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Abstract 
Generalized Additive Model has become an elegant and practical option in modelling non-linear and linear effects 
of covariates as well as the non-Gaussian response variable. This study considered modelling Blood Pressure (BP) 
using data with two levels of BP (abnormal and normal) and eight predictors which have both linear and non-linear 
effects. The non-parametric functions were estimated in a flexible manner using cubic smoothing spline in an 
iterative method called the Back-fitting algorithm. The Cubic smoothing spline was applied to the metrical 
covariates (Age and BMI), which gave significant results (p < 0.0001 and 0.0082 respectively) compared to the 
linear fit which was not significant. The empirical findings of this study have established that BMI and Age have 
significant non-linear effect while sex and cholesterol level have significant linear effect on BP.  
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Introduction 
In recent years, many studies have focused on 
Blood Pressure (BP) because it is a useful 
indicator of the cardiovascular diseases, such 
as hypertension, heart attack and asthma [20]. 
Due to the high level of stress of the modern 
society, many people have hypertension 
whether young or elderly. Low or high BP 
can cause heart attack, stroke and other 
problems. Systolic Blood Pressure (SBP)/ 
Diastolic Blood Pressure (DBP) higher than 
140/90 mmHg or lower than 90/60 indicates 
high or low BP respectively [1]. It is also a 
major cause of disability and an important 
risk factor for death, accounting for about 7.5 
million deaths per year (13% of all deaths) 
[1].  

Due to the population growth and ageing, 
the actual number of people with 
uncontrolled BP rose from 600 million in 
1980 to nearly 1 billion in 2008. High-income 
countries achieved large reductions in 
uncontrolled BP, with the most impressive 
progress seen in women in Australia and men 
in North America [21]. [5] stated that being 
overweight, obese, having  abnormal  BP  and  
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high cholesterol are no longer Western 
problems or problems of wealthy nations, but 
their presence has shifted towards low and 
middle income countries, making them global 
problems. Literature has documented eleva-
ted BP as the leading cause of morbidity 
throughout the world, and also a major 
contributor to Cardiovascular Disease (CVD). 
The BP levels of a population have been seen 
to be influenced by interrelated factors such 
as biological, behavioral and socio-economic 
factors [4, 8, 9, 10, 12, 13]. Blood Pressure 
has become one of the top national health 
priorities, therefore it cannot be over-
emphasized. 

Model-based analyses are becoming 
important sources of global information on 
the prevalence of diseases, largely because of 
the absence of reliable national level 
empirical data, particularly in developing 
countries. Blood Pressure is associated with 
many factors including Body Mass Index 
(BMI), age, diet, exercise, weight, cholesterol 
level, pulse rate, alcohol, gland disorder, 
dehydration, medication e.t.c. The effects are 
often modelled parametrically. However, in 
real life, experience has shown that metrical 
covariates often have non-linear effects [3, 6, 
19]. The underlying assumption (which are 
not often met in practice), of a parametric 
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linear predictor for assessing the effects of 
covariates on responses seems to be too 
strong and restrictive in realistically complex 
situations. It is therefore difficult to specify a 
parametric functional form for the non-linear 
effects of metrical covariates. Hence, it is 
necessary to relax the parametric linear 
assumption by a flexible method of 
estimating metrical covariates.   

Generalized Additive Model (GAM) 
relaxes the assumption of linearity between 
the predictors and handles the categorical 
nature of responses. We shall explore the 
effects of the different covariates on the 
categorical responses of BP. Following the 
introductory section, section 2 is devoted to 
the methodology and data description. In 
section 3, we presented the analysis and 
discussion of results. We concluded the paper 
in section 4. 
 
Methodology 
The Generalized Additive Model unifies the 
family of Generalized Linear Models (GLM), 
by replacing the linear functional form by a 
sum of smooth functions enabling the dis-
covery of a non-linear fit between a variable 
and a response [16, 17, 18]. It provides a 
powerful class of models for modelling non-
linear effects of continuous covariates in 
regression models with non-Gaussian 
responses. A huge variety of competing 
approaches are now available for modelling 
and estimating non-linear functions of 
incorporating variables in a non-parametric 
way using smooth functions such as spline. 
Non-parametric estimation of metrical 
covariates assumes that the functions are 
unknown but smooth. There are several 
alternatives for estimating smooth functions; 
[17] assumes that smoothness of the unknown 

functions   is controlled by penalty terms. 
The fit of GAM is based on the local scoring 
algorithm; an extension of the Newton-
Raphson algorithm used for fitting GLMs. 
The local scoring algorithm uses a Back-
fitting algorithm that iteratively fits a 
smoothing function [2].   

The GAM is given as   
' '

i i i ix f                           (1)   

where, 
'

if   
are the smooth functions from the non-

linear effect of the metrical covariates '

ix   

are the linear effect of the categorical 
covariates and  is a noise variable such that 

. 
Estimation of (equation 1) above can be 
achieved in several ways. However, we 
consider the cubic smoothing spine in this 
study because it is an optimization technique. 
It is a piecewise polynomial fit and many 
studies have shown that k=3 is sufficient [7, 
15]. 

Given,  1 , . . . ,( , , )i i i i ny x f   on response iy  a 

vector 1( ,..., )px x of categorical covariates 

and a vector 1( ,..., )kf f of metrical covariates. 

The simultaneous effect of the covariates on 
the response is modelled by a linear predictor  

' '

i i ix f  


 
                             (2) 

 
However, because of the case of non- 
Gaussian response, where

iy  becomes 

1,...,

1,..,

i n

ir r my 

    

' '

ir i ix f  


 
                        (3)

 

 
So that,  

( )i irg 



                               (4)

 

 
The Penalized Maximum Likelihood 
Estimation (PLME) is used to avoid 
overfitting, which is characterized by a score 

function 
( , )l y





  

 
The PLME for the non- Gaussian responses is 
obtained by  
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'' 2( , ) ( ( )) ( ) max
2 f

l y f d


   
              (5)

  (5) 

where, 

l  is the log likelihood of the linear predictor 
and the second term penalizes the integrated 
squared curvature of the function ( )f  . 

0   is the smoothing parameter that 
controls the trade-off between fit and 
smoothness.  
To maximize (5) using B-splines through the 
local scoring algorithm, we obtained 

'( , ) ( , )
2

g f l y f Mf


  
                               (6)    (6)

 

where,  

M:= ' 1 ' 1 '( ) ( )B B B K B B B 

 
 
K  is the penalty matrix that penalizes too 
rough function f . 

The solution method for finding , f
 

by 

optimization technique is given by Hastie and 
Tibshirani (1990). 

( )f  is estimated by repeatedly smoothing 

the adjusted dependent variable on X [14]  
Given, 

1 2: : ( )p X and p f    

Then,  

1 2( ) ( , )h X p p                                (7)

  
where, 
X is an n x m matrix 

1 2&p p  are vectors of X  and ( )f   

respectively.  
We maximized (5) over

1 2p and p  by solving 

'

1 1

'

2

2 2

( , ) ( , )
( ) 0

( , ) ( , )
( ) 0

g f l y

p p

g f l y
MP

p p

  



  




  
 

  

  
  

  

       (8)

  
which are non-linear in 

2and p . 

We then linearized them around 0 (current 

starting solution). We obtained (9) which is a 
Newton-Rapson method. 

0 0

2

0'

( , ) ( , ) ( , )
( ) 0

l y l y l y

 

  
 

  

  
   

  
        (9)        

If we put (9) in (8) and let 
( , )l y

r








 and 

2

'

( , )l y




  


 

Then,  
1 0

1 1

01 0
22 2

rp p

M r Mpp p 

     
           

          (10)         

 

where 
0 0 1 1

1 2 1 2( , ) ( , )p p p p  is a Newton-

Raphson step,  and r are evaluated at 
0 . 

 So that when,  
0 1 1: : ( )Bh r and S M         

which is a weighted B-spline operator.  
Then (equation 10) is 
 

 

1

1

1

2B B

p
h

S I Sp

      
     

                              (11)  
              
is transformed to 
 

1 1'

1 2

1 ' 1

2 1( )B

p h pX

p f S h p

     
                                           

(12)          

 

So that we estimate and f
 

   

Then, 

' 1 '

1

2

{ ( ) } ( )

( )

B B

B

p X X X I S X X I S h

p f S h X





 


  

     

         

(13)      

  
where  
X is the regression matrix for the values 

ix  

BS  computes the weighted B-spline 

smoothing on the variable 
i  with weights 

given by   
2

'

( , )l y




  


                   (14)     

h  is the adjusted dependent variable 
From (equation 12), the Newton-Raphson 
updates are an additive model fit, which 
solves a weighted and penalized quadratic 
criterion which is an approximation of the 
penalized log-likelihood. 
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Data Description 
Data used in this study are based on 69 
patients in St. Anne’s Anglican Hospital, 
Ibadan. The data were obtained at the 
laboratory unit of the Hospital, with two 
levels of BP (response variable). The 
SBP/DBP is coded as 0 if it falls within the 
range; 91 – 139/ 61 – 89mmHg or abnormal 
BP is coded as 1 if it falls outside the range 
specified above, whether low or high. The 
predictors include: age of patients in years, 
BMI, pulse rate (PR), respiration rate (RR), 
sugar level (SL), cholesterol level (ChL) and 
temperature (temp) which is coded as 0 for 
normal (between 35 – 37

0
C) and 1 for 

abnormal (outside this range 35 – 37
0
C). The 

Generalized Cross Validation (GCV) function 
is used as the criterion to choose the 
smoothing parameters.  
 
Presentation and Discussion of Results 
Age and BMI were estimated in the non-
parametric manner (Fig. 1). The model 

converged immediately with 3.2958024E-9. 
The local scoring iteration was performed 14 
times with value of 1.9096565E-9. The 
deviance of the final estimate is given as 
27.190205628. The parametric predictor 
variables were not significant except sex 
which is 0.0052 is significant at . 
The metrical covariates which are BMI and 
AGE when analysed with GLM were not 
significant. We then splined the metrical 
covariates using the cubic smoothing spline. 
From the analysis, the two metrical covariates 
(age and BMI), were significant when cubic 
smoothing spline was applied. The value of 

log10( ) that minimized the GCV function 
is 0.479954. The final smoothing spline 
estimate is based on LOGNLAMBDA = 
0.9895. The residual sum of squares is 
6.2462, and the degree of freedom is 21.3716. 
The standard deviation is 0.3621. 

 
 

sex

age

bmi

temp

RR

SL

ChL

0

.5

1

0 .5 1

20

40

60

80

20 40 60 80

0

50

0 50

0

.5

1

0 .5 1

20

22

24

20 22 24

0

500

1000

0 500 1000

0

500

1000

0 500 1000

 
Fig. 1: Scatter plot of the selected variables. 
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Table 1: Iteration Summary and Fit Statistics 
 

Number of local score iterations                         14 
Local score convergence criterion                      1.9096565E-9 
Final Number of Backfitting Iterations              1 
Final Backfitting Criterion                             3.2958024E-9 
The Deviance of the Final Estimate                   27.190205628 
The local score algorithm converged. 
 
 
Regression Model Analysis 
Parameter Estimates 
                          Parameter     Standard 
Parameter          Estimate       Error     t Value    Pr > |t| 
Intercept         -14.27437       18.05014      -0.79      0.4325 
sex                   -3.17061        1.08952        -2.91      0.0052 
temp               -0.82507        1.22996       -0.67      0.5052 
PR                    0.38994        0.25560        1.53       0.1329 
RR                 -0.48416        0.46095      -1.05       0.2982 
SL                   0.00932        0.00533        1.75       0.0862 
ChL                  -0.00220        0.00577      -0.38       0.0014 
Linear(bmi)      -0.31565        0.17860      -1.77       0.0828 
Linear(age)       -0.00710        0.03361      -0.21       0.8334 
 
 
Smoothing Model Component(s): spline(bmi) spline(age) 
 
Smoothing Model Analysis 
Analysis of Deviance 
Sum of Source  DF             Squares      Chi-Square      Pr > ChiSq 
Spline (bmi)          3.00000       27.378388        27.3784        <.0001 
Spline (age)          3.00000        11.770351            11.7704           0.0082                               

 
 

 
 

Conclusion 
The Back-fitting iteration is better compared 
to the Local Scoring criterion. Conclusively, 
in this study we have successfully considered 
both the linear and non-linear effects of the 
covariates that affect Blood Pressure simul-
taneously. Also, the categorical responses 
were adequately taken care of. 
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