
=

1

2

∂2A(x, τ)

∂x2

which is also the Heat equation [5].If we
evaluate A(x, τ) at τ = 0,we have

A(x, 0) = E[f(x+ w0)

= E[f(x)]

= f(x)

Hence A(x, τ) satisfied the initial condition
A(x, 0) = f(x).

Result

Let τ ∈ [0, T ], A ∈ C2,1(Rn, [0, T )).If
A(x, τ) satisfied the heat equation (PDE)
subject to the initial condition [2]
A(x, 0) = f(x),then

A(x, τ) = E[f(x+ σwτ )

=
1√
2πτ

∫ ∞
−∞

f(x+ σξ)e−
ξ2

2τ dξ
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Proof;
Let

A(x, τ) = E[f(x+ σwτ )

= E[f(x) +

∫ τ

0

∂f(x+ σwτ )

dx
dws

+
1

2

∫ τ

0

∂2f(x+ σwτ )

∂x2
ds]

= f(x) +
1

2
σ2

∫ τ

0

∂2E[f(x+ σws)]

∂x2
ds

∂A(x, τ)

dt
=

1

2
σ2∂

2A(x, τ)

∂x2

Next,we show that A(x, τ) = E[f(x+σwτ )]
satisfies the heat equation as follows

A(x, τ) = E[f(x+ σwτ )]

=
1√
2πτ

∫ ∞
−∞

f(x+ σξ)e
−ξ2
2τ dξ

Let x+ σξ = η ,dξ = dη
σ

,then

A(x, τ) =
1√
2πτ

∫ ∞
−∞

f(η)e−
(η−x

σ
)2

2τ
dησ

=
1√
2πτ

∫ ∞
−∞

f(η)e−
(η−x)2

2τσ2
dη

σ

∂A

∂τ
= − 1

2
√

2πτ
3
2

∫ ∞
−∞

f(η)e−
(η−x)2

2τσ2
dη

σ

+
1√
2πτ

∫ ∞
−∞

f(η)
(η − x)2

2τσ2
e−

(η−x)2

2τσ2
dη

σ

=
1√
2πτ

∫ ∞
−∞

f(η)
(η − x)

σ2τ
e−

(η−x)2

2τσ2
dη

σ

∂2A

∂x2
=

1√
2πτ

∫ ∞
−∞

f(η)
−1

σ2τ
e−

(η−x)2

2τσ2
dη

σ

+
1√
2πτ

∫ ∞
−∞

f(η)
(η − x)2

σ4τ 2
e−

(η−x)2

2τσ2
dη

σ

Comparing
∂A

∂τ
and

∂2A

∂x2
,we observe that

∂A

∂τ
=

1

2
σ2∂

2A

∂x2

Now, we could solve for the derivative price
V (s1, ..., sn) subject to the terminal condi-
tion V (s1, ..., sn, T ) = F (s1, ..., sn) where
F (s1, ..., sn) is a prescribed function that is
the payoff function of the derivative.
T − t = τ , if τ = 0 then T = t for
the terminal payoff function of the deriva-
tive to be an initial condition for A(x, t).If
we follow through the various transforma-
tion,we observe that the relationship be-
tween V (s1,−−−, sn, T ) and A(x1..., xn, τ)
is

V (s1, .., sn, T ) = α(s1, ..., sn, τ)

= β(s1, ..., sn, τ)e−rτ

= γ(ln((s1, ..., sn), τ)e−rτ )

= A(ln(s1, ..., sn)

+ (r − 1

2

n∑
j=1

Ci,j)τ, τ)e−rτ

In particular,the derivative payoff function
can be written as

F (s1, .., sn) = V (s1, ..., sn, T )

= A(ln(s1, .., sn), 0), τ = 0, T = t

Hence ,the initial condition on A(xi, τ) at
τ = 0 is ,
A(x1, ..., xn, 0) = F (exi), i = 1, 2....n
For example,in the case of a call option on
multiple assets,we have
A(xi, 0) = max(exi − k, 0) i = 1...n as the
payoff.
For heat equation with initial conditions,
A(xi, 0) = F (exi)

A(xi, 0) =
1√
2π

∫ ∞
−∞

F (exi + σ
√
iξ)e
−1

2ξ2
dξi

=
1√
2π

Πn
i=1

∫ ∞
−∞

F (exi + σ
√
iξ)e
−1

2ξ2
dξi
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Using the value of A(xi),we can write the
derivative price as

V (s1, ., sn, T ) = A((In(si, .., sn)+

r − 1

2

n∑
j=1

Ci,j)τ, τ)e−rτ

= Πn
i=1

1√
2π

∫ ∞
−∞

F [e(In(si, ., sn)

+ (r − 1

2

n∑
j=1

Cij)τ

+ σ
√
iξ)]e

−1

2ξ2
dξi

= Πn
i=1

e−rτ√
2π

∫ ∞
−∞

F (Sie
rτ+σ

√
τξ

− 1

2

n∑
j=1

Ci,jτ)e
−1

2ξ2
dξi

At t = 0,we obtain the initial price of the
derivatives

V (s1, .., sn) = Πn
i=1

e−rτ√
2π

∫ ∞
−∞

F (Si(0)erτ+σ
√
τξ

− 1

2

n∑
j=1

Ci,jT )e
−1

2ξ2
dξi

We observe that the present value of the
derivative depends on the expiry date T,
the initial asset price Si(0),the volatility Ci,j
,the risk free interest rate r and the specifi-
cation of the payoff function F (Si(T )).The
derivative price can also be written in terms
of expectation
V (s1, ..., sn) = e−rTΠn

i E[F (Si(T ))

= e−rE[(F (S1(T )))E((S2(T )))..E(F (Sn(T )))]

where

Si(T ) = Si(0)e−rT+σ
√
Tξi− 1

2

∑n
j=1 Ci,jT

= Si(0)e−rT+σWi(T )− 1
2

∑n
j=1 Ci,jT

Wi(T ) is a random variable ∼ N(0, T ) with
respect to some new probability measure p
called the risk-neutral measure [3].Si(T ) is
the value of the derivative at time T for each
underlying asset.

F (Si(T )) is the payoff function of the
derivative with respect to each underlying
asset.

Conclusion

The price of Call option and Put option
at time t = 0 can be determined with our
solution.For a call option that delivers ST
at time T ,that is F (ST ) = ST for instance,
C0 = e−rTE[F (ST )] , with ST define earlier
C0 = e−rTE[ST ]
C0 = S0

which is what we expect.
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