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Abstract
The increasing demand for sorting big data, software quality and proliferation of battery-powered computing devices
require efficient sorting algorithms and performance metrics to measure energy consumption and cyclomatic complexity.
The introduction of a faster two- pivot quicksort by Yaroslavskiy in 2009 displaced one pivot-quicksort in Java Runtime
Library 7.However, the two-pivot quicksort algorithm is less efficient for sorting small data sizes. In addition to the Hoare’s
one-pivot and Yaroslavskiy’s two-pivot quicksort algorithms, the Yaroslavskiy’s two-pivot quicksort technique was
modified and implemented with java programming language in this study. Randomized, unsorted data was generated into
arrays ranging from small to large sizes and were subjected to Quicksort algorithm variants up to five times each. The
average time spent by the algorithms to sort the data as well as their energy consumed for the sorting were recorded. The
cyclomatic complexities of the algorithms were computed. The modified two-pivot was found to be time and energy
efficient for all the data sizes. There was a high correlation between time and energy consumed with energy increasing
linearly with time. Hoare’s one pivot quicksort has the best software complexity followed by the modified Yaroslavskiy
two-pivot quicksort algorithm. The modified two-pivot quicksort is recommended for sorting applications deployed on
computing devices where time and energy are critical factors.
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Introduction
Analysis and design of algorithms are part of the
building blocks of computer science. Despite the design
of new sorting algorithms, Quicksort is used in many
practical implementations. It is one of the fastest
comparison-based sorting algorithms and the standard
sorting method in UNIX, Java and C libraries. The
performance of the algorithm is dependent on the quality
of selected pivot. Until recently, one pivot or key
element was normally used to partition the list of data
to be sorted into two regions. After partitioning the list,
the values of elements in the first region are lesser or
equal to the pivot while those at the second region are
greater or equal to the pivot. The pivot is chosen either
as the first, last, middle element or randomly picked
from the list. Each of the choice of the one pivot has
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its associated turn on the performance of the quicksort
algorithm [1].

In 2009, a two-pivot quicksort algorithm was
proposed by Vladimir Yaroslavskiy [2, 3] to improve
the performance of one-pivot quicksort. The introduction
of the faster two-pivot quicksort displaced one pivot-
quicksort in the Java Runtime Library 7. The two-pivot
quicksort function is called from Java runtime library
to sort both large and small array sizes. The improved
execution time in two-pivot quicksort was attributed to
selection of the two pivots and reduced number of
comparison than one-pivot quicksort [4]. Five sampled
elements were picked from the array and arranged
into an ascending order. He selected the second and
fourth elements of the sampled elements as pivots.
The two selected pivots partitioned the array into three
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and recursively sorts the array by moving elements
less than first pivot to the left, elements greater than
the second pivot to the right while elements greater
than or equal to first pivot and elements less than or
equal to the second pivots were moved to the center
of the array. Insertion sort was employed to sort tiny
array size. Empirical results from using this approach
showed an improved performance in execution time
particularly for large array sizes over the one-pivot
quicksort technique.

To meet the demand for maintenance and high
performance in sorting big data, cyclomatic complexity
and energy efficiency must be considered as a key
factor in the quicksort algorithm. To the best of our
knowledge, little or no work has been done to determine
the performance of quicksort in terms of its energy
efficiency and cyclomatic complexity. Software
controls the operations of hardware and directly
contributes to the energy dissipated by the computing
device. Hence, selecting energy efficient algorithms
minimizes the amount of energy consumption by
software. Since software controls hardware, recent
researches advocate the use of energy efficient
algorithms and software for energy efficiency
optimization [5, 6].

Battery-powered device users’ preferences for
energy optimization brings to fore the need to include
energy consumption in evaluating the performance of
quicksort algorithm. Bunse et al [7] presented an
approach for selecting optimal sorting algorithm based
on users’ preference for speed or energy-saving.
Considering the power consumption constraints in
battery powered devices, high consumption in data
centers, Bardine et al [8] focus on optimizing hardware
for energy efficiency.

Recent research efforts were concentrated on
analyzing factors that contribute to the time efficiency
of two-pivot quicksort. Wild and Nebel [9] attributed
less execution time to reduced number of comparisons.
They obtained 1.9nlogn + O(n) as the asymptotic
number of comparisons for two-pivot quicksort while
the classic one-pivot has an asymptotic comparison of
2nlogn + O(n). Similar study carried out by Kushagra
et al [4] corroborates the results stated in [9].
Improving two-pivot for time efficiency when sorting
small array size was not considered.

Multiple pivots quicksort algorithm has been
previously examined by Salman and Sultanulah [10].
They conducted an empirical study to evaluate the
performance of multiple pivot quicksort. The result of
the empirical study was compared to quicksort, merge

sort and heap sort. The outcome reveals that multiple
pivot quicksort outperforms Hoare’s one pivot
quicksort, merge sort and heap sort. However, the study
evaluated only the execution time of the algorithms,
leaving out energy and software complexity of the
algorithms.

In recent times, emphasis has been laid on the need
for high software quality. Cyclomatic complexity
indicates bug density in a program, low cyclomatic
density is proportional to low bug occurrence [11]. The
metric measure understandability and maintainability
of software. Alsultanny [12] measured cyclomatic
complexity of binary search algorithm implemented in
C++, Java and Visual Basic. The study revealed
varying complexities between the three programming
languages. The author attr ibuted the varying
complexities to language flexibility, ease of under-
standing and syntax. Comparing quicksort algorithm
variants using cyclomatic complexity will give insight
into the ease of understanding and testing of its
implementation.

In the present study, the Yaroslavskiy’s two-pivot
quicksort was modified by changing the way pivots
were selected. The two pivots for quicksort were
selected by picking the middle element and a random
unique location. An experiment-proof approach was
employed to determine if there is an improvement in
execution time for sorting small and large array sizes
by changing the pivots location. Time, energy
consumption and cyclomatic complexity of the
quicksort a lgorithm’s variants (one-pivot,
Yaroslavskiy’s two-pivot and the modified two-pivot
quicksort algorithms) were measured and compared.

Materials and methods
This study modifies Yaroslavskiy’s two-pivot quicksort
algorithm by changing how the two pivots for the
algorithm are selected. The original Yaroslavskiy’s two-
pivot quicksort algorithm and the modified algorithm
are presented next.

The original Yaroslavskiy’s [2] dual pivot
quicksort algorithm
In Yaroslavskiy’s two-pivot quicksort algorithm, ‘Less’,
‘great’ and ‘k’ were pointers used to transverse the
array. Pointers less and k scan an array or list from
left to right while pointer great scans from right to left.
Pivots p and q partition the array into three regions.
Elements of the array less than pivot p are swapped
to the leftmost side of the array, elements greater than
pivot q are swapped to the rightmost side while
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elements greater or equal to pivot p and less or equal
to pivot q are moved in between pivot one and pivot
two. Hence, the array is partitioned into three regions
and the partitions are recursively sorted using the same
process. Insertion sort was used to sort array size less
than or equal to seventeen. The cost of sorting tiny
array sizes less than or equal to 17 using two-pivot
quicksort is high, hence, insertion sort was used. The
algorithm for the Yarslavskiy’s two-pivot quicksort
partitioning process is presented in Figure 1. The major
difference between Yaroslavskiy’s dual quicksort and
modified two-pivot quicksort is the position of pivots
used in partitioning the array. Increased number of
pivots results in more pointers traversing the array and
increased number of partitions. Quicksort algorithm
whether one pivot or two pivots has two things in
common, which are array partitioning and recursion.

Yaroslavskiy Partition (A, left, right)
less  left + 1
great  right – 1
k  less
while k  great do

if A[k] < p then
exchange A[k]  A[less]
less = less + 1

End
else

if A[k] > q then
while A[great] > q do

great  great - 1
End

if k < great then
if A[great] < p then

exchange A[great]  A[k]
exchange A[k]  A[less]
less  less + 1;

End
else

exchange A[k]  A[great]
End

great  great -1
End

k  k + 1
exchange A[left]  A[less - 1]
exchange A[right]  A[great + 1]

Figure 1. Yaroslavskiy partitioning algorithm [1].

The modified two pivot-quicksort algorithm
Figure 2 depicts the proposed algorithm for selecting
two pivots for Yaroslavisiky’s dual pivot-quicksort

algorithm. The first pivot position (f1), which is selected
at the middle of the array, is deterministic. This is done
to ensure even partitioning of the array into three
regions.The second pivot position (f2) was randomly
picked from the arrayto provide equal probability to
array elements irrespective of input distribution and
reduce the possibility of forcing the algorithm to run in
quadratic time, i.e., O(n2). Data in the two positions
were compared; the greater is swapped to the right
while the lesser is swapped to left. A[left] and A[right]
were assigned to pivot one p and pivot two q
respectively.

Modified Yaroslavskiy Q sort (A, left, right)
length  right - left + 1
if length  17 then //Use insertion sort

do for i  left + 1 to right do
key  A[i]
j  i
while j > 0 and A[j-1] > A[j]

Exchange A[ j]  A[j – 1]
j  j - 1

return A[j + 1]
else

f1  length[A]/2
f2  left + random(right – left + 1)
if f1 == f2

f2  left + random(right – left + 1)

if A[f1] < A[f2] then
exchange A[f1]  A[left]
exchange A[f2]  A[right]

else
exchange A[f1]  A[right]
exchange A[f2]  A[left]

p  A[left]
q  A[right]
Yaroslavsky_Partition (A, left, right)

Modified YaroslavskiyQsort (A, left, less - 2)
Modified YaroslavskiyQsort (A, great + 2, right)
Modified YaroslavskiyQsort (A, less, great)

Figure 2. Modified Yaroslavskiy’s two pivot-quicksort.

Quicksort time, cyclomatic complexity and energy
cost model
The quality of quicksort algorithm with one and two
pivots was analyzed based on cyclomatic complexity
and energy cost. The three quicksort algorithms were
implemented using Java programming language. The
cyclomatic complexity of the three quicksort algorithms
was computed. The three algorithms were partitioned



34    Journal of Science Research Vol. 15

based on the number of pivots selected. The number
of pointers for traversing the elements is one number
higher than the number of pivots.

Figure 3 illustrates the model for the comparison
between quicksort algorithms. Arrays of integers were
randomly generated using random function in Java.
The randomly generated integers were fed into the
Hoare, Yaroslavskiy and proposed modified two pivots
quicksort algorithms. Each of the quicksort algorithms
sorts the generated integers into ascending order.
Sorting times and power consumptions were captured
from the algorithms while sorting. The cyclomatic
number was computed directly from the code and it is
independent of time or vector size of the integers.

Figure 3. Quicksort time, cyclomatic complexity and energy
cost model.

The energy of the algorithms was computed using the
following metrics:

i. Quicksort time.
ii. Power consumption.

Quicksort time is the time taken by the algorithm to
arrange set of unsorted data into an ascending or
descending data. Java timestamps were used to
capture the quicksort time in nanosecond. To ensure
that the data captured were accurate, each data-set

was repeated five times with the three quicksort
algorithms and the means were computed.

The power consumed by the algorithms was
captured using Joulemeter. Joulemeter was developed
by Microsoft Research Laboratory to measure power
consumed by a device or software. Measurements
taken by the Joulemeter were saved to a file with .csv
extension. Nonessential applications running on the
computer were terminated to ensure that the measured
power is primarily consumed by the sorting algorithm.
To ensure that the energy consumed by random integer
generation is not included, java timestamps were placed
where sorting started and ended. The timestamps were
used to trace the power consumed by the sorting
algorithm saved in a file with .csv extension. The energy
consumption was computed using the equation
proposed by Johann et al [13]:

Energy = Power consumption * Quicksort time

Data-set
The data-set for the algorithms were randomly
generated using rand() function in Java. The sizes of
the dataset range from 50 to 1,000,000 elements. The
dataset was purposively categorized into three to
understudy the algorithm performance for a range of
array size in case there are features peculiar to an
array range. The first category ranges from fifty (50)
to eight hundred and fifty (850) data size, second
category ranges from one thousand (1,000) to one
hundred and sixty thousand (160,000) data size while
the third category ranges from two hundred thousand
(200,000) to one million (1,000,000), representing low,
medium and large data sizes. To study the performance
of the three algorithms, each algorithm was used to
sort same data size and type of randomly generated
number. The three algorithms were implemented using
Java programming language. Hoare’s one pivot,
Yaroslavskiy’s two pivots and the proposed modified
two pivots algorithms were tested on a computer with
an Intel Pentium processor with a speed of 1.7 GHz,
GB of RAM and a disk size of 500 GB.

Results
(a) Running time
The average running times obtained for each of the
three Quicksort algorithms on the three data size
categories (small, medium and large data sizes) are
shown in Tables 1 to 3 while Figures 4 to 6 are charts
of the results.
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Table 1. Average running time output of Hoare, Yaroslavskiy
and Modified Yaroslavskiy for small array size range
50-850.

Table 2. Average running time output of Hoare, Yaroslavskiy
and Modified Yaroslavskiy for medium array size range
1,000-160,000.

Table 3. Average running time output of Hoare, Yaroslavskiy
and Modified Yaroslavskiy for large array size with range
200,000-1,000,000.

Figure 4. Average running time for Hoare, Yaroslavskiy and
Modified Yaroslavskiy for small array size range 50-850.

Figure 5. Average running time for Hoare, Yaroslavskiy
and modified Yaroslavskiy for medium array size range 1,000-
160,000.

Figure 6. Average running time for Hoare, Yaroslavskiy
and modified Yaroslavskiy for large array size range 200,000-
1,000,000.

Observations from Figures 4 to 6 show that when
the data size was small (50-850, Figure 4), the Hoare’s
single pivot partition was better than the original
Yaroslavskiy’s two-pivot algorithm in term of their
running time complexities. However, as the data-size
increases in Figures 5 and 6, the original Yaroslavskiy’s
algorithm’s time complexity was better. In any case,
the time complexity of the proposed modified
Yaroslavskiy’s algorithm was the best for small and
large array data sizes. This means the proposed
modified Yaroslavskiy’s two-pivot quicksort algorithm
takes least time to sort the data, compared to the other
algorithms.

(b) Energy consumption
The average energy expended by the three Quicksort
algorithms on the three data size categories (small,
medium and large data sizes) are shown in Tables 4 to
6 while Figures 7 to 9 are charts of the results.

Quicksort algorithm average running 
time (Äsec)

Vector 
size (N)

Hoare Yaroslavskiy Modified 
Yaroslavskiy

50 1,517 2,039 1,196
250 2,657 3,197 2,172
450 3,543 4,023 3,292
650 4,288 4,790 3,926
850 5,532 5,857 4,997

Quicksort Algorithm Average Running 
Time (Äsec)

Array 
Size (N)

Hoare Yaroslavskiy Modified 
Yaroslavskiy

1,000 5,787 6,081 5,063
40,000 35,292 33,598 30,111
80,000 69,634 58,189 54,081
120,000 108,396 98,523 92,153
160,000 175,260 158,436 152,897

Quicksort Algorithm Average Running 
Time (Äsec)

Array 
Size (N)

Hoare Yaroslavskiy Modified 
Yaroslavskiy

200,000 230,807 204,408 157,139
400,000 319,757 277,945 202,427
600,000 447,544 399,851 308,840
800,000 581,587 474,932 459,273
1,000,000 695,399 547,309 530,810
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Table 4. Average energy consumption of Hoare, Yaroslavskiy
and Modified Yaroslavskiy for small array sizes ranging
from 50-850.

Table 5. Average energy consumption of Hoare, Yaroslavisky
and Modified Yaroslaviky for medium array sizes ranging
from 1,000-160,000.

Table 6. Average energy consumption of Hoare, Yaroslavisky
and Modified Yaroslaviky for large array sizes ranging from
200,000 to 1,000,000.

Figure 7. Average energy consumption of Hoare,
Yaroslavskiy and Modified Yaroslavskiy for small array sizes
ranging from 50-850.

Figure 8. Average energy consumption of Hoare,
Yaroslavisky and Modified Yaroslaviky for medium array
sizes ranging from 1,000-160,000.

Figure 9. Average energy consumption of Hoare,
Yaroslavisky and Modified Yaroslaviky for large array sizes
ranging from 200,000 to 1,000,000.

Observation from the energy consumption results
of the three Quicksort algorithm’s variants shows that
the modified Yaroslavskiy two-pivot quicksort expended
the least energy with increased vector size for the
different data size categories.

(c) Cyclomatic complexity
Figure 10 shows the cyclomatic number of Hoare,
Yaroslavskiy and the modified Yaroslavskiy Quicksort
algorithms.

Figure 10. Cyclomatic complexity for Hoare, Yaroslavskiy
and Modified Yaroslavskiy.

Quicksort Algorithm Average Energy 
Consumption

Vector 
Size (N)

Hoare Yaroslavskiy Modified 
Yaroslavskiy

50 0.009 0.012 0.007
250 0.017 0.021 0.015
450 0.028 0.033 0.027
650 0.036 0.042 0.035
850 0.051 0.058 0.050
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Observation from Figure 10 shows that the Hoare’s
one-pivot algorithm has the best (least) cyclomatic
complexity followed by the modified Yaroslavisky’s
two-pivot algorithm. This means that the program code
for the Hoare’s one-pivot algorithm is less complex,
i.e. less prone to bugs and easily understandable.

(d) Correlation analysis
The correlation between the time required to sort arrays
of varying sizes and the energy performed was
computed. Figure 11 shows the scattered plot graph of
energy versus time for the small data size with the
variants of the Quicksort Algorithms.

The correlation between the time and energy was
high based on the value of coefficient determination,
R2 obtained for the different data sizes and the
closeness of the data points to the regression line (R2 =
0.975, 0.998 and 0.994, respectively for small, medium
and large data sizes). The scattered plot shows a linear
trend between energy and time. This implied that the
time taken alone by Hoare, Yaroslavskiy and modified
Yaroslavskiy is sufficient to predict the energy
consumed by the quicksort algorithm variants. Hence,
the value of energy increases with increase in the value
of time. The strength of association between energy
and time is very high and the correlation coefficient is
very highly significant with p<0.001.

Figure 11. Energy versus time correlation graph for array
sizes ranging from small data size.

Discussion of results
The empirical analysis of Hoare’s one pivot,
Yaroslavskiy and the modified Yaroslavskiy showed
that the modified Yaroslavskiy two-pivot quicksort has
a better time efficiency for sorting small, medium and
large array of numbers. Though the three variants of
Quicksort has a best case time complexity of nlogn,

but their practical running time differs. From the results
obtained in this study, the modified Yaroslavskiy
algorithm outperforms the original Yaroslavskiy and
Hoare Quicksort Algorithms in terms of time for the
entire small and large sized array. The result is in line
with Kushagra et al [4] work, who assert that quicksort
algorithm has best case time complexity of nlogn but
the value of n is responsible for the difference in running
time.

The energy consumption rate of the three Quicksort
algorithm’s variants shows that the modified
Yaroslavskiy two-pivot quicksort expended the least
energy with increased vector size for the different data
size categories. This implied that the fastest algorithm
(the modified two-pivot Quicksort algorithm) is high
energy efficient. This is attributed to less time taken
by the algorithm to sort elements in an array for data
sizes considered in this work. In the work of Hagar, et
al [14], it was concluded that the fastest algorithm is
energy efficient primarily due to time of execution rather
than differences in power consumption levels.

The correlation between energy and time shows a
strong influence of time on energy expended by the
algorithms. This is in line with Muhammed, Luca and
Marco [15], who concluded that algorithm with the
lowest execution time expends the least energy. The
implication is reducing the execution time of an
algorithm increases the energy efficiency.

Hoare’s one pivot quicksort is software complexity
efficient while Yaroslavskiy and modified Yaroslavskiy
require more time to implement due to high cyclomatic
complexity. Nurminen [16] pointed out that algorithms
with high cyclomatic complexity required more
execution paths, harder to understand and maintain.

Conclusion
It was demonstrated in this study that the modified
Yaroslavskiy two-pivot is most time and energy
efficient compared to Hoare and Yaroslavskiy for small,
medium and large data sizes. Yaroslavskiy and the
modified version require more human energy to
maintain, test and understand compared to Hoare one
pivot Quicksort. Time is the key factor in energy
consumption of an algorithm as the correlation between
energy and time is high.

In conclusion, the proliferation of battery-powered
devices, sorting of big data and continuous maintenance
of software require algorithms that are most suitable
for the application and targeted platforms. Results of
this work shows that the number and position of pivot
play important roles in determining the performance
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of Quicksort algorithm. This will help programmers
and system designers in selecting appropriate Quicksort
algorithm by considering time, energy and cyclomatic
complexity.
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