
 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 24

University of Ibadan

Journal of Science and Logics in ICT Research

A Review of Open-Source Fully Homomorphic Encryption Libraries:

Zama.ai Concrete Compiler, Applications and Vulnerability

1Benedict D. A., 2, Giwa T. A., 3Usman O. L. and 4Ezenduka C. F.

1Department of Electrical and Electronics Engineering, Federal University of Technology, Akure, Nigeria.
2Department of Computer Science, University of Abuja, Nigeria.
3Department of Computer Science, Tai Solarin University of Education, Ogun State, Nigeria,

 4Department of Mechanical Engineering, Federal University of Technology Owerri, Nigeria.

Emails of authors: benedict.adeyi@gmail.com, tawakalitu.giwa@uniabuja.edu.ng (corresponding),

usmanol@tasued.edu.ng, chidieberef47@gmail.com

Abstract
Fully Homomorphic Encryption (FHE) is an advanced cryptographic technique that enables computational operations to be

performed on encrypted data without the need for decryption. In other words, FHE allows operations to be conducted

directly on ciphertexts, producing encrypted results that, when decrypted, correspond to the output of the operations

performed on the plaintext data. This revolutionary capability ensures data privacy and security throughout the entire

computation process, as the data remains encrypted at all times, even during computation. FHE schemes typically involve

complex mathematical operations and algorithms, often based on lattice-based cryptography or other mathematical

structures, to enable secure and efficient computation on encrypted data. Substantial progress has been achieved in the realm

of FHE and its application since 2015, yielding enhanced efficacy, heightened security, and augmented feasibility. This

review paper discusses and reviews diverse FHE schemes/libraries, and the extent of progress attained hitherto and how the

possibilities of adoption of the scheme in industry is being propagated, using research questions as a guide, we endeavor to

utilize searches across various academic databases and industry repositories for peer-reviewed papers, articles, and books.

While some of the examined papers suggested new techniques to improve the security of transferred data, several of the

publications provided novel schemes for FHE to maximize efficiency and minimize noise. Special emphasis is placed on the

open-source tools and libraries implementing FHE scheme, notably Concrete (developed using TFHE Scheme), an

innovation by Zama.ai, a preeminent research establishment specializing in FHE research and development. Since writing

FHE programs can be difficult, Concrete, based on LLVM, makes this process easier for developers with the ability to

compile Python functions (that may include NumPy) to their FHE equivalents, to operate on encrypted data. The

applications of the library are examined, encompassing accomplishments, limitations, and vulnerabilities. Conclusively,

prospective avenues for advancement are underscored, deliberated upon, and illuminated.

Keywords: Fully Homomorphic Encryption (FHE), Zama.ai Concrete Compiler, Machine Learning, Security, Open-

source Library.

1.0 Introduction

According to Gouert et al. [1], Homomorphic

Encryption (HE) represents a powerful

encryption technique that permits arithmetic

operations to be carried out on the encrypted

data, resulting in ciphertexts that represent the

desired outcomes. This capability allows for the

secure encryption of data such as x and the

delegation of computations, for instance f(x), to a

remote server while preserving the privacy of x.

The outcome of these computations is received in

an encrypted form, as depicted in the underlying

process illustrated in Figure 1. Subsequently, the

user possesses the ability to decrypt the result

using their private key [2]. It is noteworthy that

the RSA algorithm is recognized as the pioneer

HE algorithm applied in the realm of cloud

computing security, a development dating back

to 1978, primarily due to its multiplicative

property [3]. In a broader context, there are four

distinct categories of HE, which are defined by

the nature of homomorphic computations they

support and the depth of these computations that

can be performed on ciphertexts. These

categories encompass Partial Homomorphic

Encryption (PHE), Somewhat Homomorphic

Encryption (SWHE), Leveled Homomorphic

Encryption (LHE), and Fully Homomorphic

Encryption (FHE) [4].

Benedict D. A., Giwa T. A., Usman O. L. and Ezenduka C.

F. (2024). A Review of Open-Source Fully Homomorphic

Encryption Libraries: Zama.ai Concrete Compiler,

Applications and Vulnerability, University of Ibadan

Journal of Science and Logics in ICT Research

(UIJSLICTR), Vol. 11 No. 2, pp. 24 – 35

©UIJSLICTR Vol. 11, No. 2, June 2024

mailto:benedict.adeyi@gmail.com
mailto:tawakalitu.giwa@uniabuja.edu.ng
mailto:usmanol@tasued.edu.ng
mailto:chidieberef47@gmail.com

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 25

Figure 1. Typical flow of HE cycles.

The PHE scheme allows the user to carry out a

single, restricted operation (either addition or

multiplication) on encrypted data at a given

moment, but it does not permit both operations

simultaneously. On the other hand, SWHE

schemes enable users to perform multiple

operations on encrypted data; however, they have

a constraint in terms of the number of addition

and multiplication operations they can support

[5, 6]. This limitation arises from the presence of

noise in every ciphertext, and any homomorphic

operation conducted on ciphertexts elevates the

noise level in the resultant ciphertext. When the

noise level surpasses a predefined threshold, the

decrypted output is no longer accurate, and this

imposes a restriction on the complexity of the

polynomial that can be applied to ciphertexts [4,

7]. A Leveled Homomorphic Encryption (LHE)

scheme can be described as a HE schemes that

incorporates an additional parameter, denoted as

l, which subsequently renders the scheme

homomorphic for all binary arithmetic circuits of

depth-l.

The Fully Homomorphic Encryption (FHE)

scheme permits computations to be conducted on

encrypted data while ensuring privacy

preservation and information security [8, 9]. This

scheme was initially conceptualized and put into

practice by an IBM researcher, Craig Gentry [10,

11], based on ideal lattices, as detailed in his

doctoral thesis published in 2009 at Stanford

University. Nevertheless, subsequent studies

revealed that Gentry's original FHE scheme was

excessively intricate and challenging to

implement [12]–[14] Consequently, there have

been significant advancements in FHE schemes,

leading to their categorization into three

developmental phases: (i) FHE based on ideal

lattices, (ii) FHE based on learning with error

(LWE) and ring learning with error (RLWE)

problems, and the Gentry, Sahai, and Waters

(GSW) scheme. Despite these strides, further

enhancements are required to render FHE

schemes practical for real-world applications,

particularly in the context of privacy-preserving

machine learning (ML). Notably, recent

developments have seen the integration of an

open-source FHE scheme as a library,

exemplified by Concrete developed by Zama.ai.

Concrete serves as an open-source FHE compiler

that streamlines the utilization of FHE. It

possesses the capability to translate Python

functions (including NumPy) into their FHE

counterparts, enabling operations on encrypted

data [15].

Prominent libraries in this domain include

OpenFHE, HELib, NFLlib, TFHE-rs (a library

for secure remote computing using FHE and

trusted execution environments), and fast fully

homomorphic encryption over Torus-TFHE,

among others [16] – [18]. This paper conducts a

critical evaluation of the progression of FHE

libraries, emphasizing their advancements and

vulnerabilities. Additionally, it delves into the

diverse array of applications for FHE open-

source libraries and demonstrates their potential

impact across various application domains.

Ultimately, this review underscores the

importance of Zama Concrete libraries and

compiler [15, 19] as indispensable tools for

implementing and introducing FHE to

developers.

The subsequent sections of this paper are

structured as follows: In Section 2, we embark on

a historical journey, tracking the evolution and

advancements achieved thus far in the field of

FHE library development. Section 3 provides an

in-depth exploration of the diverse FHE open-

source libraries offered by Zama.ai. Meanwhile,

Section 3.1 and 3.2 shed light on the applications

of open-source FHE libraries, along with an

examination of their vulnerabilities. Section 4 is

entirely devoted to the Zama.ai Concrete

compiler, wherein we scrutinize its limitations by

comparing its’ performance against other known

libraries, its’ vulnerabilities, and present

recommendations for future enhancements in

Section 4.1 and 4.2 respectively. Finally, Section

5 serves as the conclusion, summarizing the key

findings and insights gleaned from this study.

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 26

2.0 Historical and Progress Made So Far In

FHE Development

The history of FHE is substantial, and work is

still being done to improve efficiency, process,

and practicability. Latency issues often take

center stage when discussing FHE, though time

and focused development will see continued

improvement in the speed of programmable

bootstrapping operations. Recent developments

have focused on functionality and security,

which helps to make FHE one of the

fundamental methods of digital privacy

protection [20]. Furthermore, introducing more

efficient FHE libraries and frameworks has

simplified the adoption and implementation of

FHE in real-world scenarios.

Researchers have made significant strides in

enhancing the efficiency and practicality of FHE

schemes. The TFHE [21] was first presented as

an improvement to the FHEW Scheme, but it

quickly expanded in a more general direction.

The scheme's security is built on a hard lattice

issue known as Learning with Errors (LWE) and

its derivatives, such as Ring LWE (RLWE). In

reality, the vast majority of FHE methods in use

today are LWE-based and employ noisy

ciphertexts. The TFHE differs from the others in

that it presents a unique bootstrapping method

that is both quick and capable of evaluating a

function while reducing noise.

The FHEW, introduced in 2014 [5], provided the

ability to homomorphically compute basic bit

operations while bootstrapping the outputs,

lowering processing time from around 6 minutes

per batch to approximately 0.69 seconds. FHEW

prioritized bootstrapping, describing it as the

main bottleneck in any practical implementation

of FHE. Ducas and Micciancio [22] proved

convincingly that macroscopic delays are not a

necessary requirement of bootstrapped FHE

computations and bootstrapping itself can be

achieved at much higher speeds than previously

thought possible. Therefore, using RLWE and

adding the homomorphic NAND operation

during bootstrapping helped to minimize latency

and demonstrate the viability of FHE schemes

[23].

Released in 2016, TFHE initially improved upon

FHEW, adding more functionality and

dramatically upgrading processing speed.

Chillotti et al. [9, 21] improved latency to less

than 0.1 seconds per gate based on bootstrapping

operation. The scheme has since developed a

programmable bootstrapping procedure into its

process, speeding up FHE to make it practical for

most use cases for web2 and web3 applications.

Programmable bootstrapping enables the

homomorphic evaluation of any function

represented as a table lookup over a ciphertext

with a controlled noise level. Only this

bootstrapped mode is applicable for problems

involving circuits of considerable depth and

complexity. Deep neural networks and other

machine learning techniques are prime use cases

for libraries built on the TFHE scheme using

programmable bootstrapping. The first

implementation of a TFHE library was only for

Boolean circuits, but today’s state-of-the-art

implementations, such as TFHE-rs [16], extend

the original capabilities of TFHE to support

programmable bootstrapping over integers.

3.0 Review of FHE Open-Source Libraries

This section reviews some recent open-source

libraries and frameworks commonly used by

FHE applications. Prominent among them

include, but not limited to the following:

1. Microsoft SEAL Library: 2018-2022

Microsoft SEAL (Simple Encrypted Arithmetic

Library) was created by researchers at Microsoft

Research. It serves as a versatile tool for

implementing and utilizing homomorphic

encryption schemes [16]. Specifically, it supports

two prominent schemes: the BFV (Brakerski-

Vaikuntanathan) scheme and the CKKS (Cheon-

Kim-Kim-Song) scheme [7]. BFV is a scheme

that offers efficient operations on integers, while

CKKS focuses on real and complex number

computations. Microsoft SEAL aims to provide a

user-friendly interface and optimized

performance for these encryption schemes,

making it accessible to researchers, developers,

and practitioners. It emerged as a response to the

growing need for practical and efficient

homomorphic encryption tools.

Microsoft SEAL's development began around

2015 and was first released in December 2018.

This library has continued with ongoing updates

and improvements with the most stable version

released in March 2022.

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 27

2. OpenFHE Library: 2022

OpenFHE is supported by NumFocus, an

organization dedicated to supporting and

promoting open-source scientific computing

[17]. It involves contributions from multiple

developers across the FHE community. This

library is designed to be comprehensive,

accommodating a wide range of FHE schemes,

including BGV (Brakerski-Gentry-

Vaikuntanathan), BFV, CKKS, TFHE (Fast

Fully Homomorphic Encryption over the Torus),

and FHEW (Fully Homomorphic Encryption

over the Weil Descent) [16]. What sets

OpenFHE apart is its multiparty support,

allowing encrypted data to be shared and

computed across multiple parties securely.

3. PALISADE Library: 2017-2022

PALISADE is a collaborative effort involving

multiple organizations and developers in the field

of cryptography, including academia, industry,

and government contractors. The library was

initially released in July 2017 and the stable

version was released around May 2022. This

library emphasizes support for multiple

homomorphic encryption schemes, much like

OpenFHE. PALISADE accommodates schemes

such as BGV, BFV, CKKS, TFHE, and FHEW,

and it also offers multiparty capabilities.

PALISADE aims to provide a flexible and

extensible platform for experimenting with and

implementing various homomorphic encryption

techniques and has since gained recognition as a

significant open-source library for lattice-based

cryptography and homomorphic encryption.

4. HELib Library: 2013-2021

HELib library was developed by researchers at

IBM's Thomas J. Watson Research Center. Craig

Gentry, Shai Halevi, and others [18] were

involved in its creation. HELib's initial

development took place around 2011-2012,

marking it as one of the pioneering libraries in

the field of homomorphic encryption using the

CKKS and BGV schemes. The first released

dated back to May 2013 while the stable version

was released in October 2021. A noteworthy

feature of HELib is its support for bootstrapping,

a crucial technique for refreshing encrypted data

to prevent decryption failures due to noise

accumulation. The library was one of the

pioneering tools in the field and has contributed

significantly to the development and adoption of

homomorphic encryption [24, 25]

5. HEAAN Library: 2016

Homomorphic Encryption for Arithmetic of

Approximate Numbers (HEAAN) library is a

specialized library that implements the CKKS

homomorphic encryption scheme with a focus on

native support for fixed-point approximate

arithmetic [17]. This approach is particularly

useful when precision needs to be balanced with

computational efficiency, making it suitable for

certain real-world applications [26].

6. Λ ○ λ Library: 2016

Λ ○ λ, pronounced as "L O L," is a Haskell

library tailored for ring-based lattice

cryptography. It supports Fully Homomorphic

Encryption (FHE) and contributes to the

landscape of FHE libraries available for

researchers and developers working with Haskell

[27].

7. NFLlib Library: 2016-2019

NFLlib library is an outcome of the European

HEAT project, which involves collaboration

among several European researchers and

institutions [28]. It is dedicated to exploring

high-performance homomorphic encryption

using low-level processor primitives. This library

is a testament to the ongoing efforts to improve

the efficiency and practicality of homomorphic

encryption techniques.

8. HEAT Library: 2015-2018

Homomorphic Encryption Acceleration Toolkit

(HEAT) library is an initiative aimed at bridging

FV-NFLib and HeLIB. The HEAT library serves

as an API that bridges the FV-NFLib and HeLIB

libraries. It focuses on enhancing the capabilities

of homomorphic encryption by providing a

unified interface and potentially enabling

interoperability between different FHE schemes

[29].

9. HEAT Hardware Accelerator

Library: 2022

The HEAT hardware accelerator is an extension

of the HEAT project, the hardware acceleration

component emerged later in the HEAT project's

lifecycle, building upon the progress made with

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627

28

FV-NFLib and HeLIB. This aspect of HEAT

involves a hardware accelerator implementation

for the FV-NFLlib. Hardware acceleration can

significantly improve the computational

efficiency of homomorphic encryption

operations, making them more suitable for real-

time and resource-constrained scenarios [30].

10. cuHE Library: 2016

The cuHE library project involves contributions

from researchers and developers with expertise

in cryptography and GPU programming [31].

The cuHE library explores the utilization of

General-Purpose Graphics Processing Units

(GPGPUs) to accelerate homomorphic

encryption. GPGPUs are known for their parallel

processing capabilities and leveraging them can

lead to substantial speed improvements in FHE

computations.

11. Lattigo Library: 2019-2022

Lattigo library was created by researchers and

developers who sought to provide a Go-based

library for lattice-based cryptography. Lattigo

provides various tools and functionalities for

researchers and developers interested in lattice-

based cryptographic protocols, which have

applications beyond just homomorphic

encryption [32, 33].

12. Encrypted Vector Arithmetic (EVA):

An Encrypted Vector Arithmetic (EVA) is a

compiler and optimizer designed for the CKKS

scheme, with a primary target of Microsoft

SEAL. This tool plays a crucial role in improving

the performance and efficiency of homomorphic

encryption operations, especially in the context

of the CKKS scheme [30].

13. Fully Homomorphic Encryption over

Torus (TFHE)

TFHE is an open-source library that provides

implementations of FHE schemes optimized for

speed [21]. It is designed to be efficient for large-

scale homomorphic computations, making it

suitable for practical applications. It stands as a

robust framework designed to facilitate the

implementation and utilization of fully

homomorphic encryption (FHE) schemes. TFHE

focuses on optimizing the speed of homomorphic

computations, particularly for large-scale

applications. It offers high throughput and low

latency through various performance

optimizations, including arithmetic operations on

encrypted data and efficient bootstrapping

procedures.

TFHE supports a wide range of homomorphic

operations, allowing users to perform complex

computations on encrypted data without

decrypting it. Its security is based on lattice-

based cryptography, providing strong guarantees

against various cryptographic attacks, including

quantum attacks.

TFHE is distributed as an open-source library,

allowing for transparency, peer review, and

community contributions. It emerged to address

the increasing demand for practical and efficient

homomorphic encryption tools, providing

researchers, developers, and practitioners with a

versatile platform for privacy-preserving

computations.

Development of TFHE began around 2015 [21],

and it has seen ongoing updates and

improvements since then. The most current

version of the library was released in February

2020, reflecting its commitment to continuous

enhancement and refinement. TFHE's evolution

underscores its significance as a fundamental

tool in the field of homomorphic encryption,

empowering users to leverage the benefits of

privacy-preserving computations in various real-

world applications.

Other notable libraries include: FHEW, TFHE-rs,

FV-NFLlib, nuFHE, blyss, cuFHE, Cupcake,

cuYASHE, FINAL, krypto libScarab, libshe,

SparkFHE, Sunscreen, TenSEAL [22, 26, 34].

In summary, these libraries and tools collectively

contribute to the advancement of homomorphic

encryption and cryptography. They cater to a

wide range of encryption schemes, optimizations,

and applications, thereby fostering research.

3.1 Vulnerabilities in Fully Homomorphic

Encryption

Despite the progress made, FHE schemes still

have vulnerabilities. Side-channel attacks

threaten FHE implementations' security,

including timing and power analysis.

Additionally, lattice-based FHE schemes are

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 29

susceptible to quantum attacks, highlighting the

need for post-quantum secure FHE solutions.

Ongoing research focuses on developing

countermeasures to mitigate these vulnerabilities

and strengthen the security of FHE.

3.2 Applications of Fully Homomorphic

Encryption

The utilization of Fully Homomorphic

Encryption (FHE) has significant promise across

diverse application fields due to its capacity to

facilitate computations while maintaining data in

an encrypted state. These application areas

include the following:

1. Data Privacy and Security: FHE offers the

capability to conduct computations on

confidential information while preserving the

confidentiality of the original data. This

becomes especially advantageous in situations

where data needs to be sent for external

processing, such as in cloud computing

environments. Organizations can perform

analyses on encrypted data without the

necessity of decrypting it, thus safeguarding

sensitive information throughout the process

[2, 35, 36, 37].

2. Healthcare: Within the healthcare sector, FHE

has the potential to facilitate the confidential

and secure examination of patient data, serving

purposes like medical research, diagnostics,

and treatment strategy formulation. Hospitals

and research institutes can engage in

cooperative efforts involving encrypted patient

records, thereby enabling the extraction of

valuable insights while upholding the privacy

of sensitive data [38].

3. Finance: Financial establishments have the

opportunity to apply FHE for intricate financial

computations conducted on encrypted data.

This application facilitates secure evaluations

of risk, fraud detection, and investment

analysis, permitting collaborative data analysis

among various financial entities while ensuring

the confidentiality of sensitive customer data

remains intact [26].

4. Machine Learning and AI: FHE can support

the secure training and inference of models

using encrypted data, thereby guaranteeing

data privacy during the process of training

machine learning models with sensitive

datasets. This becomes particularly critical in

scenarios where multiple organizations aim to

cooperatively train models while abstaining

from data sharing [39, 40].

5. Internet of Things (IoT): FHE can be

implemented to ensure secure data processing

within Internet of Things (IoT) applications.

IoT devices can transmit encrypted data to

centralized servers for analysis, and the

outcomes can be returned in an encrypted

format, thereby preserving the confidentiality

of data generated by IoT devices [41].

6. Supply Chain and Logistics: Ensuring the

security of data-sharing and analysis within the

realm of supply chain management involves

enabling collaboration among various

stakeholders in a manner that employs

encryption. This collaborative approach aids in

enhancing logistical efficiency, monitoring

shipments, and effectively handling inventory,

all while safeguarding sensitive proprietary

information [24].

7. Genomics and Biotechnology: FHE has the

potential to facilitate secure cooperation and

examination of genomic data in the fields of

research and personalized medicine.

Researchers and healthcare professionals can

collaborate on encrypted genetic data to

uncover valuable insights and advance the

development of tailored medical interventions.

8. Government and Defense: Fully

Homomorphic Encryption (FHE) holds

significant importance in facilitating secure

information exchange and data analysis within

governmental and defense sectors. Classified

data can undergo analysis while remaining in

an encrypted state, thereby guaranteeing the

preservation of the confidentiality of sensitive

information.

9. Academic and Scientific Research: FHE

finds applicability in collaborative research

endeavors involving multiple institutions,

wherein the analysis of sensitive data is

required without the necessity of data sharing.

This extends to various domains such as

climate research, astronomy, and social

sciences.

10. Privacy-Preserving Analytics: FHE

schemes empowers organizations to conduct a

diverse range of analytical operations on

encrypted data while remaining compliant with

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 30

stringent data protection regulations like

GDPR. These operations encompass the

analysis of customer behavior, market

research, and the extraction of data-driven

business insights [2, 35].

4.0 ZAMA.AI Concrete Compiler: A TFHE

Opensource Library

The Zama Concrete Library has emerged as a

prominent tool for implementing Fully

Homomorphic Encryption (FHE) based on the

TFHE Scheme. Recently developed in March

2021 and built upon LLVM [15, 19], Zama

Concrete introduces a high-level language

designed for expressing FHE computations,

along with the automatic generation of optimized

FHE circuits [42]. This library incorporates

several optimization strategies, including

bootstrapping, packed ciphertexts, and Single

Instruction Multiple Data (SIMD) instructions, to

bolster the efficiency of FHE computations. It

offers advanced capabilities such as automated

noise management and reduced ciphertext sizes.

SIMD instructions harness parallelism at the

instruction level, further augmenting the

performance of FHE computations. The Zama

Concrete compiler significantly streamlines the

development and deployment of FHE

applications, effectively lowering the entry

barrier for researchers and practitioners

interested in working with FHE technology.

While Concrete provides a convenient means of

loading the server library in Python, it is

important to note that the Concrete library, as

introduced by Zama [15], offers a variant of

TFHE that supports floating-point plaintext

encodings and bootstrapping capabilities,

enabling the evaluation of univariate function

Nevertheless, it is essential to acknowledge

certain constraints associated with its utility for

general-purpose computation due to its reliance

on a bootstrapping mechanism that necessitates

the use of (imprecise) low-precision arithmetic.

To illustrate this, CKKS bootstrapping allows for

precision of up to 40 bits [25, 34], whereas

Concrete is limited to a precision of less than 12

bits [23]. Furthermore, it is worth highlighting

that the cumulative impact of rounding errors

resulting from low-precision arithmetic can

become substantial over time, particularly in

deep applications, as evidenced by the reported

loss of accuracy in deep neural networks in [22].

Architecture and Design Principles

The Zama.ai Concrete Compiler is built on

robust architectural foundations, leveraging

cutting-edge techniques to enable efficient FHE

computations. At its core, the compiler employs

a combination of mathematical optimizations and

algorithmic innovations to minimize overhead

while ensuring strong security guarantees. The

architecture is modular and extensible, allowing

for easy integration with various platforms and

programming languages.

Supported Cryptographic Primitives and

Operations

Zama.ai Concrete supports a wide range of

cryptographic primitives and operations essential

for homomorphic computations. Table 1 shows

Concrete possible operations as at the latest

version against other schemes [43], these include

arithmetic operations (addition, multiplication),

comparison operations (equality, inequality), and

logical operations (AND, OR, NOT).

Additionally, the library provides support for

advanced functionalities such as bootstrapping,

which enables the evaluation of arbitrary circuits

over encrypted data.

Integration with Programming Languages

and Platforms

Concrete offers seamless integration with

popular programming languages such as C++,

Python, and Java, facilitating the development of

FHE-enabled applications across diverse

domains. Moreover, the library is designed to be

platform-agnostic, enabling deployment on a

variety of computing environments ranging from

cloud servers to edge devices. Table 2 shows

comparison of various FHE libraries.

Table 1 Operations of FHE Schemes.

Operati

on

BF

V

BG

V

CK

KS

FH

EW

TFH

E

Concr

ete -

TFHE

Add/Su

b

Yes Yes Yes No No Yes

Mult Yes Yes Yes No No Yes

Boolean

Logic

No Yes No Yes Yes Yes

Bootstra

pping

No No No Yes Yes Yes

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 31

Table 2. Comparison of FHE Libraries.

4.1 Performance Review of Concrete

Benchmarking Methodologies

To assess the performance of the Zama.ai

Concrete Library, we employ benchmarking

methodologies tailored to measure key metrics

over a range of randomly generated data.

All Computation was executed on a PC with:

- 2.4 GHz Quad-core CPU;

- 16 GB RAM;

- 2 GB GPU

- Debian 12.4.

We conducted a comparative analysis of Zama.ai

Concrete against other prominent FHE libraries,

including SEAL, and OpenFHE. The comparison

encompasses factors such as computational

efficiency, memory overhead, and scalability,

providing insights into the relative strengths and

weaknesses of each library.

Execution Time:

The time taken for common operations (e.g.,

encryption, decryption, addition, and

multiplication).

Figure 2: Average Execution Time for

Computation Across FHE Libraries

Figure 2 performance assessment provides

information about the effectiveness and

scalability of Concrete Library, especially with

regard to its capacity for homomorphic

operations. The evaluation offers a thorough

grasp of the library's capabilities and limits

through a methodical study of performance

indicators over a range of data sizes and compute

complexity.

The computational cost of the library in

comparison to other FHE Libraries, such the

OpenFHE [17] is one important point that the

performance assessment emphasizes. The

analysis shows that homomorphic processes need

a lot of computing power by nature, which makes

processing times longer. But even with these

difficulties, Concrete shows encouraging

progress in reducing computational cost,

especially when using better methods like as

TFHE.

Also noted, the effect of noise accumulation

during homomorphic processes, which can have

a big influence on computation accuracy. The

library tackles this problem by using a variety of

noise reduction strategies, including

sophisticated bootstrapping algorithms and error

correction codes, improving the accuracy and

dependability of FHE calculations.

But it's critical to recognize the shortcomings and

weaknesses that the performance assessment

brought to light. Security flaws like side-channel

and timing attacks put FHE schemes at serious

danger, thus it's important to keep working to

create strong defenses and carry out in-depth

analysis and security assessments.

4.2 Benefits, Shortcomings, and

Vulnerabilities of Zama Concrete

Library

Despite the progress made by Zama.ai's concrete

compiler, several challenges and vulnerabilities

remain. FHE schemes, including those

incorporated by the compiler, suffer from high

computational complexity, limiting their

efficiency and scalability. Homomorphic

operations require significant computational

resources, resulting in longer processing times

than traditional non-homomorphic computations

such as advanced encryption standard (AES), and

encryption algorithm recommended by the

National Institute of Standard and Technology

(NIST).

Libraries/

Schemes

Microsoft

SEAL

OpenFHE Zama

Concret

e

BGV No Yes No

BFV Yes Yes No

CKKS Yes Yes No

FHEW No Yes No

TFHE No Yes Yes

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 32

Although the concrete compiler leverages the

improved TFHE scheme, which enhances the

performance of FHE computations, there is still a

need for ongoing research to develop more

efficient algorithms and hardware architectures

to reduce computational overhead. Noise

accumulation during homomorphic operations

remains a significant challenge, affecting the

accuracy of computations.

Security vulnerabilities, such as side-channel and

timing attacks, also pose risks to FHE schemes.

Side-channel attacks exploit information leaked

through physical characteristics of the system,

such as power consumption or timing behavior.

In contrast, timing attacks exploit variations in

execution times to infer sensitive information. To

ensure the security of FHE, ongoing efforts are

required to develop robust countermeasures

against these types of attacks and to conduct

thorough security evaluations of these FHE

schemes.

Zama's concrete compiler has achieved

significant advancements in the practicality,

application and efficiency of FHE schemes going

as far as serving as a base for the development of

the Concrete ML framework. It aims to simplify

the use of FHE for data scientists to help them

automatically turn machine learning models into

their homomorphic equivalent [15]. Concrete

ML was designed with ease-of-use in mind, so

that data scientists can use it without knowledge

of cryptography. Notably, the Concrete ML

model classes are similar to those in scikit-learn

and it is also possible to convert PyTorch models

to FHE without being a cryptographer, this is a

promising tool for developers and data analysts.

One of the notable achievements of Zama.ai's

Concrete ML framework is its ability to

efficiently perform the computation of complex

machine-learning models on encrypted data. This

capability has profound implications for privacy-

preserving machine learning applications. For

example, organizations can securely train

machine learning models on sensitive data

without exposing the raw data; this ensures the

confidentiality and privacy of the data, making it

suitable for scenarios such as collaborative

machine learning or outsourced computation.

The library addresses the computational

overhead associated with homomorphic

operations, which has historically been a

significant challenge in FHE. The library reduces

the computational complexity by optimizing the

translation of high-level computations to FHE

circuits, resulting in faster and more practical

FHE applications. This improvement is crucial

for real-world deployment, as it enhances the

performance and feasibility of using FHE in

resource-constrained environments.

Furthermore, Zama.ai Concrete library mitigates

the noise accumulation problem inherent in FHE

schemes. Noise growth is a fundamental

challenge in FHE that affects the accuracy of

computations. By employing various noise

reduction techniques, such as advanced

bootstrapping methods and error correction

codes, the compiler helps minimize noise

accumulation's impact [24]. This advancement

improves the reliability and precision of FHE

computations, making them more suitable for

sensitive tasks that require high accuracy.

4.3 Future Recommendations

To improve and tackle the highlighted challenges

and vulnerabilities, the FHE scheme research

community may consider exploring the following

recommendations:

i. Noise Reduction Techniques: Additional

research efforts can be directed towards the

advancement of noise reduction techniques

specifically tailored to the Concrete compiler

and other tools utilizing FHE scheme. This

endeavor aims to foster wider adoption and

expansion in the application of homomorphic

encryption. Such research avenues may

encompass the exploration of enhanced

bootstrapping techniques, the development of

more efficient error correction codes, or the

investigation of innovative low-noise FHE

schemes.

ii. Hardware Acceleration: In order to mitigate

the computational burden associated with FHE

computations, the possibility of investigating

specialized hardware architectures designed for

optimized FHE operations merits

consideration. Hardware acceleration has the

potential to substantially augment the

efficiency and effectiveness of FHE, rendering

it a more viable solution for resource-limited

contexts [30].

iii. Algorithmic Improvements: Ongoing

research is imperative for the refinement of

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 33

algorithms used in FHE computations. This

encompasses investigating approaches to

streamline the intricacy of homomorphic

operations, enhancing the packing and

unpacking processes of ciphertexts, and

optimizing the execution of Single Instruction,

Multiple Data (SIMD) instructions.

iv. Comprehensive Security Analysis: Thorough

security assessments are essential to detect and

rectify potential weaknesses or vulnerabilities

within the Concrete compiler and FHE

schemes. This may entail evaluating their

resilience against side-channel attacks, timing

attacks, and other evolving threats, alongside

the pursuit of robust countermeasures aimed at

preserving the confidentiality and integrity of

encrypted data.

v. Standardization and Interoperability:
Emphasis should be placed on advancing the

adoption of established standards and fostering

interoperability among diverse FHE

implementations, including Zama.ai Concrete

compiler. Standardization serves as a catalyst

for collaboration, promotes widespread

acceptance, and elevates the compatibility of

FHE solutions across a spectrum of platforms

and applications.

Research efforts should center on the

development of an efficient hardware

architectures and finely-tuned algorithms aimed

at diminishing the computational burden

associated with FHE computations. Additionally,

there should be ongoing endeavors to tackle

potential vulnerabilities and bolster the security

of FHE schemes, encompassing the

implementation of resilient countermeasures

against side-channel attacks and emerging

threats.

5.0 Conclusion

In summary, this paper undertook a literature

review focusing on Fully Homomorphic

Encryption and its applications. The objective

was to gain insights into Libraries implementing

Fully Homomorphic Encryption Schemes and

identify the most effective and up-to-date

implementation approaches. Following the

introduction of Fully Homomorphic Encryption

Algorithms by Gentry [11], subsequent years saw

various enhancements, including schemes based

on Integer (DGHV), BGV, Multi-key, and GSW.

The research questions formulated for this

review encompassed the applications,

advantages, disadvantages, and optimal

implementation approaches of Fully

Homomorphic Encryption Schemes. The

methodology involved deriving keywords from

the research questions to search for relevant peer-

reviewed articles in academic directories. Which

were then narrowed down through selection

criteria. Each paper was categorized based on its

contribution to the research questions and

underwent analysis. Additionally, the selected

papers were assessed for quality. Zama.ai

Concrete library represents a significant

milestone in advancing FHE, making secure and

privacy-preserving computations more practical.

The achievements of the library in enabling

efficient evaluation of complex machine learning

models, optimizing performance, and reducing

noise growth are noteworthy. However,

challenges related to computational complexity,

noise accumulation, and security vulnerabilities

still need to be addressed.

The Zama.ai Concrete library has significantly

advanced the feasibility and effectiveness of

Fully Homomorphic Encryption (FHE),

expanding the horizons for secure and privacy-

preserving computations. While substantial

strides have already been made, there is room for

continued advancement through persistent

research and development. Implementing

specific suggestions, such as noise reduction

techniques, hardware acceleration, algorithmic

enhancements, thorough security assessments,

and standardization initiatives, has the potential

to enhance the efficiency, security, and

versatility of FHE. Ultimately, this could

establish FHE as a foundational cornerstone for

secure data processing in diverse domains.

References

[1] C. Gouert, D. Mouris, and N. Tsoutsos, “SoK:

New Insights into Fully Homomorphic

Encryption Libraries via Standardized

Benchmarks,” Proc. Priv. Enhancing Technol.,

vol. 2023, no. 3, pp. 154–172, 2023, doi:

10.56553/popets-2023-0075.

[2] O. L. Usman, R. C. Muniyandi, K. Omar, and

M. Mohamad, “Privacy-Preserving

Classification Method for Neural-Biomarkers

using Homomorphic Residue Number System

CNN: HoRNS-CNN,” in 2022 International

Conference on Business Analytics for

Technology and Security, ICBATS 2022,

IEEE, 2022. doi:

10.1109/ICBATS54253.2022.9759007.

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 34

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A

Method for Obtaining Digital Signatures and

Public-Key Cryptosystems,” Commun. ACM,

vol. 21, no. 2, pp. 120–126, 1978.

[4] K. Benzekki, A. El Fergougui, A. El, and B.

El, “A Secure Cloud Computing Architecture

Using Homomorphic Encryption,” vol. 7, no.

2, pp. 293–298, 2016.

[5] N. Vamshinath, K. R. Ramya, S. Krishna, P.

Gopi Bhaskar, G. L. Mwaseba, and T.-H. Kim,

“Homomorphic Encryption for Cluster in

Cloud,” Int. J. Secur. Its Appl., vol. 9, no. 5,

pp. 319–324, 2015, doi:

10.14257/ijsia.2015.9.5.31.

[6] I. Chillotti, N. Gama, M. Georgieva, and M.

Izabachène, “Faster fully homomorphic

encryption: Bootstrapping in less than 0.1

seconds,” in Advances in Cryptology –

ASIACRYPT 2016. ASIACRYPT 2016.

Lecture Notes in Computer Science, J. Cheon

and T. Takagi, Eds., Berlin, Heidelberg:

Springer, 2016, pp. 3–33. doi: 10.1007/978-3-

662-53887-6_1.

[7] J. H. Cheon, A. Kim, M. Kim, and Y. Song,

“Homomorphic Encryption for Arithmetic of

Approximate Numbers,” in Proceedings of the

2023 International Conference on Intelligent

Systems for Communication, IoT and Security,

ICISCoIS 2023, 2023, pp. 505–509. doi:

10.1109/ICISCoIS56541.2023.10100464.

[8] F. Bourse, M. Minelli, M. Minihold, and P.

Paillier, “Fast homomorphic evaluation of deep

discretized neural networks,” in 2018

International Cryptology Conference, Springer,

2018, pp. 483–512. doi: 10.1007/978-3-319-

96878-0_17.

[9] I. Chillotti, N. Gama, M. Georgieva, and M.

Izabachène, “Faster fully homomorphic

encryption: Bootstrapping in less than 0.1

seconds,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 2016, pp. 3–33. doi:

10.1007/978-3-662-53887-6_1.

[10] C. Gentry, “Computing Arbitrary Functions of

Encrypted Data,” Commun. ACM, vol. 53, no.

3, pp. 97–105, 2010, doi:

10.1145/1666420.1666444.

[11] C. Gentry, “A Fully Homomorphic Encryption

Scheme,” Standford University, 2009.

[Online]. Available: http://cs.au.dk/~stm/local-

cache/gentry-thesis.pdf

[12] C. Gentry and S. Halevi, “Implementing

Gentry” s Fully-Homomorphic Encryption

Scheme,” pp. 1–29, 2011.

[13] K. J. Muhammed, R. M. Isiaka, A. W. Asaju-

Gbolagade, K. S. Adewole, and K. A.

Gbolagade, “Improved Cloud-based N-Primes

Model for Symmetric-based Fully

Homomorphic Encryption using Residue

Number System,” in Machine Learning and

Data Mining for Emerging Trend in Cyber

Dynamics, H. Chiroma, P. Abdulhamid, S M

Fournier-Viger, and N. M. Garcia, Eds.,

Springer, Cham., 2021, pp. 197–216. doi:

10.1007/978-3-030-66288-2_8.

[14] L. O. Usman and K. A. Gbolagade, “A Review

of Homomorphic Encryption Schemes for

Cloud Computing Security: A Case for

Residue Number System,” in 5th International

Conference of U6 Initiative for Development,

Malete: Kwara State University Malete,

Nigeria, 2017, pp. 1–18.

[15] M. Arthur, C.-M. Benoit, F. Jordan, S. Andrei,

B. Roman, and M. A. C. K. Luis, “What is

Concrete ML.pdf,” 2022.

https://docs.zama.ai/concrete-ml/v/0.5-1/

[16] L. Brenna, I. S. Singh, H. D. Johansen, and D.

Johansen, “TFHE-rs: A library for safe and

secure remote computing using fully

homomorphic encryption and trusted execution

environments,” Array, vol. 13, no. December

2021, pp. 1–8, 2022, doi:

10.1016/j.array.2021.100118.

[17] A. Al Badawi et al., “OpenFHE: Open-Source

Fully Homomorphic Encryption Library,” in

WAHC 2022 - Proceedings of the 10th

Workshop on Encrypted Computing and

Applied Homomorphic Cryptography, co-

located with CCS 2022, 2022, pp. 53–63. doi:

10.1145/3560827.3563379.

[18] S. Halevi and V. Shoup, “Algorithms in

HElib,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 8616 LNCS, no. PART 1,

pp. 554–571, 2014, doi: 10.1007/978-3-662-

44371-2_31.

[19] I. Chillotti, M. Joye, D. Ligier, J.-B. Orfila,

and S. Tap, “CONCRETE: Concrete Operates

oN Ciphertexts Rapidly by Extending TfhE,”

in Proceedings of ACM Conference

(Conference’17), Association for Computing

Machinery, 2020, pp. 57–63. [Online].

Available: https://zama.ai

[20] P. Panzade and D. Takabi, “Towards Faster

Functional Encryption for Privacy-preserving

Machine Learning,” in Proceedings - 2021 3rd

IEEE International Conference on Trust,

Privacy and Security in Intelligent Systems and

Applications, TPS-ISA 2021, 2021, pp. 21–30.

doi: 10.1109/TPSISA52974.2021.00003.

[21] I. Chillotti, N. Gama, M. Georgieva, and M.

Izabachène, “TFHE: Fast Fully Homomorphic

Encryption Over the Torus,” J. Cryptol., vol.

33, no. 1, pp. 34–91, 2020, doi:

10.1007/s00145-019-09319-x.

[22] L. Ducas and D. Micciancio, “FHEW:

Bootstrapping homomorphic encryption in less

than a second,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 9056, pp.

http://cs.au.dk/~stm/local-cache/gentry-thesis.pdf
http://cs.au.dk/~stm/local-cache/gentry-thesis.pdf
https://docs.zama.ai/concrete-ml/v/0.5-1/

 UIJSLICTR Vol. 11 No. 2 June 2024 ISSN: 2714-3627 35

617–640, 2015, doi: 10.1007/978-3-662-

46800-5_24.

[23] I. Chillotti, M. Joye, and P. Paillier,

“Programmable Bootstrapping Enables

Efficient Homomorphic Inference of Deep

Neural Networks,” in Lecture Notes in

Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2021, pp. 1–19. doi:

10.1007/978-3-030-78086-9_1.

[24] B. Li and D. Micciancio, “On the Security of

Homomorphic Encryption on Approximate

Numbers,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 12696

LNCS, pp. 648–677, 2021, doi: 10.1007/978-

3-030-77870-5_23.

[25] H. V. L. Pereira, “Bootstrapping Fully

Homomorphic Encryption over the Integers in

Less than One Second,” in International

Association for Cryptologic Research 2021,

PKC 2021, LNCS 12710, International

Association for Cryptologic Research, 2021,

pp. 331–359. [Online]. Available:

https://doi.org/10.1007/978-3-030-75245-3_13

[26] J. Zhang, X. Cheng, L. Yang, J. Hu, X. Liu,

and K. Chen, “SoK: Fully Homomorphic

Encryption Accelerators,” 2022, [Online].

Available: http://arxiv.org/abs/2212.01713

[27] E. Crockett and C. Peikert, “∧oλ: Functional

lattice cryptography,” in Proceedings of the

ACM Conference on Computer and

Communications Security, 2016, pp. 993–

1005. doi: 10.1145/2976749.2978402.

[28] C. Aguilar-Melchor, J. Barrier, S. Guelton, A.

Guinet, M. O. Killijian, and T. Lepoint,

“NFLlib: NTT-based fast lattice library,” in

Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in

Bioinformatics), 2016, pp. 341–356. doi:

10.1007/978-3-319-29485-8_20.

[29] D. .-E. F. Report, “HEAT: Homomorphic

Encryption Applications and Technology,”

2018.

[30] S. Di Matteo, M. Lo Gerfo, and S. Saponara,

“VLSI Design and FPGA Implementation of

an NTT Hardware Accelerator for

Homomorphic SEAL-Embedded Library,”

IEEE Access, vol. 11, no. May, 2023, doi:

10.1109/ACCESS.2023.3295245.

[31] W. Dai and B. Sunar, “cuHE: A homomorphic

encryption accelerator library,” in Lecture

Notes in Computer Science (including

subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in

Bioinformatics), 2016, pp. 169–186. doi:

10.1007/978-3-319-29172-7_11.

[32] C. Mouchet, J. Bossuat, J. Troncoso-pastoriza,

and J.-P. Hubaux, Lattigo : a Multiparty

Homomorphic Encryption Library in Go, vol.

1, no. 1. Association for Computing

Machinery, 2020. [Online]. Available:

https://homomorphicencryption.org/wp-

content/uploads/2020/12/wahc20_demo_christi

an.pdf

[33] J. A. G. Ed and G. Goos, PKC 2021 Lecture

Notes in Computer Science. 2021.

[34] J. W. Lee, E. Lee, Y. Lee, Y. S. Kim, and J. S.

No, “High-Precision Bootstrapping of RNS-

CKKS Homomorphic Encryption Using

Optimal Minimax Polynomial Approximation

and Inverse Sine Function,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol.

12696 LNCS, pp. 618–647, 2021, doi:

10.1007/978-3-030-77870-5_22.

[35] O. L. Usman and R. C. Muniyandi,

“CryptoDL : Predicting Dyslexia Biomarkers

from Encrypted Neuroimaging Dataset Using

Energy-E ffi cient Residue Number System

and Deep Convolutional Neural Network,”

Symmetry (Basel)., vol. 12, no. 5, pp. 1–24,

2020, doi: 10.3390/sym12050836.

[36] M. A. Usman, O. L. Usman, and R. C.

Muniyandi, “Pixel-based Homomorphic

Residue Number System Scheme for Privacy-

Preserving Neuroimaging Datasets Encryption

and Decryption,” TASUED J. Pure Appl. Sci.,

vol. 2, no. 1, pp. 1–9, 2023.

[37] A. Vizitiu, C. I. Niǎ, A. Puiu, C. Suciu, and L.

M. Itu, “Applying Deep Neural Networks over

Homomorphic Encrypted Medical Data,”

Comput. Math. Methods Med., vol. 2020,

2020, doi: 10.1155/2020/3910250.

[38] J. Chao et al., “CaRENets: Compact and

Resource-Efficient CNN for Homomorphic

Inference on Encrypted Medical Images,”

arXiv:1901.10074v1, pp. 1–11, 2019, [Online].

Available: http://arxiv.org/abs/1901.10074

[39] N. Dowlin, R. Gilad-Bachrach, K. Laine, K.

Lauter, M. Naehrig, and J. Wernsing,

“Cryptonets: Applying neural networks to

encrypted data with high throughput and

accuracy,” 33rd Int. Conf. Mach. Learn. ICML

2016, vol. 1, pp. 342–351, 2016.

[40] E. Chou, J. Beal, D. Levy, S. Yeung, A.

Haque, and L. Fei-Fei, “Faster CryptoNets-

Leveraging Sparsity for Real-World

Encryption Inference,” arXiv:1811.09953v1,

2018.

[41] W. Ouyang, C. Ma, G. Zhang, and K. Diao,

“Achieving Message-Encapsulated Leveled

FHE for IoT Privacy Protection,” Mob. Inf.

Syst. Journal, Hindawi, vol. 2020, pp. 1–10,

2020, doi: 10.1155/2020/8862920.

[42] Zama.ai, “Zama Concrete,” 2023.

https://github.com/zama-ai/concrete

[43] L. Jiang and L. Ju “FHEBench: Benchmarking

Fully Homomorphic Encryption Schemes”

[Online]. Available:
https://doi.org/10.48550/arXiv.2203.00728

https://doi.org/10.1007/978-3-030-75245-3_13
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_christian.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_christian.pdf
https://homomorphicencryption.org/wp-content/uploads/2020/12/wahc20_demo_christian.pdf
http://arxiv.org/abs/1901.10074
https://github.com/zama-ai/concrete
https://doi.org/10.48550/arXiv.2203.00728

