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Abstract
In the recent times the Bayesian approach has emerged as a strong competitor to the traditional Classical approach to
econometric analysis. The main reason for the vicious controversy between the promoters of the two approaches is
the notions of probability they employ. The framework of Bayesian approach allows for subjectivity in the choice of
prior distribution. The main concern has been the relative performance of this approach especially in the areas of
applications. This study focuses on the general linear regression model and investigates the differences between the
Classical and the Bayesian approach in terms of model formulation and estimation procedures. The paper describes
the procedure for executing Bayesian regression and the choice of the prior distribution to be employed. The Prior
distribution is the degree of belief that the researcher has about the distribution of the parameter that he is trying to
estimate. Non-Bayesians usually employ this information to lead them to add, drop, or modify variables in an ad hoc
search for a “better” result. The Bayesians employ it ex ante in an explicit, upfront fashion. The performance of the
Bayesian approach and the Classical was assessed through a series of Monte Carlo experiments. A large number of
samples are drawn and the Classical and Bayesian estimators were computed for each sample. The approximate
sampling distribution of the statistics were then determined. Using bias and mean square error criteria, the results
showed that there was nothing to choose from when prior density is non-informative.

Keywords: Prior, Posterior, Likelihood, Mean Squared Error, Credible Interval.

Introduction
There are now two very different approaches
to modern econometrics, the “Classical”
approach and the “Bayesian” approach. The
main difference centered on the notion of
probability they employed. The objectivity of
Classical approach is obtained by
disregarding any prior knowledge about the
process being measured. Bayesian econo-
metricians use both sources of information;
the prior information about the process and
the information about the process contained
in the data. The adoption of Bayesian
approach in econometrics involves several
practical difficulties but in recent years,
development of more powerful computers,
new software, and computational innovations,
these practical difficulties have for the most
part been overcome.
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Bayesian approach is a very vital aspect
of statistics to both the econometricians and
non econometricians; is discussed com-
prehensively in literature starting from the
elementary level, via the intermediate level,
to the excellent advanced stage, where the
Bayesian view of econometric problems was
covered, [1]. Its application was also widely
discussed [2-4]. Koop [5] and Albert [6]
worked on computer programming for
Bayesian econometrics. Weber [7] examines
the history of the Bayesian controversy.
Bayesian econometrics is based on a few
simple rules of probability. This is one of the
basic advantages of the Bayesian approach
and for which many are finding it
increasingly more attractive. A complete and
more persuasive listing of the advantages of
the Bayesian approach can be found in
Zellner [8] and Poirier [9] which focuses on
the methodology and statistical theory
underlying Bayesian and the Classical
methods. Other important Bayesian books,
such as those of Bauwens et al. [10], deal
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only with particular areas of econometrics
(e.g. time series models). More recently,
Lancaster [11] and Koop [12] introduced
Bayesian approach to econometrics and cover
a wide range of models that are popular in
non-Bayesian econometric textbooks. But
Koop’s [12] submission is an excellent
exposition of progress in applied Bayesian

econometrics, with particular emphasis on
computational considerations.

The centerpiece of the Bayesian
methodology is the Bayes theorem. This
theorem states that for events A and B, the
conditional probability of event A given that
B has occurred is

(1)

This equation is paraphrased for econometric applications as follows:

(2)

With this arrangement, data are viewed as
constants whose distributions do not involve
the parameters of interest. Data are treated as
a fixed set of information to be used in

updating ones beliefs about the parameters. In
equation (2) above, if we drop the marginal
density of the data, we have

(3)

The left-hand side is the posterior density of
the parameters, given the current body of
data. The first term on the right is the joint
distribution of the data, given the parameters.
It is called the likelihood function. The

second term is the prior density which
represents the prior beliefs of the analyst
about the parameters. Thus, we can re-write
the above equation as

(4)

The posterior is a mixture of the prior
information and the “current information,”
that is, the data. Once obtained, this posterior
density is available to be the prior density
function when the next body of data or other
usable information becomes available. The
principle involved, which appears nowhere in
the Classical analysis, is one of continual
accumulation of knowledge about the
parameters. The prior density and the
likelihood function are crucial elements of the
analysis, and both must be fully specified for
estimation to proceed. The Bayesian
“estimator” is the mean of the posterior

density of the parameters, a quantity which is
usually obtained either by integration (when
closed form exists), approximation of
integrals by numerical techniques, or by
Monte Carlo methods [13-16].

Studying both Bayesian and Classical
methods provide a much better understanding
of statistics than that provided by studying
only one approach. In recent times, there has
been various controversy among the
proponents of these two approaches.  Efron
[17] is suitable for exploring the
Classical/Bayesian controversy while Poirier
[18] is suitable for associated commentary.
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Olubusoye and Osowole [19] compared the
Bayesian and the Classical estimators of a
binomial proportion using a Monte Carlo
experiment. The results showed that the
Bayesian estimator outperformed the classical
even when judged by the Classical criterion.

The arching question is: what is the gain
of Bayesian over the Classical approach? In
order to answer in the context of an
econometric model, this study focuses on the
general linear regression model and
investigates the differences between the
Classical and the Bayesian estimator of the
model parameters. The Bayesian estimators
are derived in this paper. The performance of
the estimators from the two approaches is
judged from a series of simulation
experiments with varying sample sizes.

The rest of the paper is divided into four
sections. In section II, we discussed the form
of the likelihood function, the prior density
and the posterior density of a simple linear
regression model. Also, the Bayesian credible
interval and the classical confidence interval
are discussed in this section. In section III, we
describe the design of the Monte Carlo
experiment. The results of the experiment are
discussed in section IV and finally the
concluding remark is given in section V.

Bayesian Approach to Linear Regression
The Bayesian approach to linear model
specification is not as such different from that
of classical except for the elicitation of the
prior. For simplicity sake, consider a simple
two-variable linear model with dependent
variable yi expressed as a linear combination
of one regressor or explanatory variable plus
an error term.
Specifying the model explicitly as:

1 2i i iy x     (5)

where, yi and ix denote the observed data on
the dependent and explanatory variables
respectively, for i = 1, 2, ……, N; i is an
error term which is independently and

identically distributed as N(0, 2  ). The ix is
fixed (i.e. not a random variable) or, if
random, is independent of i with a
probability density function, P(x/), where 
is a vector parameter space that does not
include 2 and 2  . 1 is the mean value for y

given xx  . 2 is the slope (regression
coefficient) and yi is normally distributed
with mean, 1 2 x  and variance, 2  .

Bayes Theorem for the Regression Model
Bayes’ theorem is always summarized by
posterior likelihood prior.

Prior distribution (P(1), P(2)): is a
probability statement about parameters which
is expressed as degree of one’s belief about
the parameter before observing the data. The
choice of prior cannot be ignored in Bayesian
analysis because of its sensitivity; Olubusoye
et al. [20] worked on the prior sensitivity in
Bayesian linear regression model.  Prior
distributions can be informative, non-
informative or Hierarchical. The informative
priors (also known as conjugate priors)
convey information concerning the prior
preference for certain values of the
parameters. It comes from either the “expert”
opinion or the previous experiments of a
similar nature. This can often be done
formally using meta-analysis or hierarchical
Bayesian modelling of the existing data. It is
often easier to express probability bounds,
from which the parameters can then be
obtained rather than trying to directly specify
values for the parameters of a prior density.
Non informative priors do not convey
information concerning prior preference for
certain values of the parameters.

It can also be categorized as reference
priors and vague priors. Reference prior is
considered as default prior for the particular
model in question.  Reference priors are
frequently improper and are being guided by
Jeffreys’s rule.  Priors such as P() = 1, P()
= 1/ are improper because they do not
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integrate to 1.  That is, the area under the
prior density is not unity (and, in fact, is
infinity). Hierarchical priors are two stage
priors, in the sense that a prior is placed on
another prior.  They are more flexible than
non-hierarchical priors, make the posterior
less sensitive to the prior and being used in
the Hierarchical models to perform meta-
analyses, whereby a number of related
experiments are performed and it is desired to
combine information. Multiplying the joint
likelihood by a joint prior, it is proportional
to the joint posterior. We used independent
priors for each parameter. The joint prior of
the two parameters is the product of the two
individual priors;

6

Likelihood function/distribution: L(1:y),
L(2:y): The expression for the distribution
of the data to be observed given the
parameter P(y/2), has two names.  When
thought of as the probability mass function of
y calculated at the point y, conditional on the
parameter taking the value 2, it is called, the
pdf of y given 2. But when y is thought of as
the actual data it is often denoted by the
symbol yobs, it is called the likelihood
function (of 2) i.e.,

L(2:y): The likelihood function is not, in
general, a probability distribution for 2 given
data y, but it is a function of 2 with the data
values serving as parameters of that function.

In classical approach, inferences are
based on likelihood functions following the
work of the R.A. Fisher in 1925 and after.
Those who follow this approach will typically
choose as their estimate of 2 the value that
provides the maximum (strictly the
supremum) of the likelihood over the
parameter space, . This is called the
maximum likelihood estimator.

In Bayesian paradigm, L(2;y) is rather
called a function of 2 when the observed
values of the variable(s) of interest are
considered. The choice of a likelihood
function amounts to choice of a family of
probability distributions, one for each 2 in
the parameter space. The choice must express
the economic model that lies at the center of
an econometric investigation.

The joint likelihood for 1 and 2
Using equation (5)

(7)

excluding the constant term,   2
1

22


 . Hence, the expression left is called the Kernel
distribution. Then, considering the entire sample n, we have,

Likelihoodn

(8)

The terms in the brackets in the exponent can also be written as:



Olubusoye and Akanbi: Bayesian and Classical Estimation Methods in Linear Regression Model:… 77

ISSN 11179333

 1 2

n

i i
i

y y y x    
Breaking the last expression into two sums and multiplying them out gives us;

      
2

2

1 2 1 2
1 1

2
n n n

i i i i
i i i

y y y y y x y x   
 

         

i.e.  22
2 2 12     n -yy xy xss ss ss    

where,       
2 n 2

xy i x i
1 i 1 1

,  and ss   y ,   and ss   x
n n

y i i
i i

ss y y y x x x
  

        
Thus,

Breaking down into products of exponent we have;

Then:

(9)

If   B= , the least square slope; y A , the least squares estimate of the intercept of the

vertical line xx 

Thus;

But;

; is normally distributed as ( )    (10)
and

; is normally distributed as (A, )          (11)

Posterior distribution P(2/y); P(1/y)
The posterior density represents the belief
about 2 given prior belief about 2 and the
belief embodied in its likelihood from the
data.  In many applications the posterior is

the culmination of an empirical analysis. The
best way to report the posterior distribution is
by its plot after stating the model (if possible)
mathematically.

The Joint Posterior for 1 and 2
The joint posterior is proportional to the joint prior times the joint likelihood.
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(12)

Where the data is the set of ordered pair x1,y1…., xn, yn. Also, the joint posterior above can be
re-arranged as;

(13)

Joint posterior gives the product of the
marginal posteriors, hence they are
independent. For instance, if we use a normal
(

2 2

2
,  sm  ) prior for 2, we have a normal

posterior  
2 2

21 1 sm 
 
  

, where

  2
2

2 2 21

1 1 xss

ss 


 
(14)

and

   

2

2 2

2 2

2
2

1

2 21 1

1

( ) ( )
1 1

x

xy

x

ss
s

m m B

s s

ss
where B

ss


 

 

 



15

Equation (15) implies that the posterior mean
equals the weighted average of the prior
mean and the likelihood mean where the
weights are the proportions of the precisions
to the posterior precision. And of course the
posterior distribution is normal.

Similarly if, we use a normal  
1 1

2
,m s 

prior for 1, we have the posterior distribution

which is also normal with  
1 1

21 1,m s 
 
  

i.e.

  1
1

2 2 21

1 1 n

ss 


  and

   

1

1 1

1 1

2
2

1

2 21 1

1 n

( )  ( ),
1 1

s
m m A

s s


 

 

  where,

A = y (16)

We may want to summarize the entire belief
about the slope ( ) after examining the data
by a (1-) 100% Bayesian credible interval
for slope 2;

   
2 2 2

2

2 21 1 1
2 2

2

1
 , xss

m Z s where s
s   

 
  

(17)

But, if  2 is unknown, then we estimate it
by:

  2

2ˆ
2

i iy A Bx

n


   




Then, the credible interval becomes;

 
2 2

21 1

2
m t s  

(18)

When the variance 2 also unknown, the
(1-)100% Classical confidence interval for

the slope (2) is;
2

2

ˆ
B  t

xss





(19)
where,

2̂ is the estimate of the variance calculated
from the residuals in the least squares
regression line.
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Design of the Monte Carlo Experiment
A Monte Carlo study approximating the
sampling distribution of two estimators of 2,
was performed. The classical estimator for 2

is the sample regression
coefficient

2
2

1

,
n n n

i i i i i
i i i

x y x where x y


   , is the

product of the deviation sum of squares of X

and Y. 2

1

n

i
i

x

 is the deviation sum of squares

of X. The Bayesian estimator used is m1
β2

which equals the posterior mean when a
normal prior for β2 was used. The sampling
distributions (in terms of bias, variance and
mean square error) of the two estimators in a
Monte Carlo replicated 10,000 for various
sample sizes were compared.

The experiment is performed using the
following steps:

Step 1. The prior distribution for the model
parameters were specified as follows:
1 ~N(1,100000) and 2 ~N(1,100000).
These are vague priors since they allow
for normal densities with extremely large
variance.

Step 2. The true values of the parameters
were assumed as follows:
1= 4.479383 and 2 = 1.299635

Step 3. The sample size n = 10, 20, 30, 50,
100, 150, 200, 300, 500, 1000, were
considered.

Step 4. The values of x for each observation
were fixed in all replications. The x
values were drawn from a uniform
distribution, that is U[0,1].

Step 5. The error term εi was drawn from
normal probability distribution with mean
0, and variance, 2



Step 6. Given the β1, β2, Xi, and εi, equation
(5) was used to obtain the implied values
of Yi, for  i=1, ……,n.

Step 7. Now, using the yi values thus
generated, they were regressed on the xi

values drawn in step 3 to obtain the
Classical and Bayesian estimates of 1and
2.

Step 8. This procedure was repeated 9,999
times, each time using the same true
values of the parameters 1, 2 and x
values. The εi values varied from sample
to sample and therefore, in all the 10,000
samples, thus producing 10,000 values
each of 1 and 2.

Step 9. The averages of these 10,000
estimates were computed

10000 10000

, ,

, ,

ˆ ˆ
, , 1, 2

10000 10000

i classical i bayesian
i i

i classical i bayesian i
 

   
  

10000 10000

, ,

, ,

ˆ ˆ
, , 1, 2

10000 10000

i classical i bayesian
i i

i classical i bayesian i
 

   
  

Step10. For each sample size, n, the bias of
the two estimators were calculated;

   ˆ ˆ , 1, 2i íbias E i    

Step 11. The mean squares error (MSE) of
the estimate was computed using,
MSE( ˆ

í )=[bias( ˆ
í )]2 +Var( ˆ

í ),   i=1,2

The Eviews (7) programming code was
written to run the simulations.

Result and Discussion
The posterior density (Kernel distribution)
which is the density left when the
multiplicative constant in the formal
distribution is ignored for the estimates of
regression slope from the 10,000 replications
is plotted for the two methods. The plots are



80 Journal of Science Research (2014) Vol. 13: 73-83

ISSN 11179333

shown in Figures 1 and 2 below. The average
(posterior mean) is approximately 1.3 in both
methods. This value is very close to the true
value of 1.299635.

The criteria used for assessing the
estimators of both the Classical and the
Bayesian approaches are bias and the mean
squared errors (MSEs). The results on the
simulation experiment based on these criteria
are presented in Table 1 and the Figures 1-4
below. Table 1 shows the bias and the mean
squared errors of the two estimators
respectively for both the Classical and the
Bayesian over 10 different sample sizes.
From Table 1, it is observed that the bias and
MSE for the estimators in both the Classical
and the Bayesian are the same for both the
small and the large samples. This
phenomenon is captured vividly in Figures 3
and 4 below. When the sample size is small
(n < 20), the slope’s bias for the two
estimators reduced drastically, while the

sample size between 20 and 30, the bias
increased slowly. Also, at sample size n = 50
the slope’s bias for the two estimators is zero.
Furthermore, it is confirmed that the larger
the sample size, the smaller the biases and
MSEs for the two estimators in both cases
(Bayesian and Classical). Similarly, for the
two estimators, the bias is very close to zero
over the entire sample sizes. Considering, the
Figures 3 and 4, bias of the slope within the
sample size 300 and 500 shows high
fluctuation. The plot becomes more stable as
the sample size increases from 500 upward
for both the Classical and Bayesian estimates.
Figure 4 shows the mean square errors of the
estimators in both methods approaching zero
when sample size becomes very large. Mean
squared errors (MSE) of the slopes
(estimators) reduced sharply for sample sizes
n < 150 but at n greater or equal to 150, their
MSEs gradually reduce to zero.

Table 1: The Bias and MSE values of the Classical and Bayesian Estimators

BIAS MSE
Sample
size(n)

Bayesian
B1

Classical
B1

Bayesian
B2

Classical
B2

Bayesian
B1

Classical
B1

Bayesian
B1

Classical
B2

10 0.0036 0.0036 0.0039 0.0039 0.5974 0.5974 1.5776 1.5776
20 0.0050 0.0050 -0.0043 -0.0043 0.2134 0.2134 0.6579 0.6579
30 0.0083 0.0083 -0.0011 -0.0011 0.0927 0.0927 0.3641 0.3641
50 0.0011 0.0011 0.0000 0.0000 0.0954 0.0954 0.2763 0.2763

100 0.0002 0.0002 -0.0003 -0.0003 0.0369 0.0369 0.1094 0.1094
150 -0.0002 -0.0002 0.0002 0.0002 0.0266 0.0266 0.0773 0.0773
200 0.0001 0.0001 0.0003 0.0003 0.0188 0.0188 0.0590 0.0590
300 -0.0010 -0.0010 0.0023 0.0023 0.0133 0.0133 0.0383 0.0383
500 0.0011 0.0011 -0.0018 -0.0018 0.0082 0.0082 0.0253 0.0253

1000 0.0006 0.0006 -0.0016 -0.0016 0.0041 0.0041 0.0123 0.0123

Conclusion
In this study, a Monte Carlo experiment and a
general linear regression model were used to
investigate the differences between the
Classical approach and the Bayesian
approach in terms of model formulation and
estimation. Using bias and mean square
errors criteria, the two exhibited similar
characteristics and therefore gives no room

for a choice. This result may be due to the use
of vague priors which reflect the ignorance of
the researcher about the parameter. In this
case, the two methods will yield similar
results. As more knowledge about the
parameters is utilized in specifying the prior
(informative prior), it is expected that the
Bayesian will tend to outperform the
Classical.
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Fig. 1: Density of Estimates of Regression Slope Coefficient (Bayesian)

.00

.04

.08

.12

.16

.20

.24

.28

.32

-4 -3 -2 -1 0 1 2 3 4 5 6 7

D
en
si
ty

D e n s i t y o f E s t i m a t e s o f R e g r e s s i o n S l o p e C o e f f i c i e n t (C l a s s i c a l )

Fig. 2: Density of Estimates of Regression Slope Coefficient (Classical)
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Fig. 4: Mean Square Error of Classical and Bayesian Estimates of Regression Slope Coefficient

References

[1] Zellner, A. 1971. An Introduction to
Bayesian Analysis Inference in
Econometrics, New York: John Willey &
Sons.

[2] Michael, J.R and Sedransk, J. 2010.
Bayesian and frequentist methods for
provider profiling using Risk–Adjusted
Assessments of medical outcomes. Journal
of the American Statistical Association
105(489).

[3] Andrzej, .K. 2010. A prior for Impulse
Responses in Bayesian Structural VAR
models. Journal of Business and Economics
Statistics 28(1).

[4] Berger, J.O. 2000. A look at Today and
thought of Tomorrow. Journal of the
American Statistical Association 95(452):
1269- 1276.

[5] Koop, G. 1999. Bayesian analysis,
Computation and Communication Software.
Journal of Applied Econometrics 14:
677-689.

[6] Albert, J. 2007. Bayesian Computation with
R. Springer. ISBN 9780-387-71384-7.

[7] Weber, J.D. 1973. Historical Aspects of the
Bayesian Controversy. Tucson: Division of
Economic and Business Research,
University of Arizona.

[8] Zellner, A. 1974. The Bayesian Approach
and Alternatives in Econometrics. In S.E.
Poirier, D. 1995. Intermediate Statistics and



Olubusoye and Akanbi: Bayesian and Classical Estimation Methods in Linear Regression Model:… 83

ISSN 11179333

Econometrics: A Comparative Approach.
Cambridge: The MIT Press.

[9] Bauwens, L., Lubrano, M. and Richard J.F.
1999. Bayesian Inference in Dynamic
Econometric Models. Oxford: Oxford
University Press.

[10] Lancaster Tony. 2004. An Introduction to
modern Bayesian Econometrics, First
edition, Oxford, U.K..

[11] Koop, G. 2005. Bayesian Econometrics.
John Wiley & Sons, Ltd, England

[12] Greene, W.H. 2005. Econometric Analysis,
fifth edition, Pearson Education, Inc.

[13] Bilstad, W.M. 2004. Introduction to
Bayesian Statistics. John Wiley & Sons, Inc
New   York.

[14] Gujarati, D. 1995. Basic Econometrics,
third edition, New York; McGraw-Hill.

[15] Kennedy, P. 2003. A Guide to
Econometrics. The MIT Press, Cambridge.
Massachusetts, UK.

[16] Efron, B. 1986. Why isn’t everyone a
Bayesian. The American Statistician
40: 1-11.

[17] Poirier, D.J. 1988. Frequentist and
Subjectivist Perspectives on the Problems of
Model Building in Economic. Journal of
Economic Perspectives 2: 121-144
(commentary, 145-170).

[18] Olubusoye, O.E. and Osowole, I.O. 2007. A
Monte Carlo Based Comparison of
Bayesian and Frequentist Estimators of the
Binomial proportion. JESA, pp. 44-49.

[19] Olubusoye, O.E. and Okewole, D.M. 2009.
Prior Sensitivity in Bayesian Linear
regression Model. Int. Journal (Sciences)
3(1): 21-29.


