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Abstract 

 Finite element method to model plane-wave electromagnetic fields in 2D conductive structures has been developed. 

Triangular grids were used which readily conform to complicated geologic structures, unlike other existing numerical 

modeling techniques which are bound by the limitations of approximating complicated geologic structures using 

rectangular grids. Maxwell’s equations were treated as a system of 2
nd

 order partial differential equations and 

transformed into a weak form using method of weighted residuals. Application of this method for 2D Simulation of 

Magnetotelluric (MT) data, in transverse electric (E-polarization) mode, revealed that to obtain accurate results, a 

minimum thickness of the air layer is added to the model and is a function of the lateral conductivity contrasts within 

the earth. In the numeral model example, a minimum of 50 km air-layer thickness was added to nullify lateral changes 

in conductivity. Furthermore, Magnetotelluric (MT) transfer functions: impedance, apparent resistivity and impedance 

phase were also computed and their graphs displayed against the horizontal profile (y in km). 
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Introduction 

The magnetotelluric method (MT) is an electromagnetic 

geophysical method used for inferring the electrical 

conductivity distribution of the earth’s subsurface from 

the measurements of natural electric and magnetic fields 

on its surface.  Electromagnetic techniques are widely 

used in mining exploration [1] and environmental 

applications [2] and are increasingly being used in 

hydrocarbon exploration [3]. The Earth’s electromagnetic 

field generated contains a wide frequency spectrum. The 

low frequencies are generated by ionospheric and 

magnetospheric currents caused by solar wind 

interfering with the Earth’s magnetic field. Higher 

frequencies, greater than 1Hz, are due to thunderstorms 

near equator distributed as guided waves between the 

Earth and the ionosphere [4]. Terminologically, when 

variations of frequencies lower than 10 Hz are used, we 

talk about Magnetotelluric (MT) method but for 

frequencies higher than 10 Hz we talk about Audio-

frequency Magnetotelluric (AMT) method. The source 

resulting from low frequency variations penetrate, and 

hence probe, deep into the Earth but higher frequency 

variations probe shallow depths.  

Numerical simulation of geo-electromagnetic field 

has been carried out for several decades and this keep 

developing due to the increasing need for reliability and 

accuracy of data acquisition techniques in numerical 

modelling [5-8]. Existing numerical modelling 

techniques commonly used are bound by the limitation 

of approximating complex structure [9] and were 

extensively reviewed in the papers [10,11]. Also, the 

difficulty in modeling electromagnetic field using Finite 

Element (FE) is possible jump of normal components 

across discontinuity of material properties and was 

resolved by curl-confirming elements of Nédélec [12]. 

The ability of Lagrange finite element to approximate 

the magnetotelluirc (MT) response of complex 

geological 2D structures have been demonstrated [13, 

14].The issue of open, absorbing or non-reflecting 

boundary conditions that have to be implemented on a 

truncating boundary is one of the most intensively 

researched topics in the area of the numerical wave
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propagation. These include the following popular 

techniques: variations of Bérenger’s perfectly matched 

layers (PML) technique [15], the Dirichlet-to-Neumann 

(DEN) method [16] and the method of infinite elements 

[17].  In this paper, triangular grids finite-element (FE) 

approach was used, which readily conform to 

complicated structural boundaries, to obtained 

numerical solutions of a plane-wave time harmonic 

diffusive electromagnetic field (EM) in 2D 

conductivity structures. 

 

Method 

Electromagnetic field is generally described by the 

system of Maxwell’s equations. In the case of quasi-

stationary approximation of plane-wave, diffusive, 

time-harmonic electromagnetic fields in 2D 

conductivity structures, we neglected displacement 

current and introduced e
jwt

 in the Maxwell’s equations 

to have the model equation as: 

                 1 

                2 

 

Where  j
2
 = -1, angular frequency  

ω = 2 f,  σ = σ  

(y, z) = electric conductivity, 

μ = magnetic permeability  

Assuming a non-finite source and strike direction 

along x- axis of a 2D conductivity structure, equations 1 

and 2 become 

 
   

    
       = σEx        3a 

 
   

  
 = j μHy          3b 

     
   

  
 = j μHz          3c 

and  
        

    
 = j μHx        4a  

      
    

  
   σ Ey          4b  

 
    

  
   σ Ez          4c 

for a homogeneous region of electrical conductivity,  ; 
where the occurrence of the electric field component Ex 
and the magnetic field components Hy and Hz in 
equations.3a – 3c is referred to as E – polarization, 
whereas equations.4a – 4c hold for the case of H – 
polarization. 

Further combining equations.3a - 3c and 4a – 4c 
respectively yield two decoupled 2

nd
 – order partial 

differential equations  in terms of the strike aligned Ex 
and Hx fields. 
For E – polarization: 
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)  – j σμEx = 0    5a 

      
For H – polarization 

 
 σ  

  
 
   

  
 + 
 σ  

  
 
   

  
  – j μHx =  0    5b 

in the bounded domain Ω 𝝐 R2
 

Boundary value problem 

To solve equations 5a and 5b appropriate boundary 

conditions need to be introduced. Considering the 

simple model shown below (Figure 1). 
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Figure1. Two arbitrary connected domains 

Ω1andΩ2with Ω = Ω1 U Ω2, the outer Dirichlet 

boundary ΓD, the inner boundary Γint and the 

outward unit normal vector n1 and n2 on Γint 

 

The inner boundaries Γint representing jumps 

between regions of the piecewise constant model 

parameter σ, the tangential field components n x (o, 

Hy, Hz)
T
 and n x (o, Ey, Ez)

T
 are required to be 

continuous. Then, for the outer boundaries ΓD, 

inhomogeneous Dirichlet boundary conditions are 

evaluated from 1D analytical solutions of a layered-

earth model. This assumption is proven to be 

efficient when the modeling area boundary is far 

enough from the anomaly [18].  

 

For E – polarization: 

 
 

  
   (

   

  
)  + (

    

    
)  – j σμEx = 0     6a 

 

Ex = En (y, z) on ΓD          6b 

n1 x H1 + n2 x H2 = n1 .(  Ex, 1) + n2 . 

(  Ex, 2) = 0 on Γint           6c 

and 

 

For H – polarization 
 σ  

  
 
   

  
 + 
 σ  

  
 
   

  
  – j μHx =  0     7a 

Hx = Hn (y, z) on ΓD         7b 

n1 x E1 + n2 x E2 = n1 .(σ
-1 Hx, 1) + n2 . 

(σ
-1

2 Hx, 2) = 0 on Γint              7c 

Hence, once the strike – parallel components Ex and 

Hx have been computed, the remaining components 

Hy, Hz, Ey and Ez can be derived from equations.3b, 3c, 

4b and 4c by numerical differentiation in a subsequent 

procedure referred to as post-processing. Followed by 

the computation of the various MT transfer functions 

through the following equations; 
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For E – polarization: 
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Finite element approximation 

The method of weighted residuals was used for the 

formulation of finite element approximations for the 

BVP by applying the vector identity (equation.11a), 

divergence theorem (equation.11b) and the Green’s 

theorem (equations.11c,d) to the general form 

(equation.10) of equations.6a and7a: 

-  . (a   u) + bu = 0          10 

Where  

for E – polarization: u = Ex ; a = 1, b = jωσμ 

and in H – polarization: u = Hx; a = σ
-1

 ; b = jωμ 

 substituting into equation 10; we have 

 

a   . b =   =  . (ab) -  a.b          11a 

∫Ω .b dΩ = ∳Γ b.ndΓ            

 11b 

∫Ω  
  

  
 dΩ  = -∫Ω   

  

  
 dΩ + ∳Γ ϕ  ny dΓ      11c 

∫Ω  
  

  
 dΩ  = -∫Ω   

  

  
 dΩ + ∳Γ ϕ  nz dΓ [19]    11d 

 

Resulting to discrete formulation 

           (K + M) U  = 0            12 

 

where K is the stiffness matrix and M is the mass 

matrix, for the vector U  containing NΩ\ΓD elements 

of the interior points in region Ω\ҐD and NҐD 

elements for the points on ΓD whose values vanish. 

Then, the inhomogeneous Dirichlet boundary 

condition is implemented for all interior points 

comprising NΩ\ΓD zero-elements by assigning En 

values evaluated from 1D analytical solutions of a 

layered-earth model, in the case of E-polarization 

mode. The resulting linear equations are assembled 

and solved using MATLAB tool-box. 

 

Numerical example 

Calculations for BVP (equations 6a-c) were carried 

out using equations 10 and 8a-cand tested for 

robustness of our MATLAB code by considering a 

numerical model example for the E-polarization 

mode, which is shown in figure 2. 

100km 
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   zkm        

 

σ2                                                                               

      

 

        σ1 

 

 

     0km        ykm         10km 

 

 

 

 

Figure 2. Numerical model example 

 

The model consisted of a 100km by 10km thick slab 

with the air-layer inclusive. A square anomaly, 

which has a conductivity of  σ2 = 0.5 (Ωm)
-1

 of 

dimension 2km by 2km, lays buried in an 

homogeneous background (the earth) with 

conductivity σ1 = 0.01 (Ωm)
-1

.  

A grid size of 100 x 20 cells was used which yields 

4000 triangular elements and frequency fixed at 

1Hz. 

 

Results and discussion 

Influence of the air layer 

Equatins.4b and 4c showed that the magnetic field 
component Hx is independent of the coordinates y 
and z within a non-conducting region. Hence, the air 
layer needed not to be introduced as part of our 
model. Unlike, the H-polarization models, the E-
polarization models required the introduction of the 
air-layer as part of the model. This was as a result of 
the lateral in homogeneity in conductivity of the 
anomalous electric field which affects the real 
component of the electric field within the air-layer. 

Thus, an air layer which is thick enough to 
reduce the secondary fields, produced by the lateral 



4  Journal of Science Research Vol. 15 

 

in homogeneity in the earth to zero at the upper 
horizontal model boundary is required. For such air-
thickness, the electric field at the top boundary is 
expected to be constant. Hence, the thickness of the 
air layer needs to be chosen with care in order to 
yield accurate results. 

To this effect, we varied the air thicknesses to 
10km, 20km and 50km and display the graphs of 
vertical profiles against the real component of the 
electric field. 

  

 
 

Figure 3. Plot of depth against real electric field (for 

10km air thickness) 

 

 
Figure 4. Plot of depth against real electric field (for 

20km air thickness) 

 
Figure 5. Plot of depth against real electric field (for  

50km air thickness) 

 

From our graphs, the anomalous field contributions 

along a vertical profile in the air layer obey a radiation 

contribution, hence, a reduction in the total field that 

converges asymptotically to the boundary value. 

Therefore, this behavior matches in the case of the 

50km air layer, where the effect of the real part of 

the electric field Ex rose up to 70km. For air 

thicknesses 10km and 20km, it rose to 90km and 

almost linear where the thickness is 20 Km which is 

in contrast to a reduction in the total field Ex. 

 

Transfer functions 

It is common in MT simulations to display transfer 

functions because they are independent of the 

modulus of the impinging wave, usually unknown. 

With the air thickness at 50km,the graphs of the 

apparent resistivity and impedance phase against 

horizontal profile are as shown in figures 6 and 7 

respectfully. The apparent resistivity decreases from 

200 Ωm to 60 Ωm in the region of the buried object 

where it has its least resistivity values and then rises 

as it leaves the buried body. 

This implies that the thickness of a reasonable 

air-thickness that will ensure that anomalous electric 

field vanishes at the top boundary is a function of the 

magnitude of the lateral conductivity contrasts. The 

same effect is seen from the impedance phase graph 

with the least phase shifts within the buried object 

region (figure 7). 
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Figure 6. Plot of resistivity against horizontal 

profile 

 

 
Figure7. Plot of Impedance phase against horizontal 

profile 

 

Conclusion 

We have presented a finite element algorithm using 

MATLAB to solve a 2D plane-wave diffusive time-

harmonic electromagnetic fields with respect to 

magnetotelluric modeling. 

The utilization of MATLAB’s pde-toolbox has 

provided a unique tool for studying the response of 

complex 2D structures. Our numerical model has 

shown that our finite element approach is 

numerically robust. Our result showed that an air-

thickness of 50km is sufficient to ensure this effect 

was well suited in the presence of anomalous structure 

in our model. This effect was also evident in the 

transfer functions displayed.  

The next step to improving the accuracy and efficiency 

of our results in this project is to carry out adaptive 

refinement technique and effective convergence test. 

Comparisons of the results of this work with results 

obtained using other numerical approaches are also 

recommended.  
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