
UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

An Activity Ontology for the Conceptualization of Exploratory Software

Testing

1Ibitowa F. O., 2Ayorinde I. T., 3Akinola S. O. and 4Oyedeji O. A.

1Department of Computer Studies, The Polytechnic, Ibadan, Ibadan., Nigeria
2,3,4Department of Computer Science, University of Ibadan, Ibadan, Nigeria.

1ibitowafolashade@yahoo.com, 2temiayorinde@yahoo.com

 3solom202@yahoo.co.uk 4seyioyedeji31@gmail.com

Abstract

Exploratory Software Testing (EST) permits testers to interact with a system based on knowledge, skill,

creativity, expertise, inspiration, experience and intuition in order to find bugs/defects while ontology explicitly

specifies the terms in a domain and the relationship between them. The limitation of EST experiences to

individual testers and the inability to share the tester’s knowledge within the software organisation have resulted

in conceptual ambiguities and a low reuse rate of EST knowledge. Therefore, this study develops a formal

activity ontology for different EST knowledge in software organisations for uniform vocabulary and knowledge

management. The ontology engineering approach was used in modelling the ontology. Elicitation of knowledge

for EST was carried out in an experimental test environment using 150 testers. Through the use of Description

Logic, knowledge is transformed through knowledge formalization into a logical form (axioms). A web ontology

language was used to implement the logical axioms. The EST ontology was evaluated with formulated

competency questions that validated its correctness. It can be used as a reference model in software organisations

as well as a knowledge base for software testers. It can also be reused by professionals in the domain of software

testing.

Keywords: Exploratory software testing, Formal ontology, Description logic, Web ontology language

1. Introduction

Ontology is defined as an explicit specification

of a conceptualization [1]. Ontologies describe

concepts in a specific field of knowledge along

with their properties and constraints. To

facilitate communication, integration, storage,

search, sharing, and reuse of knowledge

representation, an ontology offers a precise

description of knowledge in a formal language

[2]. The need for greater interoperability and

reuse of information between systems and

people within an organization is one of the

main interests in ontologies [3]. Ontologies are

important for knowledge management.

According to Davenport and Prusak [4],

knowledge management is a process that

streamlines the procedure of distributing,

sharing, capturing, creating and understanding

of knowledge. It has been viewed as a source of

competitive advantage for organizations.

Software testing is an activity that evaluates a

program's quality and also improves it by

identifying and correcting defects and problems

[5]. Exploratory Software testing involves

human testers interacting with a system in

accordance with their knowledge, skill,

creativity, expertise, inspiration, experience and

intuition with the ability to detect bugs and this

has been referred to as concurrent learning, test

design, and test execution [6]. Exploratory

software testing makes use of human judgment

to determine whether a feature is functional and

it is possible to concentrate testing efforts on

areas of an application that are thought to be

more likely to have bugs.

Ibitowa F. O., Ayorinde I. T., Akinola S. O. and Oyedeji O.

A. (2023). An Activity Ontology for the Conceptualization

of Exploratory Software Testing, University of Ibadan

Journal of Science and Logics in ICT Research

(UIJSLICTR), Vol. 10 No. 1, pp. 69 – 84.

©U IJSLICTR Vol. 10, No. 1, June 2023

mailto:1ibitowafolashade@yahoo.com
mailto:2temiayorinde@yahoo.com
mailto:2solom202@yahoo.co.uk
mailto:4seyioyedeji31@gmail.com

70 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

Exploratory software testing is accepted in the

industry and regarded as a successful method of

detecting bugs [7]. Exploratory software

testing, according to practitioner literature, also

lowers the burden of creating and maintaining

documentation, aids team members in

understanding the features and behavior of the

application being developed, and enables testers

to immediately concentrate on useful areas

during testing [8].

The main issues in software organizations are

low reuse rates of exploratory software testing

knowledge, serious loss of exploratory software

testing knowledge, poor sharing of exploratory

software testing knowledge, and incomplete

transfer of knowledge. These occur because

knowledge in organizations is not treated,

making it difficult to articulate it.

This study develops a formal activity ontology

for an exploratory software testing approach for

knowledge reuse and an easy retrieval system.

This is achieved by building a knowledge base

of software exploratory testing, building an

activity ontology for it and validating the

ontology’s accuracy using knowledge based

reasoner. Knowledge reuse in the area of EST is

highly needed for organizational growth. This

helps in shared knowledge representation of the

entities, activities, relationships and every

action required to carry out exploratory

software testing.

2. Related Works

Olszewska [9] in Software Testing Ontology

For AI-Based Systems develops an ontological

framework for AI-Software Testing (AI-T).

This domain includes both software testing and

comprehensible artificial intelligence; the

objective is to create an ontology that guides

the testing of AI software, in a way that is

efficient and operative. For this purpose, AI-T

ontology includes temporal interval logic

modeling of the software testing process as well

as the ethical principle of formalization and has

been built using the Enterprise Ontology (EO)

methodology resulting AI-T ontology proposes

both conceptual and implementation models

and contains 708 terms and 706 axioms.

Hassnain et.al. [10] in an Ontology Based Test

Case Prioritization Approach in Regression

Testing explained that regression testing has

received a lot of research attention, in an effort

to address the issues with software system

quality. The study provides insight into

proposing the ontology-based TCP (OTCP)

approach, with the intention of using fewer

resources to maintain and improve the quality

of software systems.

The suggested method analyzes the behavior of

various classes of software systems using

software metrics. To ensure that predictions of

the faulty and non-faulty classes of software

systems are accurate, Binary Logistic

Regression (BLR) and AdaBoostM1 classifiers

are used. Code metrics and class attributes are

matched using a reference ontology. They

looked into five Java programs to evaluate the

suggested strategy for achieving code metrics.

An average percentage of faults was discovered

as a result of this study (APFD) value of

94.80%, which is higher when compared to

other TCP approaches. They suggested that

large sized programs in different languages can

be used to evaluate the scalability of the

proposed OTCP approach in the future.

Chimalakonda and Nori [11] in an Ontology

based modeling framework for the design of

educational technologies stated that despite the

fact that educational technology has developed

quickly, strong instructional design knowledge

is still lacking, which has an impact on how

well instruction is designed. Based on domain

patterns, the research recommends an ontology-

based framework for systematic modeling of

different facets of instructional design

knowledge.

As part of the framework, they offered

ontologies for modeling instructional

objectives, instructional procedures, and

instructional content. They demonstrated the

ontology framework by presenting instances of

the ontology for the large-scale case study of

adult literacy in India (287 million learners

spread across 22 Indian Languages), which

requires the creation of numerous identical but

distinct eLearning systems based on flexible

instructional designs. The proposed framework

could be used to represent instructional design

proficiency for academic learning, career skills,

and other purposes.

Ayorinde [12] in a Formalised Ontology of

Musical Instruments stated that an aspect of

71 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

knowledge representation known as formal

ontology deals with the formal

conceptualization of domains. The sharing of a

common understanding of the structure of

information is improved by ontology, it is a tool

that can be used in training. Hence, the article

creates a formalized ontology of musical

instruments based on Hornbostel and Sach's

classification system. Information about the

families, groups, and characteristics of musical

instruments, such as their shape and playing

style, is provided by the ontology, among

others. On the basis of the user's preferences, it

also suggests which instrument to learn.

Predicate logic is used to formalize ontology

concepts and their relationships, and the prolog

programming language is used to implement

them.

Tebes et. al. [13] explained that testing is one of

the areas of Software Engineering (SE) that

supports quality assurance. Given that specific

software testing processes, artifacts, methods,

and ultimately strategies involve a lot of

domain concepts, It is advantageous to have a

solid conceptual base, that is, a software testing

ontology that explicitly and unambiguously

defines the terms, properties, relationships, and

axioms. After examining both the findings of a

primary study's Systematic Literature Review

(SLR) on software testing ontologies, and the

state-of-the-art of test-related standards, they

chose to create a top-domain ontology that

meets their objectives. In the framework of a

four-layered ontological architecture, TestTDO

was created, which takes into account domain,

instance, core, and foundational ontologies. In

the paper, the development, assessment,

verification, and validation of the TestTDO

conceptualization were topics of discussion.

Mårtensson et.al [14] interviewed 20 people

from four case study companies. The paper

listed a number of crucial elements that make

efficient and productive exploratory testing of

substantial software systems possible. The four

themes are comprised of the nine factors: “The

testers’ knowledge, experience and

personality”, “Purpose and scope”, “Ways of

working” and “Recording and reporting”.

According to the interviewees, exploratory

testing allows testers to be more creative in

their work, and was therefore thought to utilize

the testers more effectively. A series of follow-

up interviews with 20 interviewees and a cross-

company workshop with 14 participants

confirmed the key factors that had been

identified. This improves the findings'

generalizability, proving that a large segment of

the software industry can use the list of key

factors to guide projects. The study also

includes 129 publications related to exploratory

testing as part of its systematic literature

review. There is no article that lists the essential

elements that make exploratory testing efficient

and effective, which affirms that the findings

are novel.

Ayorinde and Oyedeji [15] in an Ontology for

Intra-Campus Transport System (ICTS) stated

that the efficiency and effectiveness of an

organization can be greatly increased by

knowledge representation, business or firm if its

advantages are properly tapped. The Intra-

Campus Transport System (ICTS), which

manages the movement of people inside an

institution, can act as a model for transportation

systems.

The study develops a formal ontology for the

intra-campus transport system which improves

the availability of knowledge and a quick

retrieval system. The research work used an

extremely thorough knowledge engineering

approach. It entails gathering knowledge, also

referred to as ontology capture, which provides

significant factual information about the ICTS

domain. Knowledge analysis and refinement

follow this, which involves classifying the

gathered knowledge into classes, properties and

individuals. With the aid of description logic

tools, knowledge formalization transforms the

refined knowledge into a logical form. Lastly,

Protégé 5.0 was used to implement the logical

axioms in web ontology language (OWL)

format.

3.0 Methodology

In the first stage, the exploratory software

testing knowledge was captured, filtered,

refined and classified into facts, definitions and

rules/constraints. This is followed by

knowledge formalization, which involves the

representation of the analysed facts, definitions

and constraints using mathematical method

called description logic.

Web Ontology Language (OWL) was used to

represent the logical expression that was formed

72 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

based on the information gathered in a

machine-readable form. The inference engine

was used to help the ontology to make explicit

statements and infer new knowledge and

deductions. The ontology was tested with

competency questions for effectiveness /

accuracy. The competency questions

formulated for the ontology are problems that

are expected to be solved by the ontology.

Answering these questions by the ontology

showed the intelligence ability of the ontology.

The knowledge can then be shared, reused and

applied. It can also be transferred to the testers

as new knowledge. Figure 1 shows the

architecture of the system while the specific

processes are broken down into the goal and

scope definition of the ontology, information

gathering and elicitation, initial structuring,

formalisation, deployment and evaluation.

3.1 The Goal and Scope of the Ontology

This phase is regarded as the starting point of

any ontology development cycle. It is largely a

preparatory phase concerned with the

identification of the domain and subject area

being studied. It also lists the aims and

objectives as well as the high-level

specifications of the exploratory test ontology.

The exploratory software testing (EST) activity

ontology developed in this study is based on

representing the knowledge involved in the

exploratory software testing domain. It

specifically represents the knowledge involved

in the process of carrying out the exploratory

software testing.

3.2 Information Gathering and Elicitation

This phase helps to achieve a deeper

understanding of the exploratory testing domain.

Software Testers came together to brainstorm

and engage in discussion through

conversations, e-chatting, e-messaging,

teleconferencing and meetings. During the

process, exploratory software testing

knowledge was gathered and captured using a

specific software that was developed.

3.2.1 Establishment of Facts about the

Processes involved in Exploratory

Software Testing

The facts gathered constitute the knowledge of

the exploratory software testing domain. Some

are highlighted below:

1. A tester is obligated with the duty of

carrying out a software test on a given

software in question.

2. The specific type of testing in relation to

this research work is the exploratory

software testing.

3. Exploratory software testing is a kind of

testing that makes use of the tester’s

cognitive ability to detect errors/defects in

the testing stage of software development

4. The details of exploratory software testing

are critically reviewed in this research

procedure

5. An exploratory software testing is preceded

with a set of instructions and guidelines

6. An exploratory software tester carries out

the exploratory software testing which

relies solely on the discretion of the tester.

Figure 1: Architecture of the EST Ontology

UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

7. The exploratory software testing consists of

three basic sessions which are: Pre-survey,

Main exploratory software test and Post-

survey

8. An exploratory software testing consists

of/makes use of a test charter

9. The pre-survey session consists of a pre-

survey form filled by the exploratory

software tester

10. The pre-survey form captures information

such as: Tester name, Sex, Age, Level of

education, Current working role, Years of

working, Area of specialization,

Programming language specialization,

Familiarity of exploratory software testing,

Knowledge of software testing, Training on

software testing and How frequent is

software testing.

11. The post-survey session consists of a post-

survey form filled by the exploratory

software tester

12. The post-survey form captures information

such as: Name, Number, Testing Coverage,

Overall software quality, Ease of

exploratory software test approach,

Usefulness of test charter for structuring

and guiding, Usefulness of test charter for

finding defects, Effect of allotted time and

Challenges faced.

13. The test survey is used to describe the pre-

survey and the post-survey aspects of the

test.

14. The test charter consists of a defect report

and test log

15. The test charter is also referred to as the

test plan

16. The Exploratory software tester fills the

test charter during the test

17. The test charter consists of a charter form

filled by the Exploratory software tester

18. The charter form captures information such

as: Charter’s name, Tester’s name, Tester’s

number, Start date, Start time, Duration,

Purpose, Test reference, Priority, Data,

Testing notes/ideas, Defect report,

Issues/challenges

19. The defect report consists of a defect report

sheet which is filled by the exploratory

software tester

20. The defect report sheet captures

information such as: Description of defect

found, Defect severity, Defect type and

Defect mode.

3.3 Initial Structuring

This phase is about getting the necessary

knowledge out of the gathered information and

using information organization methods for

finding trends, rationalizing and structuring the

information. Methods used involve the

extraction of concepts from the established facts

and establishing relationships between the

concepts.

3.3.1 Extraction of Concepts in the

Established Facts E.G.

The various concepts established from the EST

domain are: Person, Tester, Human resource,

Software test, Software resource, Software

analyst, Programmer, Analyst, End-user,

Hardware resource, Exploratory software test,

Exploratory software tester, Exploratory

software testing, Test instructions and

guidelines, Test Session, Test survey, Test

plan, Error, Bug, Defect, Pre-survey, Main

Exploratory software test, Post-survey, Pre-

survey form, Post-survey form, Charter form,

User specification, User guide, Test charter,

Defect report, Defect report sheet, Test log,

User manual, Software specification, Test

environment, Actual result, Expected result,

Exploratory Software Testing Activity, Test

execution, Test result, Tester ID, Tested

features, Detected defect, Test deliverables,

Fatal severity, System usage and Data loss

among others.

3.3.2 Extraction of Relationships between

Concepts in the Established Facts

Some of the relationships are given below:

1 Exploratory software test is a type of

software testing method

2 Exploratory software tester carries out

Exploratory software test

3 Exploratory software tester detects

defects/bug in an Exploratory software

test

4 A tester is a software tester

5 A software tester is a person

6 An exploratory software tester is a

software tester

7 A bug is also known as a defect

8 A defect is also known as an error

9 An exploratory software tester makes use

of hardware resource during an

exploratory software test

74 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

10 An exploratory software tester performs

main exploratory software testing

11 A programmer is a tester

12 A tester loads the software to be tested

during an exploratory software test

13 Main exploratory software test requires

the test charter during exploratory

software testing.

14 A tester produces a test plan as artefact

15 A test charter defines at least one Test

activity

16 The test charter is represented with the

charter form

17 Charter form is a testing artefact

18 Defect is described in the defect report

19 Defect report is represented with a defect

report sheet

20 Defect report sheet is a testing artefact

21 Specification document is a testing

artefact

22 Test data is a testing artefact

23 Test instruction is a testing artefact

24 Test log is a testing artefact

25 Test plan is a testing artefact

26 Test survey is represented with test survey

form

27 Pretest survey is represented with pretest

survey form

28 Posttest survey is represented with

posttest survey form

29 Pretest survey form is a test survey form

30 Posttest survey form is a test survey form

31 Test survey form is a testing artefact

32 User guide is a testing artefact

33 User manual is a testing artefact

34 User specification is a testing artefact

35 Tester must prepare a test charter

36 Test charter must have a name

37 Test survey form consist of pretest survey

form and posttest survey form -

38 Tester requires an academic qualification

39 The academic qualification must be in

computer science or in computer related

field

40 The academic qualification must be in

computer science or in computer related

field

41 The academic qualification must be a

Tertiary Qualification

42 A tertiary qualification can be National

Diploma, Higher National Diploma,

Bachelors Degree or Masters degree

43 Testing process needs a Testable Entity as

input.

44 Test environment composed of Test

hardware resource

45 Test environment composed of Test

software resource

46 Test environment composed of human

resource

3.4 Formalisation

In the formalization stage, the facts and

relationships are transformed into description

logic axioms and web ontology language (owl).

This stage also involves the use of a suitable

ontology development environment (ontology

editor, rule engine, etc.) to encode, refine and

test the initial structures as a formal model

expressed in a chosen knowledge representation

formalism. Classes, relations and logic among

others are captured.

3.4.1 Formalization of Domain Knowledge

using Description Logic

Some of the description logic axioms are

shown below:

1. Exploratory software test is a type of

software testing method

ExploratoryTesting ⊆ SofwareTesting

2. Exploratory software tester carries out

Exploratory software test

ExploratoryTester ≡ Person ᴨ

carriesOut.ExploratoryTesting

3. Exploratory software tester detects

defects/bug in an Exploratory software

test

ExploratoryTester ≡ Person ᴨ

detects.Bug

4. A tester is a software tester

Tester ⊆ SofwareTester

5. A software tester is a person

SofwareTester ⊆ Person

6. An exploratory software tester is a

software tester

ExploratoryTester ⊆ SofwareTester

7. A bug is also known as a defect

Bug ≡ Defect

8. A defect is also known as an error

Defect ≡ Error

9. An exploratory software tester makes

use of hardware resource during an

exploratory software test

ExploratoryTester ≡ Person ᴨ

makesUseOf.Hardware

75 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

10. An exploratory software tester

performs main exploratory software

test

ExploratoryTester ≡ Person ᴨ

performs.MainExploratoryTest

11. An analyst is a Tester

Analyst ⊆ Tester

12. A programmer is a tester

Programmer ⊆ Tester

13. An end user is a tester

EndUser ⊆ Tester

14. A software analyst is a tester

SoftwareAnalyst ⊆ Tester

15. A tester loads the software to be tested

during an exploratory software test

ExploratoryTester ≡ Person ᴨ

loads.Software

16. Main exploratory software test requires

the test charter during exploratory

software testing

MainExploratoryTest ≡

requires.TestCharter

17. The test charter is represented with the

charter form

TestCharter ≡

representedWith.CharterForm

18. Charter form is a testing artefact

CharterForm ⊆ TestingArtefact

19. Defect is described in the defect report

Defect ≡ describedIn.DefectReport

20. Defect report is represented with a

defect report sheet

DefectReport ≡

representedWith.DefectReportSheet

21. Defect report sheet is a testing artefact

DefectReportSheet ⊆ TestingArtefact

22. Specification document is a testing

artefact

SpecificationDocument ⊆

TestingArtefact

23. Test data is a testing artefact

TestData ⊆ TestingArtefact

24. Test instruction is a testing artefact

TestInstruction ⊆ TestingArtefact

25. Test log is a testing artefact

TestLog ⊆ TestingArtefact

26. Test plan is a testing artefact

TestPlan ⊆ TestingArtefact

27. Test survey is a form of survey that is

represented with tested survey form

TestSurvey ≡ Survey ᴨ

representedWith.TestSurveyForm

28. Pretest survey is represented with

pretest survey form

PreTestSurvey ≡

representedWith.PreTestSurveyForm

29. Posttest survey is represented with

posttest survey form

PostTestSurvey ≡

representedWith.PostTestSurveyForm

30. Pretest survey form is a test survey

form

PreTestSurveyForm ⊆

TestSurveyForm

31. Posttest survey form is a test survey

form

PostTestSurveyForm ⊆

TestSurveyForm

32. Test survey form is a testing artefact

TestSurveyForm ⊆ TestingArtefact

33. User guide is a testing artefact

UserGuide ⊆ TestingArtefact

34. User manual is a testing artefact

UserManual ⊆ TestingArtefact

35. User specification is a testing artefact

UserSpecification ⊆ TestingArtefact

3.4.2 Ontology Coding with Web Ontology

Language (OWL)

The ontology representation begins with the

heading of the ontology code. It describes the

syntax of the Resource Description Framework

(RDF), Web Ontology Language (OWL) and

Extensible Markup Language (XML) schema

that is being used to build the ontology. This

consists of the ontology International Resource

Identifier (IRI) which points to the location of

the ontology.

3.4.2.1 Class Representation

This is the first step in the ontology coding.

The concepts that have been identified in the

previous stages are encoded. Example is shown

below:

Concept: Person

<Declaration>

 <Class IRI="#Tester"/>

 </Declaration>

3.4.2.2 Class Hierarchy Representation

This is used to model sub classes and super

class i.e. to represent divisions and categories

that exists between concepts.

76 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

Class hierarchy: Person (software tester,

Programmer etc.)
<SubClassOf>

<Class IRI="#Tester"/>

 <Class IRI="#Person"/>

 </SubClassOf>

3.4.2.3 Object Property Representation

The object properties provide links between

concepts and classes e.g.

Object property: Defect found in

 <SubObjectPropertyOf>

 <ObjectProperty IRI =

"#defectFoundIn"/>

 <ObjectProperty

abbreviatedIRI="owl:topObjectProperty"/>

 </SubObjectPropertyOf>

Object property: Must include

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#mustInclude"/>

 <ObjectProperty

abbreviatedIRI="owl:topObjectProperty"/>

 </SubObjectPropertyOf>

3.4.2.4 Data Type Representation

Relationship between classes and data values

e.g.

Data property: Charter name

 <Declaration>

 <DataProperty IRI="#charterName"/>

 </Declaration>

Data property: Tester name

<Declaration>

 <DataProperty IRI="#testerName"/>

</Declaration>

4. Implementation and Result

4.1 Deployment

This phase is concerned with ontology

publishing and release as well as scaling into an

ontology-driven system. In the deployment

phase, knowledge graphs are built and

necessary outputs are generated. Protégé 5.5.0

is used to implement the ontology.

4.1.1 Class Implementation

The exploratory software testing ontology

classes and its hierarchy is shown in Figure 2.

Figure 2: Exploratory software testing ontology class view/class hierarchy

77 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

4.1.2 Object Properties Implementation

The exploratory software test object properties is shown in Figure 3.

Figure 3: Exploratory software testing ontology object properties representation

4.1.3 Data Properties Implementation

The exploratory software testing data properties representation is depicted in Figure 4.

Figure 4: Exploratory software testing ontology data properties representation

78 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

4.1.4 Individual Implementation

The exploratory software test instances is depicted in Figure 5

Figure 5: Exploratory software testing ontology with Instances

4.1.5 Ontograph

Two of the graphical views of the exploratory software test ontology is shown in Figures 6 and 7.

Figure 6: Exploratory tester Ontograph

79 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

Figure 7: Bug Ontograph

4.2 Evaluation

This phase looks back at the goal and scope

definition of the ontology and assesses the

extent to which the aims and objectives have

been fulfilled and the requirements met in the

context of the established scope.

4.2.1 Queries in form of Competency

Questions

Competency Questions (CQ) are user generated

questions that are consciously created in order

to probe the ontology. The purpose of this is to

eventually retrieve certain answers which are

then checked against the actual knowledge that

was used in creating the ontology and this can

be likened to the popular Turing test in the

artificial intelligence domain. Examples of the

competency questions used include but not

limited to the following:

i. What are the different categories of

testers involved in the exploratory

software testing?

ii. What are the various types of people

that can be found within the

exploratory software test context?

iii. In any order, what are the major stages

involved in the Exploratory Software

Testing procedure?

iv. What are the types of test survey

involved in the test process?

v. What are the various artefacts involved

in the testing process?

vi. Who are the specific testers within the

research and which bugs (represented

with their respective bug codes) were

detected by each of them?

vii. Outline the descriptions of the bugs

detected by the explorative testers for

the bugs during the test procedure.

4.2.2 Results

The Software/Module used for implementing

the competency questions within the protégé

application are DL QUERY and SPARQL. The

DL QUERY supports quite simple query

syntax while SPARQL supports more complex

query patterns similar to the structured query

language (SQL). The Prefix used for building

the query is shown in Figure 8:

80 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: http://www.w3.org/2000/01/rdf-schema#

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX io: http://www.semanticweb.org/ibito/ontologies/2019/11/exploratory-test-ontology

Figure 8: The Prefix Used for Building the Query

4.2.2.1 Result for the Query: What are the different categories of testers involved in the

exploratory software testing? DL QUERY: Tester

The result for this query is shown in Figure 9.

Figure 9: The result containing tester categories

Remark: Result is accurate.

4.2.2.2 Result for the Query: What are the various types of people that can be found within the

exploratory software test context? DL QUERY: Person

The result for this query is shown in Figure 10.

Figure 10: The result containing person categories

Remark: Result is accurate.

81 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

4.2.2.3 Result for the Query: In any order, what are the major stages involved in the

Exploratory Software Testing procedure? DL QUERY: TestingPhase

The result for this query is shown in Figure 11.

Figure 11: The result containing test phase

Remark: Result is accurate

4.2.2.4 Result for the Query: What are the types of test survey involved in the test process? DL

QUERY: TestSurvey

The result for this query is shown in Figure 12.

Figure 12: The result containing types of test survey

Remark: Result is accurate.

4.2.2.5 Result for the Query: What are the various artefacts involved in the testing process? DL

QUERY: TestingArtefact

The result for this query is shown in Figure 13.

82 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

Figure 13: The result containing list of testing artefacts

Remark: Result is accurate.

4.2.2.6 Result for the Query: Who are the specific testers within the research and which bugs

(represented with their respective bug codes) were detected by each of them?

SPARQL Query:

SELECT ?ExplorativeTester ?Bug

 WHERE {

?ExplorativeTester io:detectBug ?Bug. }

The result for this query is shown in Figure 14.

Figure 14: The result containing the list of testers and the respective bugs they detected

Remark: Result is accurate.

83 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

4.2.3.7 Result for the Query: Outline the descriptions of the bugs detected by the explorative

testers for the bugs during the test procedure.

SPARQL Query:

SELECT ?ExplorativeTester ?Bug ?bug_description

 WHERE { ?ExplorativeTester io:detectBug ?Bug.

 ?Bug io:bug_description ?bug_description. }

The result for this query is shown in Figure 15.

Figure 15: The result containing the descriptions of the bugs detected by the explorative testers for

the bugs during the test procedure.

Remark: Result is accurate.

5.0 Conclusion

The activity ontology for Exploratory Software

Testing (EST) developed in this study can be

shared, applied, reused and improved

throughout the organization. It can also be used

as a learning guide on the exploratory software

testing process as it gives a common

understanding of the structure of EST for

software testers. The domain knowledge can

also be reused by the experts in the domain and

by software development organizations. This

work has created a framework for artificial

intelligence agents in the area of exploratory

software testing. Someone who wants to create

intelligent agent in the area of exploratory

software testing can make use of the ontology

developed in this study as a knowledge base.

References

[1]. Gruber, T. R. (1993). Toward principles for the

design of ontologies used for knowledge

sharing. In: Formal Ontology in Conceptual

Analysis and Knowledge Representation,

Padova, Italy. Proceedings... Padova: ACM,

1993.

[2]. O’Leary, D. (1998). Using AI in knowledge

management: knowledge bases and ontologies.

IEEE Intelligent Systems, University of

Southern California, 13(3):34–39, 1998b.

[3]. Rios, J. A. (2005). Ontologias: alternativa para

a representação do conhecimento explícito

organizacional. In: Encontro Nacional de

Ciencia de Informacao, Salvador, Bahia.

Proceedings... Salvador: DBPL, 2005.

[4]. Davenport, T. H.; Prusak, L. (2000). Working

knowledge: how organizations manage what

they know. 2. ed. Boston, USA: Harvard

Business School Press, 2000.

[5]. Quadri S.M.K. and Farooq S. U. (2010).

Software Testing – Goals, Principles &

Limitations, International Journal of

Computer Applications, 6(9), Sept. 2010.

[6]. James W. and Aybüke A. (2004). Knowledge

Management in Software Engineering –

Describing the Process, Proceedings of the

84 UIJSLICTR Vol. 10 No. 1 June 2023 ISSN: 2714-3627

2004 Australian Software Engineering

Conference (ASWEC’04).

[7]. Itkonen J, and Rautiainen K. (2005).

Exploratory Testing: A Multiple Case Study,

Proceedings of ISESE, 2005, pp. 84-93.

[8]. Itkonen J., Mantyla M. V., and Lassenius C.

(2007). Defect detection efficiency: Test Case

Based vs. Exploratory Testing, proceedings of

1st International Symposium on Empirical

Software Engineering and Measurement, 2007,

pp. 61-70.

[9]. Olszewska, J. I. (2020). AI-T: software testing

ontology for AI-based systems. In Proceedings

of the 12th International Joint Conference on

Knowledge Discovery, Knowledge

Engineering and Knowledge Management

(Vol. 2, pp. 291-298). SciTePress.

https://doi.org/10.5220/0010147902910298

[10]. Hassnain, M., Jeong, S. R., Pasha, M. F. and

Ghani, I. (2021). An Ontology Based Test

Case Prioritization Approach in Regression

Testing. Computers, Materials and

Continua 67(1):1051-1068.

DOI: 10.32604/cmc.2021.014686

[11]. Chimalakonda S. and Nori K.V. (2020). An

ontology based modelling framework for

design of educational technologies, Smart

Learning Environments (2020) 7:28

https://doi.org/10.1186/s40561-020-00135-6

[12]. Ayorinde I. T. (2020). A Formalised Ontology

of Musical Instruments. International Journal

of Computer Applications 176(24):28-32, May

2020. DOI: 10.5120/ijca2020920235. Number

24 (ISBN: 973-93-80901-08-1)

[13]. Tebes, G., Peppino, D., Becker, P., Matturro,

G., Solari, M., and Olsina, L. (2020).

Analyzing and documenting the systematic

review results of software testing ontologies,

Information and Software Technology, 123:1–

23, 2020.

[14]. Mårtensson T., Martini A., Ståhl D. and Bosch

J. (2019). Excellence in Exploratory Testing:

Success Factors in Large-Scale Industry

Projects, Proceedings 20th International

Conference, PROFES 2019, Barcelona, Spain,

November 27–29, 2019, pp.299-314.

[15]. Ayorinde, I. T. and Oyedeji, O. A. (2019). An

Ontology for Intra-Campus Transport System

(ICTS) (A Case Study of the University of

Ibadan Campus). Journal of Digital

Innovations and Contemp. Res. In Sc., Eng., &

Tech. 7(4): 65-78.

https://www.researchgate.net/journal/Computers-Materials-and-Continua-1546-2226
https://www.researchgate.net/journal/Computers-Materials-and-Continua-1546-2226
http://dx.doi.org/10.32604/cmc.2021.014686
https://doi.org/10.1186/s40561-020-00135-6

