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Abstract
Strata boundary determination is one of the technical operations in Stratified Sampling. Maximized precision dominated
the literature in the appraisal of the performance of methods of strata construction which fails to account for the bias
associated with each method because the most precise method may not actually be the most efficient. This study
develops Linear Stratification (LS) as a new and simple approach to strata boundary determination. Strata boundaries
were established with LS, cumulative square root of frequency method and Geometric Stratification. Samples were selected
randomly without replacement from each stratum and estimates of the population parameters obtained. These estimates
were compared i.e. LS with that of the two existing methods using four sets of real life data with varying degrees of
skewness. With the Mean Square Error (MSE) value rather than minimum variance commonly used for appraisal, the
results show that LS provides minimum MSE value in both skewed and normal populations, hence the most efficient when
compared with the two competing methods in strata boundary determination.

Keywords: Deep stratification; efficiency; linear progression; linear stratification; mean square error.

Introduction
Stratified Sampling is the design in which a
heterogeneous population is divided into mutually
exclusive and exhaustive subgroups called strata and
independent samples drawn from each stratum.
Depending on the sampling scheme employed in
selecting the samples independently from each stratum,
Stratified Sampling become Stratified Random
Sampling when Simple Random is employed and when
Systematic Sampling is used, it becomes Stratified
Systematic Sampling.

Stratification technique is often used majorly to
maximize the precision of some estimator ̂ or
equivalently to minimize the Mean Square Error MSE
(̂ ), and when is an unbiased estimate of θ (i.e. the
estimate of the bias is zero), the MSE (̂ ) is the
variance of  [1]. Literature had continuously reported
maximized precision (minimum variance) as a measure
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of appraisal of the performance of methods of
stratification [1-4]. This approach fails to account for
the bias associated with a particular method.

Stratification technique is employed in sample survey
not only for its improved precision and provision of
samples that are representative of the population units,
but also for administrative convenience in its
application. It is also very important when dealing with
skewed population since greater weight will be given
to the new extremely large units for reducing sampling
variability [7].

This paper therefore, proposes the Linear Stratification
(LS) as a new and simple approach to strata boundaries
determination; appraises its performance based on
the MSE value and compares its estimates with
cumulative square root of frequency method herein
referred to as Dalenius and Hodges Rule (DHR) [2] and
Geometric Stratification (GMS) due to [3].
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Specific design problems associated with stratified
sampling as enumerated by [1, 2], [4-6] are; choice of
a stratification variable, choice of number of strata L
to be formed, mode of stratification, i.e. the way and
manner in which strata boundaries are determined,
choice of sample size nh to be taken from the hth

stratum, i.e. the problem of allocation of sample size
to strata; and the choice of sampling design within
strata.

Solutions have also been suggested to most of these
problems by different authors. On the choice of
stratification variable, [7] enjoined the use of the
frequency distribution of the study variate itself as
stratification variable if available or that of an auxiliary
variable X which is highly correlated with the study
variate and perhaps the value of variable Y at a recent
census. Same view was expressed by [8]. The
significance of a highly correlated auxiliary variable
as a choice stratification variable was examined by
[4] while [9] took it to a logical conclusion in a
multivariate stratification study. In some studies, the
study variable is also used as the stratification variable;
[2, 4, 10, 11, 15]. Therefore, this study also assumes
the study variable for stratification.

On the choice of number of strata L to be formed,
in most cases, it is predetermined in order to attain a
specified level of precision. However [7], developed a
model representing the approximate reduction in the
precision of Stratified Sample mean compared to that
obtained with Simple Random Sampling and concluded
that beyond six strata L 6 there is little or no further
gain, in terms of precision. This was premised on the
following two basic questions [7] said to be considered
to efficiently determine the number of strata:

(a) at what rate does the variance of )( styV
decrease as L increases; and

(b) how is the cost of the survey affected by
increase in L?

Thus, when there is no appreciable gain in precision
with additional strata, then optimum number of strata
has been reached and when the cost of sampling
additional strata is already overshooting the survey
budget, it is obvious that the number of strata to be
surveyed should be limited to the one covered by the
survey budget.

Furthermore, [4] confirmed that efficient number
of strata L can be arrived at by observing the

)1(/)( LVarLVar reduction in variance attained
when additional stratum is considered, with the remark
that in many multipurpose investigations, only marginal

stratification gains could be expected from the use of
more than six strata. Nevertheless, [3, 4], [10-14] have
all studied methods of strata construction using
predetermined number of strata.

In determining the optimum stratum boundaries, [6]
stated that we are absolutely free to choose the number
of strata we desired, which is opposed to a situation in
which the strata have been predetermined e.g.
geographically or/an administrative stratification. This
study allows for optimum number of strata as suggested
by [6], while deep stratification is attained when
Nh = 1 in any or all of the strata.

The next operation is the mode of stratification, i.e.
strata boundary determination. Various methods had
been reported in the literature for determining strata
boundaries. Dalenius, T. [15] took the lead; Equalization
of strata Totals (EST) was developed by [2]. Others
are Ekman’s Rule (EKR) [17], Durbin’s Rule (DUR)
[18], Sethi’s Rule (STR) [19], Thomson Rule (TNR)
[20], Lavall�e and Hidiroglou Method (LHM) [21],
Extended Ekman’s Rule (EEKR) by [11], Random
Search method (RSM) was due to [13], Geometric
Stratification (GMS) by [3] and Genetic Algorithm (GA)
by [14]. Of all the aforementioned, DHR and GMS
are popularly in use for ease of application and precision
and therefore form the basis of comparison with LS in
this study.

On the problem of allocation of sample to stratum,
literature had extensively dwelt on the subject matter
with the following result: Optimum allocation was due
to [22], proportional and equal allocations have been
traditionally long in use. Compromise allocation was
by [23]; it was used and improved upon by [24]. Power
allocation was used by [21] while Genetic Allocation
(GA) was developed and used by [14]. This study
makes use of the optimum allocations for its highest
precision and yielding minimum MSE estimate for LS
when compared with other competing methods of strata
construction.

On the choice of sampling design within the stratum,
literature concentrated on the use of Simple Random
Sampling with or without replacement [1, 3, 11, 12].
While [26] report that systematic sampling is more ideal
for sample selection within strata for its precision when
units in each stratum are arranged in the order of
magnitude before selection. This study makes use of
Simple Random Sampling without replacement in each
stratum.

Now, this paper is organized as follows: the second
section deals on materials and methods, it describes
the four sets of data used for the study, the algorithm
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of the three methods of strata construction studied as
well as method of estimation. The third section presents
the results and discussion of the analysis while the last
section gives the concluding remarks on this study.

Materials and methods
In this section, we examine our Linear Stratification
(LS) in comparison with other competing methods of
strata construction, i.e. DHR and GMS. The data
structure reflects varying degree of skewness. These
four (4) sets of life data whose features are reflected
in Table 1 are used for this study:

i. Overall Cumulative Average Scores (OCAS)
of 145 students that graduated from the Faculty
of Engineering University of Ilorin 1989/90 set.

ii. Data of Kano State Ministry of Commerce
and Industry Survey (2008) on manpower
strength of companies and industries in the six
(6) industrial Estates of Kano, Nigeria.

iii. Grants allocation to 774 Local Government’s
Council in Nigeria for the month of December,
2008 shared in January 2009 (see
www.fmf.gov.ng).

iv. Population Census figures for the 774 Local
Government Areas of Nigeria during the year
2006 census (see www.nigeriastat.gov.ng).

Methods of stratification
Dalenius and Hodges Rule (DHR)
DHR evolves as an approximate solution to Dalenius
equation [2] and [15]. It requires us to choose equal
class interval, obtain the cumulative square root of the
frequency (cum(fy)) of the study variate and
determine the strata boundaries by dividing the total
cumulative square root of the frequency by the required
number of strata L and the boundary is placed at this
division point. In practice, the boundaries do not fall at
the exact point of stratification hence the boundaries
are established at the approximate boundary value
(ABV). In a  recent study,  [26] developed an
interpolation method that placed the stratification point
at the exact boundary value (EBV) yielding more
precise estimates than at the ABV. DHR is popularly
in use for its precision and ease of application. However,
it has been criticized for arbitrariness in the choice of
the class interval and the absence of a theory to guide
the best interval to use [11].

Geometric Stratification (GMS)
GMS was introduced by [3] as the new and the most

frequently used stratification method in the recent past.
It was applied to positively skewed populations and
the results competes favourably well with DHR.
Stratum boundaries are automatically formed with this
method once the geometric ratio r is determined.

  Lii XXr 1min/max

  LLX Xr 1
o/ . . . . 1

Where XL is the largest variate and X0 is the smallest
value of X.

The boundaries are at the points Kh:

Minimum K0 = a, ar, ar2 . . . , arL = Maximum KL
The general term is Kh = arh

h = (0, 1, 2, . . . , L) . . . .  2

Using the relation (1) on data 1, e.g. for two strata
situation:

X0 = 44.7, XL = 68.8, L = 2

Then, r = [68.8/44.7]1/2

= 1.5391

Strata boundaries are at the points Kh = arh , h = (0, 1,
2, . . . , L)

a = X0 = 44.7,  r = 1.5391 thus,
for h = 0, Kh = K0 = 44.7 * (1.5391) 0 = 44.7 * 1

= 44.7
for h = 1, K1 = 44.7 * (1.5391)1 = 55.5
for h = 2, K2 = 44.7 * (1.5391)2 = 68.8

Using the relation (1) and (2) on data 1-4, strata
boundaries were established by GMS for two through
ten strata. It has been established that GMS has its
limitations in the fact that it does not work for normal
distributions. Also, it does not work well with variables
that have very low starting points as this will lead to
too many small strata [3], hence sample estimation is
impossible in early strata formations by GMS.

Linear stratification (LS)
It has been stated that optimum boundaries are attained
when the Coefficient of Variation (CV) are approxi-
mately equal in all the strata [27]. Subsequently, [3]
developed a recurrence relation based on submission
of [27] to derive the GMS. Our proposed LS algorithm
toed the path of assumptions of [27] and [3].

Similarly, the algorithm of strata boundary
determination of minimum sample size for a given
precision developed by [12] and the LHM by [21]
assumed equality of CV.
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Linear stratification: mathematical background
To stratify a population of size N into strata of size N1,
N2, . . . , NL. Let X1, X2, . . . , XN be observations of the
stratification variable x highly correlated with the study
variate Y with observations Y1,Y2,. . .,YN . Suppose
the population size N is subdivided into intervals, with
end points b0< b1 < . . . <bL. In order to make the
breaks (b0, b1, . . . ,bL) for any given b0 and bL we use
the recommendation of [27] as adopted by [3].

We seek equality of co-efficient of variation CV
for all the strata, i.e.

h

h
h X

CV 
 for,  h = 1, 2, . . . ., L . . . . 3

Where h , the standard deviation of the stratification
variable X in the hth stratum is estimated by Sh and hX
is the mean of the stratification variable X for the hth

stratum. To attain homogeneity of units within the
stratum, we further assume that the probability
distribution within each stratum is approximately
uniform. Thus, if X ~ U(a, b), the mean and the

standard deviation are 
2

)( abX h


 and 12
1S

(b – a) respectively. Thus for boundaries b0, b1, . . .,
bL. The mean and variance of hth stratum is given as:
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as obtained by [3].
They stated further that this new and recurrence

relation (4) reduces however to

11
2

  hhh bbb . . . . 5

See relation (8) in [3] and therefore chosen the stratum
boundaries Kh as terms of geometric progression.

,h
h ark 

h = 0, 1, 2,. . . ., L – 1 . . . . 2

The recurrence relation (4) obtained by [3] based
on the aforementioned assumption satisfy the require-
ment of our algorithm. However, we defer on the
geometric progression of the strata boundaries, as our
empirical investigation has shown that the most efficient
boundaries are reached when the sequence is on linear
progression.

Furthermore, it was stated by [3] and [29] that the
GMS created wide gaps within strata and this makes
one doubt the genuineness of homogeneity of units
within the strata. With the wide gaps, there will be
high variability among the units in each stratum. Literature
has overstressed the need for homogenous units
within the stratum. Stratified sampling is said to be at
its best when the strata are internally homogenous [6].

Linear stratification algorithm is as follows:
A. For a normal population
Optimum Points of Stratification (OPS) for some
standard distributions has been developed by [19]
(Normal, Beta, Gamma and various chi-squares). He
also tabulated the optimum boundaries for Neyman,
equal and proportional allocations for L 6 (for Gamma
distribution) and L 10 for normal distribution. He
advised that using STR requires the knowledge of the
shape of the distribution of the population units [19].

Similarly, coefficient of skewness speaks for the
departure of any given sets of data from normality.
Skewness of zero indicates that the distribution is
balance hence symmetric. Coefficient of skewness not
very far away from zero shows that the data set is
approximately normal. The importance of visual display
of data sets in determining it skewness and using the
appropriate statistic has also being stressed by [30].
Therefore, when the coefficient of skewness is < 2
and the frequency distribution plot of the data sets
reflect a normal or approximately normal distribution
we apply the following procedure.

For a normal population, Let X1, X2, . . . , XN be units
of the stratification variable X which is highly correlated
with the study variate Y with units Y1, Y2, . . . ,YN. We
assume (X = Y) like in [2, 4, 10, 11, 15]:

i. Arrange the variables in ascending order of
magnitude.

ii. Take the least value in the series as b0 and the
Largest value as bL in the (L+1) terms forming
the population units.

iii. Obtain the range of the series R = bL – b0
.

iv. Obtain the common range difference dr by
dividing R by the number of strata L desired,
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thus,

dr = R/L . . . . 6
v. Obtain the strata boundaries using the relation.

rh dhbb  o . . . . 7

This is the general term for h = 0, 1, 2, . . . , L.

B. For a positively skewed data i.e. Coefficient
of Skewness > 2

The following steps of the algorithm are applicable:

i. Arrange the variables in ascending order of
magnitude.

ii. Plot the variables against their serial number.
iii. Identify the variable at which disjoint occur

along the curve.
iv. Take the least value in the series as b0 and the

variable at the point of disjoint as bK in the
new (L – 1) terms forming the population units.

v. Variables X1, . . ., XK form stratum 1 while
variables XK+1, . . . , XN forms the second
stratum in two strata case and remain constant
as the last stratum for all other L – 1 strata
formations.

vi. Obtain the range of the new series
R* = bK – b0

.

vii. Obtain the common range difference d*
r by

dividing R* by the number of (L – 1) strata
desired, thus,

)1/(   LRdr . . . . 8
viii. Obtain the strata boundaries using the relation.

 rh dhbb o for h = 0, 1, 2, . . . , L . . . . 9

The justification for this algorithm is that for a positively
skewed data set, there is a great departure from normal
distribution occasioned by some extraneous variables
(outliers), hence deep stratification may occur within
three strata formation if the procedure for normal
population is applied.

Numerical examples
According to the data reported by [3] in a four strata
formation where:

L = 4, K0 = b0 = 5; KL = bL = 50,000.
R = bL– b0 = 50,000 – 5 = 49995.
dr = R / L = 49995/4 = 12499.

Thus, using Relation (7) above,

b0 = 5 + o * 12499 = 5.
b1 = 5 + 1 * 12499 = 12504.
b2 = 5 + 2 * 12499 = 25003.
b3 = 5 + 3 * 12499 = 37502.
b4 = 5 + 4 * 12499 = 50,000.

We obtain the following strata boundaries:

5 – 12,504; 12,505 – 25,003; 25,004 – 37,502;
37,503 – 50,000.

Compared to boundaries obtained by [3] at:

5 – 50; 51 – 500; 501 – 5,000 and 5,001 – 50,000

Similarly, for the data reported by [29] for three strata
formation, we obtain our strata boundaries as follows;
where a = K0 = b0 = 40, KL = bL = 28,000 and L = 3.

R = bL – b0 = 28,000 – 40 = 27960.
dr = R/L = 27960/3 = 9320.

Thus, b0 = b0 + 0 * 9320 = 40.
b1 = 40 + 1 * 9320 = 9360.
b2 = 40 + 2 * 9320= 18680.
b3 = 40 + 3 * 9320 = 28000.

Our strata boundaries are:

40 – 9,360; 9,361 – 18,680; 18,681 – 28,000.

Compared to those of [29] at:

40 – 354; 355 – 3,152; 3,153 – 28,000.

It could be observed from the two examples that
the strata formed by GMS are really moving in
geometric order, creating too wide gaps within the
strata. This fact was also acknowledged by [3] and
[29]. The former states that “as the values of the
variable increases, the stratum width increases
geometrically” while the latter mentioned that “this
makes it appropriate to take small intervals at the
beginning and large intervals at the end”. Therefore,
these large intervals and geometric stratum width
eliminate the concept of homogeneity of units within
the stratum and that assumption of uniform distribution
within the stratum may not hold any longer unlike our
LS that maintains equidistant within the stratum. It
further implies that with little population units Nh in the
early stratum, zero sampling units may be allocated
thereby forming stratum where no unit is sampled.

Strata formations
For the sets of data used in this study (see Table 1),
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the coefficient of skewness of data 1 = 0.712. This is
not too far away from zero and the frequency
distribution plot on its histogram tends to normal
distribution, hence approximated as a normal
distribution. Therefore relation (7) above is applied:

K0 = b0 = 44.7; KL = bL = 68.8.
R = bL – b0 = 68.8 – 44.7 = 24.1.
dr = R / L = 24.1 / L

when two strata are required,
dr = R / L = 24.1 / L = 24.1/2 = 12.05

Therefore, strata boundaries are:

Kh = b0 + h * dr

K0 = 44.7 + 0 * 12.05 = 44.7.

K1 = b0 + 1 * 12.05 = 44.7 + 12.05 = 56.75.
K2 = b0 + 2 * 12.05 = 44.7 + (2* 12.05) = 68.8.

For data 2-4, their coefficient of skewness is greater
than 2 (see Table 1), this indicate a positively skewed
data, hence LS Procedure B is applied. The scatter
plots of ordered observations of data 2-4 are as shown
in Figures 1, 2 and 3. The points of disjoint on the curve
are the observation whose labels appear on the curve.
Thus, the new upper limit bK are the observation before
those shown on the plots. The common range
difference is obtained using relation (8)

)1/(   LRdr . . . . 8

and the strata boundaries are obtained using relation
(9)

Table 1. Summary statistics of the data used in this study.

Data N n Range Coefficient 
of Skewness

Mean Variance Standard 
Deviation

1 145 48 44.7 - 68.8 0.712 55.48 20.05 4.48
2 171 57 3 - 3756 6.581 166 163923 405
3 774 258 72.2 - 365.0 3.239 108.96 700.61 26.47
4 774 258 11.7 - 1277.7 3.218 180 10281 101

 rh dhbb o . . . . 9

The outliers on the plots brings about deep stratification
quickly, i.e. Nh = 1 L 3 when relation (7) is used.
Hence, the procedure differs depending on the degree
of skewness of a data set. The conclusion drawn from
this method is that it creates equal intervals between
the strata which is one of the features of DHR unlike
GMS that creates geometric gaps between strata. Our
last stratum when relation (9) is used could be likened
to the “take-all stratum” of [21].

Figure 1. Simple scatter Plot of Ordered Observation Data 2.

Figure 2. Simple scatter Plot of Ordered Observation Data 3.

Figure 3. Simple scatter Plot of Ordered Observation Data4.
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Estimation procedure
This section discusses estimation procedure in stratified
random sampling. Symbols and notations of [7] were
adopted in this study.

Notations
The subscript h denotes the stratum and i the unit within
the stratum.

L = Number of strata.
Nh = Total number of population units in

stratum h.
nh = Number of sampled units in stratum h.
N = Total number of population units in all the

L strata.
n = Sample size of the study.
Yhi = is the observation of the ith unit in the hth

stratum.
Wh = Nh/N = stratum weight (population units).
wh = nh/n = stratum weight (sample units).

Optimum allocation is employed in this study to allocate
fixed sample sizes into the strata.

The expression for the optimum allocation is given
as:




hh

hh
h SN

SnNn . . . . 10

With the variance as:

 
N

SW
n
SWyVV hhhh

stopt

22

min )( 



 . . . . 11

  2])([)()( hhhoptstst YWwyVyMSE

=  2][)( BiasyV st  . . . . 12
When optimum allocation is used,

 2)()()(   hhhoptstst YWWyVyMSE . . . . 13

It should be noted that the true stratum weight is known
and applied in this study.

In stratum where optimum allocation produces nh
(stratum sample sizes) which are larger than the stratum
size Nh. (i.e. when nh>Nh) the revised optimum
allocation is used [7].

hh

hh
ih SN

SNNnn


 )(~Ropt . . . . 14

Where i is the stratum in which nh > Nh.

e.g. if n1 > N1 then, for h 2  
hh

hh
ih SN

SNNnn


 )(~
.

If more than one stratum is involved, the entire
affected strata where nh > Nh are deducted from
sample size n to obtain Ropt allocation using relation
(14) above. Expression for the variance of Ropt
allocation is given as:

N
SW

n
SW

yV hhhh
stRopt

22 '
'

)'(
)(





 . . . . 15

where n’ is the revised total sample size and ’ is the
summation over the strata in which .~

hh Nn 
Thus, relation (15) fits back into relation (13) to obtain

)( styMSE for strata formations where Ropt allocation
is used.

Results and discussions
Table 1 gives the descriptive statistics of the four sets
of data used in this study. The population size of each
data set is as reflected in the second column followed
by the sample sizes. The coefficient of skewness of
the data set is as shown in the fifth column which shows
that the study makes use of positively skewed and
normal population.

Number of strata
The numbers of strata formed depend on the structure
of the data sets or the variability among the units. For
the four (4) sets of data used, DHR formed five strata
for data 1 and 2, six strata for data 3 and 4 while GMS
and LS formed ten strata for each of the four sets of
data except in data 3 where GMS formed five strata.
This study allows for optimum number of strata and the
stratification process were continued until when deep
stratification occurred, i.e.  hNh ,1 1, 2, . . ., L (at
least one population unit in one or more stratum).
However, sample estimation was restricted to strata
formation in which nh 2. With less than 10 population
units in stratum I  of four strata formations and above
by GMS, optimum allocation gives zero sample units
to the first stratum and to the first two strata in eight
strata formation for data 2 and 4.

Sample estimation
Fixed sample of sizes of 48, 57, 258 and 258 were
selected from data 1 to 4 respectively. Sample allocation
to stratum employed optimum allocation while simple
random sampling without replacement was the sampling
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scheme used within the strata. In order to obtain
relevant statistics for the purpose of estimating the
population parameters we use R2.6.1 packages
(generating seed of 123).

Estimates from the selected samples were computed
to obtain the stratified estimates of the population mean

)( sty and its )( styMSE . Estimates of the MSE of the
population mean are shown in Table 2.

Table 2. MSE of the population mean for the three approaches for the four data sets.

Data 1 Data 2 Data 3 Data 4

Strata DHR GMS LS DHR GMS LS DHR GMS LS DHR GMS LS

2 0.87617 0.64637 0.43835 41114.2 50980.6 22943.3 148.217 33.335 5.730 1702.04 533.63 108.33
3 0.10790 0.62326 0.11399 36373.7 34263.7 24691.1 206.897 54.794 25.781 3422.86 1432.74 330.14
4 1.78109 0.63904 0.03716 35700.5 36302.1 24045.0 176.650 74.482 29.928 1943.71 1651.97 714.43
5 0.03496 0.12031 0.02259 30470.8 45593.6 23747.0 115.776 48.911 33.774 2310.21 1705.40 444.76
6 0.06573 0.01882 43252.6 25350.9 52.655 27.577 1485.07 1655.82 311.05
7 0.09549 42345.5 23877.0 30.349 2339.13 294.73
8 41668.5 20.139 2199.67 194.73
9 22.054 148.17
10 26.507 125.62

Table 2 presents the MSE value for the three
methods of strata construction studied. For data 1 to 4,
MSE (LS) gives the minimum estimate when compared
to the values obtained for DHR and GMS. Thus, LS
gives the most accurate estimates among the methods
of strata construction studied. LS is also estimable in
all strata formed unlike the other methods. In terms of
computational simplicity, LS and GMS could be
accomplished at the same speed unlike DHR. LS also
work for normal population (data 1) unlike GMS as
stated by [3]. Both GMS and LS have their similarity
in the fact that they both break down completely when
the lower end point is zero, i.e., when X0, the smallest
value of the variable is zero.

Conclusion and recommendation
Statistical inference has suggested that most accurate
estimators are those with minimum MSE and that
erroneousness weight in stratified sampling leads to
sample estimate that is biased [7]. Therefore, it is ideal
to assess the performance of a procedure using the
MSE criterion rather than the variance (precision). This
study thus, identifies the best method among competing
methods of stratification such that the method with the
least (minimum) MSE is adjudged the best among the
competing methods, that is: MSE (T*)  MSE (T),
i = 1, 2, and 3.

Therefore, our new LS in terms of efficiency has
the minimum MSE value irrespective of the coefficient
of skewness of sets of data used when simple random
sampling scheme without replacement is used within

the strata and optimum allocation employed (Table 2).
This implies that our new LS have the minimum
estimates of Bias, i.e.:

i. 1)()( TstLSst yBiasyBias  and

ii. TstLSst yMSEyMSE )()(  .

Where Ti = DHR and GMS.
Therefore, the new LS is the most efficient of these

existing methods of strata construction studied using
optimum allocation in skewed and normal populations
and hereby recommend its usage when accurate
estimates are required.
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