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Abstract 
Fully Homomorphic Encryption (FHE) is an advanced cryptographic technique that enables computational operations to be 

performed on encrypted data without the need for decryption. In other words, FHE allows operations to be conducted 

directly on ciphertexts, producing encrypted results that, when decrypted, correspond to the output of the operations 

performed on the plaintext data. This revolutionary capability ensures data privacy and security throughout the entire 

computation process, as the data remains encrypted at all times, even during computation. FHE schemes typically involve 

complex mathematical operations and algorithms, often based on lattice-based cryptography or other mathematical 

structures, to enable secure and efficient computation on encrypted data. Substantial progress has been achieved in the realm 

of FHE and its application since 2015, yielding enhanced efficacy, heightened security, and augmented feasibility. This 

review paper discusses and reviews diverse FHE schemes/libraries, and the extent of progress attained hitherto and how the 

possibilities of adoption of the scheme in industry is being propagated, using research questions as a guide, we endeavor to 

utilize searches across various academic databases and industry repositories for peer-reviewed papers, articles, and books. 

While some of the examined papers suggested new techniques to improve the security of transferred data, several of the 

publications provided novel schemes for FHE to maximize efficiency and minimize noise. Special emphasis is placed on the 

open-source tools and libraries implementing FHE scheme, notably Concrete (developed using TFHE Scheme), an 

innovation by Zama.ai, a preeminent research establishment specializing in FHE research and development. Since writing 

FHE programs can be difficult, Concrete, based on LLVM, makes this process easier for developers with the ability to 

compile Python functions (that may include NumPy) to their FHE equivalents, to operate on encrypted data. The 

applications of the library are examined, encompassing accomplishments, limitations, and vulnerabilities. Conclusively, 

prospective avenues for advancement are underscored, deliberated upon, and illuminated. 

 

 

Keywords: Fully Homomorphic Encryption (FHE), Zama.ai Concrete Compiler, Machine Learning, Security, Open-

source Library. 

 

1.0    Introduction 

According to Gouert et al. [1], Homomorphic 

Encryption (HE) represents a powerful 

encryption technique that permits arithmetic 

operations to be carried out on the encrypted 

data, resulting in ciphertexts that represent the 

desired outcomes. This capability allows for the 

secure encryption of data such as x and the 

delegation of computations, for instance f(x), to a 

remote server while preserving the privacy of x.  

 

The outcome of these computations is received in 

an encrypted form, as depicted in the underlying 

process illustrated in Figure 1. Subsequently, the 

user possesses the ability to decrypt the result 

using their private key [2]. It is noteworthy that 

the RSA algorithm is recognized as the pioneer 

HE algorithm applied in the realm of cloud 

computing security, a development dating back 

to 1978, primarily due to its multiplicative 

property [3]. In a broader context, there are four 

distinct categories of HE, which are defined by 

the nature of homomorphic computations they 

support and the depth of these computations that 

can be performed on ciphertexts. These 

categories encompass Partial Homomorphic 

Encryption (PHE), Somewhat Homomorphic 

Encryption (SWHE), Leveled Homomorphic 

Encryption (LHE), and Fully Homomorphic 

Encryption (FHE) [4]. 
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Figure 1. Typical flow of HE cycles. 

 

 

The PHE scheme allows the user to carry out a 

single, restricted operation (either addition or 

multiplication) on encrypted data at a given 

moment, but it does not permit both operations 

simultaneously. On the other hand, SWHE 

schemes enable users to perform multiple 

operations on encrypted data; however, they have 

a constraint in terms of the number of addition 

and multiplication operations they can support 

[5, 6]. This limitation arises from the presence of 

noise in every ciphertext, and any homomorphic 

operation conducted on ciphertexts elevates the 

noise level in the resultant ciphertext. When the 

noise level surpasses a predefined threshold, the 

decrypted output is no longer accurate, and this 

imposes a restriction on the complexity of the 

polynomial that can be applied to ciphertexts [4, 

7]. A Leveled Homomorphic Encryption (LHE) 

scheme can be described as a HE schemes that 

incorporates an additional parameter, denoted as 

l, which subsequently renders the scheme 

homomorphic for all binary arithmetic circuits of 

depth-l. 

 

The Fully Homomorphic Encryption (FHE) 

scheme permits computations to be conducted on 

encrypted data while ensuring privacy 

preservation and information security [8, 9]. This 

scheme was initially conceptualized and put into 

practice by an IBM researcher, Craig Gentry [10, 

11], based on ideal lattices, as detailed in his 

doctoral thesis published in 2009 at Stanford 

University. Nevertheless, subsequent studies 

revealed that Gentry's original FHE scheme was 

excessively intricate and challenging to 

implement [12]–[14] Consequently, there have 

been significant advancements in FHE schemes, 

leading to their categorization into three 

developmental phases: (i) FHE based on ideal 

lattices, (ii) FHE based on learning with error 

(LWE) and ring learning with error (RLWE) 

problems, and the Gentry, Sahai, and Waters 

(GSW) scheme. Despite these strides, further 

enhancements are required to render FHE 

schemes practical for real-world applications, 

particularly in the context of privacy-preserving 

machine learning (ML). Notably, recent 

developments have seen the integration of an 

open-source FHE scheme as a library, 

exemplified by Concrete developed by Zama.ai. 

Concrete serves as an open-source FHE compiler 

that streamlines the utilization of FHE. It 

possesses the capability to translate Python 

functions (including NumPy) into their FHE 

counterparts, enabling operations on encrypted 

data [15].  

 

Prominent libraries in this domain include 

OpenFHE, HELib, NFLlib, TFHE-rs (a library 

for secure remote computing using FHE and 

trusted execution environments), and fast fully 

homomorphic encryption over Torus-TFHE, 

among others [16] – [18]. This paper conducts a 

critical evaluation of the progression of FHE 

libraries, emphasizing their advancements and 

vulnerabilities. Additionally, it delves into the 

diverse array of applications for FHE open-

source libraries and demonstrates their potential 

impact across various application domains. 

Ultimately, this review underscores the 

importance of Zama Concrete libraries and 

compiler [15, 19] as indispensable tools for 

implementing and introducing FHE to 

developers. 

 

The subsequent sections of this paper are 

structured as follows: In Section 2, we embark on 

a historical journey, tracking the evolution and 

advancements achieved thus far in the field of 

FHE library development. Section 3 provides an 

in-depth exploration of the diverse FHE open-

source libraries offered by Zama.ai. Meanwhile, 

Section 3.1 and 3.2 shed light on the applications 

of open-source FHE libraries, along with an 

examination of their vulnerabilities. Section 4 is 

entirely devoted to the Zama.ai Concrete 

compiler, wherein we scrutinize its limitations by 

comparing its’ performance against other known 

libraries, its’ vulnerabilities, and present 

recommendations for future enhancements in 

Section 4.1 and 4.2 respectively. Finally, Section 

5 serves as the conclusion, summarizing the key 

findings and insights gleaned from this study. 
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2.0 Historical and Progress Made So Far In 

FHE Development 
 

The history of FHE is substantial, and work is 

still being done to improve efficiency, process, 

and practicability. Latency issues often take 

center stage when discussing FHE, though time 

and focused development will see continued 

improvement in the speed of programmable 

bootstrapping operations. Recent developments 

have focused on functionality and security, 

which helps to make FHE one of the 

fundamental methods of digital privacy 

protection [20]. Furthermore, introducing more 

efficient FHE libraries and frameworks has 

simplified the adoption and implementation of 

FHE in real-world scenarios. 

 

Researchers have made significant strides in 

enhancing the efficiency and practicality of FHE 

schemes. The TFHE [21] was first presented as 

an improvement to the FHEW Scheme, but it 

quickly expanded in a more general direction. 

The scheme's security is built on a hard lattice 

issue known as Learning with Errors (LWE) and 

its derivatives, such as Ring LWE (RLWE). In 

reality, the vast majority of FHE methods in use 

today are LWE-based and employ noisy 

ciphertexts. The TFHE differs from the others in 

that it presents a unique bootstrapping method 

that is both quick and capable of evaluating a 

function while reducing noise.  

 

The FHEW, introduced in 2014 [5], provided the 

ability to homomorphically compute basic bit 

operations while bootstrapping the outputs, 

lowering processing time from around 6 minutes 

per batch to approximately 0.69 seconds. FHEW 

prioritized bootstrapping, describing it as the 

main bottleneck in any practical implementation 

of FHE. Ducas and Micciancio [22] proved 

convincingly that macroscopic delays are not a 

necessary requirement of bootstrapped FHE 

computations and bootstrapping itself can be 

achieved at much higher speeds than previously 

thought possible. Therefore, using RLWE and 

adding the homomorphic NAND operation 

during bootstrapping helped to minimize latency 

and demonstrate the viability of FHE schemes 

[23]. 

 

Released in 2016, TFHE initially improved upon 

FHEW, adding more functionality and 

dramatically upgrading processing speed. 

Chillotti et al. [9, 21] improved latency to less 

than 0.1 seconds per gate based on bootstrapping 

operation. The scheme has since developed a 

programmable bootstrapping procedure into its 

process, speeding up FHE to make it practical for 

most use cases for web2 and web3 applications. 

Programmable bootstrapping enables the 

homomorphic evaluation of any function 

represented as a table lookup over a ciphertext 

with a controlled noise level. Only this 

bootstrapped mode is applicable for problems 

involving circuits of considerable depth and 

complexity. Deep neural networks and other 

machine learning techniques are prime use cases 

for libraries built on the TFHE scheme using 

programmable bootstrapping. The first 

implementation of a TFHE library was only for 

Boolean circuits, but today’s state-of-the-art 

implementations, such as TFHE-rs [16], extend 

the original capabilities of TFHE to support 

programmable bootstrapping over integers. 

 

3.0 Review of FHE Open-Source Libraries 

 

This section reviews some recent open-source 

libraries and frameworks commonly used by 

FHE applications. Prominent among them 

include, but not limited to the following: 

 

1. Microsoft SEAL Library: 2018-2022 

 

Microsoft SEAL (Simple Encrypted Arithmetic 

Library) was created by researchers at Microsoft 

Research. It serves as a versatile tool for 

implementing and utilizing homomorphic 

encryption schemes [16]. Specifically, it supports 

two prominent schemes: the BFV (Brakerski-

Vaikuntanathan) scheme and the CKKS (Cheon-

Kim-Kim-Song) scheme [7]. BFV is a scheme 

that offers efficient operations on integers, while 

CKKS focuses on real and complex number 

computations. Microsoft SEAL aims to provide a 

user-friendly interface and optimized 

performance for these encryption schemes, 

making it accessible to researchers, developers, 

and practitioners. It emerged as a response to the 

growing need for practical and efficient 

homomorphic encryption tools. 

 

Microsoft SEAL's development began around 

2015 and was first released in December 2018. 

This library has continued with ongoing updates 

and improvements with the most stable version 

released in March 2022. 
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2. OpenFHE Library: 2022 

 

OpenFHE is supported by NumFocus, an 

organization dedicated to supporting and 

promoting open-source scientific computing 

[17]. It involves contributions from multiple 

developers across the FHE community. This 

library is designed to be comprehensive, 

accommodating a wide range of FHE schemes, 

including BGV (Brakerski-Gentry-

Vaikuntanathan), BFV, CKKS, TFHE (Fast 

Fully Homomorphic Encryption over the Torus), 

and FHEW (Fully Homomorphic Encryption 

over the Weil Descent) [16]. What sets 

OpenFHE apart is its multiparty support, 

allowing encrypted data to be shared and 

computed across multiple parties securely. 

 

3. PALISADE Library: 2017-2022 

 

PALISADE is a collaborative effort involving 

multiple organizations and developers in the field 

of cryptography, including academia, industry, 

and government contractors. The library was 

initially released in July 2017 and the stable 

version was released around May 2022. This 

library emphasizes support for multiple 

homomorphic encryption schemes, much like 

OpenFHE. PALISADE accommodates schemes 

such as BGV, BFV, CKKS, TFHE, and FHEW, 

and it also offers multiparty capabilities. 

PALISADE aims to provide a flexible and 

extensible platform for experimenting with and 

implementing various homomorphic encryption 

techniques and has since gained recognition as a 

significant open-source library for lattice-based 

cryptography and homomorphic encryption. 

 

4. HELib Library: 2013-2021 

 

HELib library was developed by researchers at 

IBM's Thomas J. Watson Research Center. Craig 

Gentry, Shai Halevi, and others [18] were 

involved in its creation. HELib's initial 

development took place around 2011-2012, 

marking it as one of the pioneering libraries in 

the field of homomorphic encryption using the 

CKKS and BGV schemes. The first released 

dated back to May 2013 while the stable version 

was released in October 2021. A noteworthy 

feature of HELib is its support for bootstrapping, 

a crucial technique for refreshing encrypted data 

to prevent decryption failures due to noise 

accumulation. The library was one of the 

pioneering tools in the field and has contributed 

significantly to the development and adoption of 

homomorphic encryption [24, 25] 

 

5. HEAAN Library: 2016 

  

Homomorphic Encryption for Arithmetic of 

Approximate Numbers (HEAAN) library is a 

specialized library that implements the CKKS 

homomorphic encryption scheme with a focus on 

native support for fixed-point approximate 

arithmetic [17]. This approach is particularly 

useful when precision needs to be balanced with 

computational efficiency, making it suitable for 

certain real-world applications [26]. 

 

6. Λ ○ λ Library: 2016 

 

Λ ○ λ, pronounced as "L O L," is a Haskell 

library tailored for ring-based lattice 

cryptography. It supports Fully Homomorphic 

Encryption (FHE) and contributes to the 

landscape of FHE libraries available for 

researchers and developers working with Haskell 

[27]. 

 

7. NFLlib Library: 2016-2019 

 

NFLlib library is an outcome of the European 

HEAT project, which involves collaboration 

among several European researchers and 

institutions [28]. It is dedicated to exploring 

high-performance homomorphic encryption 

using low-level processor primitives. This library 

is a testament to the ongoing efforts to improve 

the efficiency and practicality of homomorphic 

encryption techniques. 

 

8. HEAT Library: 2015-2018 

Homomorphic Encryption Acceleration Toolkit 

(HEAT) library is an initiative aimed at bridging 

FV-NFLib and HeLIB. The HEAT library serves 

as an API that bridges the FV-NFLib and HeLIB 

libraries. It focuses on enhancing the capabilities  

 

of homomorphic encryption by providing a 

unified interface and potentially enabling 

interoperability between different FHE schemes 

[29]. 

 

9. HEAT Hardware Accelerator 

Library: 2022 

 

The HEAT hardware accelerator is an extension 

of the HEAT project, the hardware acceleration 

component emerged later in the HEAT project's 

lifecycle, building upon the progress made with 
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FV-NFLib and HeLIB. This aspect of HEAT 

involves a hardware accelerator implementation 

for the FV-NFLlib. Hardware acceleration can 

significantly improve the computational 

efficiency of homomorphic encryption 

operations, making them more suitable for real-

time and resource-constrained scenarios [30].  

 

10. cuHE Library: 2016 

 

The cuHE library project involves contributions 

from researchers and developers with expertise 

in cryptography and GPU programming [31]. 

The cuHE library explores the utilization of 

General-Purpose Graphics Processing Units 

(GPGPUs) to accelerate homomorphic 

encryption. GPGPUs are known for their parallel 

processing capabilities and leveraging them can 

lead to substantial speed improvements in FHE 

computations.  

 

11. Lattigo Library: 2019-2022 

 

Lattigo library was created by researchers and 

developers who sought to provide a Go-based 

library for lattice-based cryptography. Lattigo 

provides various tools and functionalities for 

researchers and developers interested in lattice-

based cryptographic protocols, which have 

applications beyond just homomorphic 

encryption [32, 33].  

 

12. Encrypted Vector Arithmetic (EVA):  

 

An Encrypted Vector Arithmetic (EVA) is a 

compiler and optimizer designed for the CKKS 

scheme, with a primary target of Microsoft 

SEAL. This tool plays a crucial role in improving 

the performance and efficiency of homomorphic 

encryption operations, especially in the context 

of the CKKS scheme [30]. 

 

13. Fully Homomorphic Encryption over 

Torus (TFHE) 

 

TFHE is an open-source library that provides 

implementations of FHE schemes optimized for 

speed [21]. It is designed to be efficient for large-

scale homomorphic computations, making it 

suitable for practical applications. It stands as a 

robust framework designed to facilitate the 

implementation and utilization of fully 

homomorphic encryption (FHE) schemes. TFHE 

focuses on optimizing the speed of homomorphic 

computations, particularly for large-scale 

applications. It offers high throughput and low 

latency through various performance 

optimizations, including arithmetic operations on 

encrypted data and efficient bootstrapping 

procedures. 

 

TFHE supports a wide range of homomorphic 

operations, allowing users to perform complex 

computations on encrypted data without 

decrypting it. Its security is based on lattice-

based cryptography, providing strong guarantees 

against various cryptographic attacks, including 

quantum attacks. 

 

TFHE is distributed as an open-source library, 

allowing for transparency, peer review, and 

community contributions. It emerged to address 

the increasing demand for practical and efficient 

homomorphic encryption tools, providing 

researchers, developers, and practitioners with a 

versatile platform for privacy-preserving 

computations. 

 

Development of TFHE began around 2015 [21], 

and it has seen ongoing updates and 

improvements since then. The most current 

version of the library was released in February 

2020, reflecting its commitment to continuous 

enhancement and refinement. TFHE's evolution 

underscores its significance as a fundamental 

tool in the field of homomorphic encryption, 

empowering users to leverage the benefits of 

privacy-preserving computations in various real-

world applications. 

 

Other notable libraries include: FHEW, TFHE-rs, 

FV-NFLlib, nuFHE, blyss, cuFHE, Cupcake, 

cuYASHE, FINAL, krypto libScarab, libshe, 

SparkFHE, Sunscreen, TenSEAL [22, 26, 34].  

In summary, these libraries and tools collectively 

contribute to the advancement of homomorphic 

encryption and cryptography. They cater to a 

wide range of encryption schemes, optimizations, 

and applications, thereby fostering research.  

 

3.1 Vulnerabilities in Fully Homomorphic 

Encryption 

 

Despite the progress made, FHE schemes still 

have vulnerabilities. Side-channel attacks 

threaten FHE implementations' security, 

including timing and power analysis. 

Additionally, lattice-based FHE schemes are 
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susceptible to quantum attacks, highlighting the 

need for post-quantum secure FHE solutions. 

Ongoing research focuses on developing 

countermeasures to mitigate these vulnerabilities 

and strengthen the security of FHE. 

 

3.2 Applications of Fully Homomorphic 

Encryption 

 

The utilization of Fully Homomorphic 

Encryption (FHE) has significant promise across 

diverse application fields due to its capacity to 

facilitate computations while maintaining data in 

an encrypted state. These application areas 

include the following: 

 

1. Data Privacy and Security: FHE offers the 

capability to conduct computations on 

confidential information while preserving the 

confidentiality of the original data. This 

becomes especially advantageous in situations 

where data needs to be sent for external 

processing, such as in cloud computing 

environments. Organizations can perform 

analyses on encrypted data without the 

necessity of decrypting it, thus safeguarding 

sensitive information throughout the process 

[2, 35, 36, 37]. 

 

2. Healthcare: Within the healthcare sector, FHE 

has the potential to facilitate the confidential 

and secure examination of patient data, serving 

purposes like medical research, diagnostics, 

and treatment strategy formulation. Hospitals 

and research institutes can engage in 

cooperative efforts involving encrypted patient 

records, thereby enabling the extraction of 

valuable insights while upholding the privacy 

of sensitive data [38]. 

 

3. Finance: Financial establishments have the 

opportunity to apply FHE for intricate financial 

computations conducted on encrypted data. 

This application facilitates secure evaluations 

of risk, fraud detection, and investment 

analysis, permitting collaborative data analysis 

among various financial entities while ensuring 

the confidentiality of sensitive customer data 

remains intact [26]. 

 

4. Machine Learning and AI: FHE can support 

the secure training and inference of models 

using encrypted data, thereby guaranteeing 

data privacy during the process of training 

machine learning models with sensitive 

datasets. This becomes particularly critical in 

scenarios where multiple organizations aim to 

cooperatively train models while abstaining 

from data sharing [39, 40]. 

 

5. Internet of Things (IoT): FHE can be 

implemented to ensure secure data processing 

within Internet of Things (IoT) applications. 

IoT devices can transmit encrypted data to 

centralized servers for analysis, and the 

outcomes can be returned in an encrypted 

format, thereby preserving the confidentiality 

of data generated by IoT devices [41]. 

 

6. Supply Chain and Logistics: Ensuring the 

security of data-sharing and analysis within the 

realm of supply chain management involves 

enabling collaboration among various 

stakeholders in a manner that employs 

encryption. This collaborative approach aids in 

enhancing logistical efficiency, monitoring 

shipments, and effectively handling inventory, 

all while safeguarding sensitive proprietary 

information [24]. 

 

7. Genomics and Biotechnology: FHE has the 

potential to facilitate secure cooperation and 

examination of genomic data in the fields of 

research and personalized medicine. 

Researchers and healthcare professionals can 

collaborate on encrypted genetic data to 

uncover valuable insights and advance the 

development of tailored medical interventions. 

 

8. Government and Defense: Fully 

Homomorphic Encryption (FHE) holds 

significant importance in facilitating secure 

information exchange and data analysis within 

governmental and defense sectors. Classified 

data can undergo analysis while remaining in 

an encrypted state, thereby guaranteeing the 

preservation of the confidentiality of sensitive 

information. 

 

9. Academic and Scientific Research: FHE 

finds applicability in collaborative research 

endeavors involving multiple institutions, 

wherein the analysis of sensitive data is 

required without the necessity of data sharing. 

This extends to various domains such as 

climate research, astronomy, and social 

sciences. 

 

10. Privacy-Preserving Analytics: FHE 

schemes empowers organizations to conduct a 

diverse range of analytical operations on 

encrypted data while remaining compliant with  
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stringent data protection regulations like 

GDPR. These operations encompass the 

analysis of customer behavior, market 

research, and the extraction of data-driven 

business insights [2, 35]. 

 

4.0 ZAMA.AI Concrete Compiler: A TFHE 

Opensource Library 
 

The Zama Concrete Library has emerged as a 

prominent tool for implementing Fully 

Homomorphic Encryption (FHE) based on the 

TFHE Scheme. Recently developed in March 

2021 and built upon LLVM [15, 19], Zama 

Concrete introduces a high-level language 

designed for expressing FHE computations, 

along with the automatic generation of optimized 

FHE circuits [42]. This library incorporates 

several optimization strategies, including 

bootstrapping, packed ciphertexts, and Single 

Instruction Multiple Data (SIMD) instructions, to 

bolster the efficiency of FHE computations. It 

offers advanced capabilities such as automated 

noise management and reduced ciphertext sizes. 

SIMD instructions harness parallelism at the 

instruction level, further augmenting the 

performance of FHE computations. The Zama 

Concrete compiler significantly streamlines the 

development and deployment of FHE 

applications, effectively lowering the entry 

barrier for researchers and practitioners 

interested in working with FHE technology. 

 

While Concrete provides a convenient means of 

loading the server library in Python, it is 

important to note that the Concrete library, as 

introduced by Zama [15], offers a variant of 

TFHE that supports floating-point plaintext 

encodings and bootstrapping capabilities, 

enabling the evaluation of univariate function 

 

Nevertheless, it is essential to acknowledge 

certain constraints associated with its utility for 

general-purpose computation due to its reliance 

on a bootstrapping mechanism that necessitates 

the use of (imprecise) low-precision arithmetic. 

To illustrate this, CKKS bootstrapping allows for 

precision of up to 40 bits [25, 34], whereas 

Concrete is limited to a precision of less than 12 

bits [23]. Furthermore, it is worth highlighting 

that the cumulative impact of rounding errors 

resulting from low-precision arithmetic can 

become substantial over time, particularly in 

deep applications, as evidenced by the reported 

loss of accuracy in deep neural networks in [22]. 

 

Architecture and Design Principles 

 

The Zama.ai Concrete Compiler is built on 

robust architectural foundations, leveraging 

cutting-edge techniques to enable efficient FHE 

computations. At its core, the compiler employs 

a combination of mathematical optimizations and 

algorithmic innovations to minimize overhead 

while ensuring strong security guarantees. The 

architecture is modular and extensible, allowing 

for easy integration with various platforms and 

programming languages. 

 

Supported Cryptographic Primitives and 

Operations 

 

Zama.ai Concrete supports a wide range of 

cryptographic primitives and operations essential 

for homomorphic computations. Table 1 shows 

Concrete possible operations as at the latest 

version against other schemes [43], these include 

arithmetic operations (addition, multiplication), 

comparison operations (equality, inequality), and 

logical operations (AND, OR, NOT). 

Additionally, the library provides support for 

advanced functionalities such as bootstrapping, 

which enables the evaluation of arbitrary circuits 

over encrypted data. 

 

 

Integration with Programming Languages 

and Platforms 

 

Concrete offers seamless integration with 

popular programming languages such as C++, 

Python, and Java, facilitating the development of 

FHE-enabled applications across diverse 

domains. Moreover, the library is designed to be 

platform-agnostic, enabling deployment on a 

variety of computing environments ranging from 

cloud servers to edge devices. Table 2 shows 

comparison of various FHE libraries. 

 

Table 1 Operations of FHE Schemes. 

Operati

on 

BF

V 

BG

V 

CK

KS 

FH

EW 

TFH

E 

Concr

ete - 

TFHE 

Add/Su

b 

Yes Yes Yes No No Yes 

Mult Yes Yes Yes No No Yes 

Boolean 

Logic 

No Yes No Yes Yes Yes 

Bootstra

pping 

No No No Yes Yes Yes 
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Table 2. Comparison of FHE Libraries. 

 

4.1 Performance Review of Concrete 

 

Benchmarking Methodologies 

To assess the performance of the Zama.ai 

Concrete Library, we employ benchmarking 

methodologies tailored to measure key metrics 

over a range of randomly generated data.  

 

All Computation was executed on a PC with: 

- 2.4 GHz Quad-core CPU; 

- 16 GB RAM; 

- 2 GB GPU 

- Debian 12.4. 

 

We conducted a comparative analysis of Zama.ai 

Concrete against other prominent FHE libraries, 

including SEAL, and OpenFHE. The comparison 

encompasses factors such as computational 

efficiency, memory overhead, and scalability, 

providing insights into the relative strengths and 

weaknesses of each library. 

 

Execution Time: 

The time taken for common operations (e.g., 

encryption, decryption, addition, and 

multiplication). 

 

 
Figure 2: Average Execution Time for 

Computation Across FHE Libraries 

 

Figure 2 performance assessment provides 

information about the effectiveness and 

scalability of Concrete Library, especially with 

regard to its capacity for homomorphic 

operations. The evaluation offers a thorough 

grasp of the library's capabilities and limits 

through a methodical study of performance 

indicators over a range of data sizes and compute 

complexity. 

 

The computational cost of the library in 

comparison to other FHE Libraries, such the 

OpenFHE [17] is one important point that the 

performance assessment emphasizes. The 

analysis shows that homomorphic processes need 

a lot of computing power by nature, which makes 

processing times longer. But even with these 

difficulties, Concrete shows encouraging 

progress in reducing computational cost, 

especially when using better methods like as 

TFHE. 

 

Also noted, the effect of noise accumulation 

during homomorphic processes, which can have 

a big influence on computation accuracy. The 

library tackles this problem by using a variety of 

noise reduction strategies, including 

sophisticated bootstrapping algorithms and error 

correction codes, improving the accuracy and 

dependability of FHE calculations. 

 

But it's critical to recognize the shortcomings and 

weaknesses that the performance assessment 

brought to light. Security flaws like side-channel 

and timing attacks put FHE schemes at serious 

danger, thus it's important to keep working to 

create strong defenses and carry out in-depth  

analysis and security assessments. 

 

4.2 Benefits, Shortcomings, and 

Vulnerabilities of Zama Concrete 

Library 

 

Despite the progress made by Zama.ai's concrete 

compiler, several challenges and vulnerabilities 

remain. FHE schemes, including those 

incorporated by the compiler, suffer from high 

computational complexity, limiting their 

efficiency and scalability. Homomorphic 

operations require significant computational 

resources, resulting in longer processing times 

than traditional non-homomorphic computations 

such as advanced encryption standard (AES), and 

encryption algorithm recommended by the 

National Institute of Standard and Technology 

(NIST).  

Libraries/

Schemes 

Microsoft 

SEAL 

OpenFHE Zama 

Concret

e 

BGV No Yes No 

BFV Yes Yes No 

CKKS Yes Yes No 

FHEW No Yes No 

TFHE No Yes Yes 
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Although the concrete compiler leverages the 

improved TFHE scheme, which enhances the 

performance of FHE computations, there is still a 

need for ongoing research to develop more 

efficient algorithms and hardware architectures 

to reduce computational overhead. Noise 

accumulation during homomorphic operations 

remains a significant challenge, affecting the 

accuracy of computations.  

 

Security vulnerabilities, such as side-channel and 

timing attacks, also pose risks to FHE schemes. 

Side-channel attacks exploit information leaked 

through physical characteristics of the system, 

such as power consumption or timing behavior. 

In contrast, timing attacks exploit variations in 

execution times to infer sensitive information. To 

ensure the security of FHE, ongoing efforts are 

required to develop robust countermeasures 

against these types of attacks and to conduct 

thorough security evaluations of these FHE 

schemes. 

 

Zama's concrete compiler has achieved 

significant advancements in the practicality, 

application and efficiency of FHE schemes going 

as far as serving as a base for the development of 

the Concrete ML framework. It aims to simplify 

the use of FHE for data scientists to help them 

automatically turn machine learning models into 

their homomorphic equivalent [15]. Concrete 

ML was designed with ease-of-use in mind, so 

that data scientists can use it without knowledge 

of cryptography. Notably, the Concrete ML 

model classes are similar to those in scikit-learn 

and it is also possible to convert PyTorch models 

to FHE without being a cryptographer, this is a 

promising tool for developers and data analysts. 

 

One of the notable achievements of Zama.ai's 

Concrete ML framework is its ability to 

efficiently perform the computation of complex 

machine-learning models on encrypted data. This 

capability has profound implications for privacy-

preserving machine learning applications. For 

example, organizations can securely train 

machine learning models on sensitive data 

without exposing the raw data; this ensures the 

confidentiality and privacy of the data, making it 

suitable for scenarios such as collaborative 

machine learning or outsourced computation. 

 

The library addresses the computational 

overhead associated with homomorphic 

operations, which has historically been a 

significant challenge in FHE. The library reduces 

the computational complexity by optimizing the 

translation of high-level computations to FHE 

circuits, resulting in faster and more practical 

FHE applications. This improvement is crucial 

for real-world deployment, as it enhances the 

performance and feasibility of using FHE in 

resource-constrained environments. 

 

Furthermore, Zama.ai Concrete library mitigates 

the noise accumulation problem inherent in FHE 

schemes. Noise growth is a fundamental 

challenge in FHE that affects the accuracy of 

computations. By employing various noise 

reduction techniques, such as advanced 

bootstrapping methods and error correction 

codes, the compiler helps minimize noise 

accumulation's impact [24]. This advancement 

improves the reliability and precision of FHE 

computations, making them more suitable for 

sensitive tasks that require high accuracy. 

 

4.3 Future Recommendations 

 

To improve and tackle the highlighted challenges 

and vulnerabilities, the FHE scheme research 

community may consider exploring the following 

recommendations: 

 

i. Noise Reduction Techniques: Additional 

research efforts can be directed towards the 

advancement of noise reduction techniques 

specifically tailored to the Concrete compiler 

and other tools utilizing FHE scheme. This 

endeavor aims to foster wider adoption and 

expansion in the application of homomorphic 

encryption. Such research avenues may 

encompass the exploration of enhanced 

bootstrapping techniques, the development of 

more efficient error correction codes, or the 

investigation of innovative low-noise FHE 

schemes. 

 

ii. Hardware Acceleration: In order to mitigate 

the computational burden associated with FHE 

computations, the possibility of investigating 

specialized hardware architectures designed for 

optimized FHE operations merits 

consideration. Hardware acceleration has the 

potential to substantially augment the 

efficiency and effectiveness of FHE, rendering 

it a more viable solution for resource-limited 

contexts [30]. 

 

iii. Algorithmic Improvements: Ongoing 

research is imperative for the refinement of 
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algorithms used in FHE computations. This 

encompasses investigating approaches to 

streamline the intricacy of homomorphic 

operations, enhancing the packing and 

unpacking processes of ciphertexts, and 

optimizing the execution of Single Instruction, 

Multiple Data (SIMD) instructions. 

 

iv. Comprehensive Security Analysis: Thorough 

security assessments are essential to detect and 

rectify potential weaknesses or vulnerabilities 

within the Concrete compiler and FHE 

schemes. This may entail evaluating their 

resilience against side-channel attacks, timing 

attacks, and other evolving threats, alongside 

the pursuit of robust countermeasures aimed at 

preserving the confidentiality and integrity of 

encrypted data. 

 

v. Standardization and Interoperability: 
Emphasis should be placed on advancing the 

adoption of established standards and fostering 

interoperability among diverse FHE 

implementations, including Zama.ai Concrete 

compiler. Standardization serves as a catalyst 

for collaboration, promotes widespread 

acceptance, and elevates the compatibility of 

FHE solutions across a spectrum of platforms 

and applications. 

 

Research efforts should center on the 

development of an efficient hardware 

architectures and finely-tuned algorithms aimed 

at diminishing the computational burden 

associated with FHE computations. Additionally, 

there should be ongoing endeavors to tackle 

potential vulnerabilities and bolster the security 

of FHE schemes, encompassing the 

implementation of resilient countermeasures 

against side-channel attacks and emerging 

threats. 

 

5.0   Conclusion 

 

In summary, this paper undertook a literature 

review focusing on Fully Homomorphic 

Encryption and its applications. The objective 

was to gain insights into Libraries implementing 

Fully Homomorphic Encryption Schemes and 

identify the most effective and up-to-date 

implementation approaches. Following the 

introduction of Fully Homomorphic Encryption 

Algorithms by Gentry [11], subsequent years saw 

various enhancements, including schemes based 

on Integer (DGHV), BGV, Multi-key, and GSW. 

The research questions formulated for this 

review encompassed the applications, 

advantages, disadvantages, and optimal 

implementation approaches of Fully 

Homomorphic Encryption Schemes. The 

methodology involved deriving keywords from 

the research questions to search for relevant peer-

reviewed articles in academic directories. Which 

were then narrowed down through selection 

criteria. Each paper was categorized based on its 

contribution to the research questions and 

underwent analysis. Additionally, the selected 

papers were assessed for quality. Zama.ai 

Concrete library represents a significant 

milestone in advancing FHE, making secure and 

privacy-preserving computations more practical. 

The achievements of the library in enabling 

efficient evaluation of complex machine learning 

models, optimizing performance, and reducing 

noise growth are noteworthy. However, 

challenges related to computational complexity, 

noise accumulation, and security vulnerabilities 

still need to be addressed.  

 

The Zama.ai Concrete library has significantly 

advanced the feasibility and effectiveness of 

Fully Homomorphic Encryption (FHE), 

expanding the horizons for secure and privacy-

preserving computations. While substantial 

strides have already been made, there is room for 

continued advancement through persistent 

research and development. Implementing 

specific suggestions, such as noise reduction 

techniques, hardware acceleration, algorithmic 

enhancements, thorough security assessments, 

and standardization initiatives, has the potential 

to enhance the efficiency, security, and 

versatility of FHE. Ultimately, this could 

establish FHE as a foundational cornerstone for 

secure data processing in diverse domains. 
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