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Abstract  

Food recognition, a recent research area in image processing, helps identify food items to keep track of the food 

consumed, thereby maintaining a healthy diet. However, the task of food recognition is challenging due to the 

deformable nature of food items. Usually, there are more than one food item in a meal making the task more 

challenging. Therefore, the aim of this work is to develop a deep learning model to detect and enumerate visual 

food components present in a meal. In the multi-label learning approach, food images were collected to build a 

food image dataset, which comprised 2150 images. The images were pre-processed. Contrast Limited Adaptive 

Histogram Equalization was then applied followed by scaling to fit as input into the model for training/testing. 

Thereafter, Deep (VGG-16) and Dense (DenseNet50) models were used to extract deep features. The final layer 

of the model was applied with a multi-label technique to train on the selected features. The multi-label model 

was tested using appropriate metrics in which VGG-16 performed better than DenseNet50 with an accuracy of 

91.90%, hamming loss of 8.10%, loss of 0.26%, precision of 73.49%. An independent test set was used on the 

model which showed impressive results. It was observed from this study that the proposed approach performed 

excellently well in predicting Nigerian Food components. It is recommended that this work be applied in real 

world this work in real world scenario such as dietary tracking to monitor food intake. Human-Computer 

Interaction with automatic purchasing systems at restaurants can be used to speed up services. 
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1.     INTRODUCTION 

The integration of Artificial Intelligence (AI) 

with food recognition has been an area of 

research interest for the past few decades. 

However, with the advent of deep learning 

coupled with increasing computational power, 

the full potential of AI in food recognition is 

yet to be realized. Food is generally known to 

be fundamental to human existence; it always 

has and will always be essential in human life 

[1]. A healthy diet is vital to human health [2]; 

therefore, food plays a vital role in our daily 

lives [3]. Food does not only provide energy, 

but also gives us our cultural identity [4,5] and 

even our religious significance. 

Food culture nowadays is spreading more than 

ever as a result of the digital evolution, with 

individuals sharing pictures of what they are 

eating on the Internet. Apart from digital 

evolution, our eating pattern and food 

preparation culture is also evolving. In 

retrospective times, it has been observed that 

food was mostly prepared at home; but 

currently we regularly eat food prepared by 

third parties such as takeaways and restaurants 

[6]. Hence, there is limited information about 

the food we eat; as a result, it is cumbersome to 

identify what we consume.  

 

Therefore, we need to keep track of what we 

eat, which currently depends on human visual 

examination to assess the qualified food 

components and label them properly [1]. This 

method has been proven to be extremely 

painstaking, tedious and expensive [1], [7]. 

This has led to the development of several 

applications to manually monitor what we 

consume. Nevertheless, these applications 
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hardly provide mechanism for easy monitoring 

nutrition habits automatically [8]. However, 

people’s awareness about the food they 

consume and nutrition habits is increasing [9]. 

This is either because of certain kinds of food 

intolerance suffered by some people, mild or 

severe weight problems, or basically just 

interested in keeping a healthy diet.  
 

Consequently, food recognition, which is the 

basic technology for such a kind of automatic 

dietary assessment tool, is now a trending 

research topic in recent years. Various 

technologies and algorithms allow us to guess 

the food component in food image, which is 

the most widely used approach [10]. Some of 

the previous works used these technologies to 

differentiate food images from other images 

like [11], [12],[13], [14], which is a binary 

classification approach. At the same time, 

some authors worked on multiclass approach 

which the food labels (names) are independent 

classes into which food images can be 

classified such as [15], [16],[17], [18]. 

However, some works focused on recognizing 

food ingredients present in single dish meals 

[9], [19]. Nevertheless, the main problem of 

these approaches is that they focused on major 

food component or single dish only and 

available data focused on food meals with food 

names as the label as shown in Figure 1. 

Presently, there are very few datasets on mixed 

dish food components available as shown in 

Figure 2. As a result, there is inadequate work 

on the multi-label classification of food 

components images in the literature. Another 

challenge is that various dishes/food items 

present on a plate are likely to overlap each 

other. Hence, there may be no clear boundaries 

between the food items. It is also important to 

note that shape of some dishes is not regular. 

 
Figure 1. Example of Single Dish Meal 

 
Figure 2. Example of Mixed dish. 

 

Thus, the way forward is to define the problem 

as a food components recognition problem and 

having it in mind that the visual appearance of 

food items can vary from one food to another. 

Hence, along this line, this work proposes food 

components recognition from a multi-label by 

proposing a Convolutional Neural Network 

(CNN) model framework that allows us to 

determine food components present in food 

images.  

 

The proposed multi-label learning approach 

offers clear advantages. It eliminates the need 

for bounding box or pixel-wise annotations, 

focusing solely on categories rather than the 

precise location of each dish. This approach 

significantly reduces the annotation workload 

and simplifies the network design. In contrast 

to detection and segmentation schemes, our 

approach boasts lower costs, reduced 

processing time, and potentially superior 

results. Moreover, when compared to other 

multi-label classification methods, our 

approach demonstrates significantly higher 

accuracy. 

 

The rest of this paper is arranged as follows the 

review of existing works was done in Section 2 

while the methodology used for this work is 

presented in Section 3, followed by the results 

obtained, while the discussion of the results 

follows, and the conclusion was drawn in 

Section 5. 

2.  RELATED WORKS 

Based on cognitive uncertainty analysis, 

Aguilar et al [20] developed Forward Step-

wise Uncertainty-Aware Model Selection 

(FS_UAMS) for food image classification. The 

approach identified the best combination of 

CNN models to optimize performance while 

circumventing the high computational resource 

demands typical of traditional model selection 

methods like random or exhaustive search. The 

outputs of two classical CNN models, ResNet 

50 and InceptionV3 was modified, by 

introducing a dropout layer with a probability 

of 0.5 and an output layer with softmax 

activation. An accuracy of 89.26% was 

obtained. Similarly, Tahir et al [21] employed 

transfer learning to minimize computational 

costs and reduce the likelihood of 

generalization errors for food image analysis. 
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A Hamming loss of 0.0070 was achieved for 

food ingredients detection. 

 

A food composition dictionary to identify 

visual regions in an image related to food 

composition and an attention mechanism to 

enhance the features of these visual regions 

was utilized by Wang et al [22]. A graph 

convolutional neural network (GCNN) was 

utilized to learn the constructed graph and 

aggregate semantic features with visual 

features. A macro-F1 of 90.82% was obtained. 

Similarly, Chen et al [23] introduced a method 

that identifies food ingredients using regional 

features in images by recognizing ingredients 

in local image regions and then pools these 

recognition results from different regions to 

determine the final identification. However, the 
approach necessitates complex network 

structures thereby preventing performance 

degradation.  

 

A Wide Hierarchical Subnetwork-based Neural 

Network (WI-HSN) framework was developed 

by Zhang et al [24] to classify food types from 

images. The framework used a supervised 

subnetwork model for feature encoding and 

pattern classification. The WI-HSN achieved 

an accuracy of 90.8%.  

These existing works have utilized deep 

learning, specifically the utilization of 

convolutional neural networks, transfer 

learning, and semi-supervised learning. 

However, to detect multiple food components 

this study aims to use a multi-label learning 

approach.  

 

 

 

 

3.   Methodology  

 

This work presents an automatic multi-label 

classification of visual food components using 

deep learning. The framework presented in 

Figure 3 comprises three major modules: 

image gathering and processing, feature 

extraction using pre-trained CNN, and food 

components recognition. 

 

3.1 Data Collection and Preparation 

 

This work aims to use the state-of-the-art CNN 

framework for food components recognition, 

hence, there is a need for dataset that will be 

suitable to use. Since, this work aimed at 

working exclusively on Nigerian foods, there 

were constrains and limited sources from 

which the research data was gotten.  

 

Hence, the images were gathered locally by 

taking pictures of food images and from the 

internet using google image search, Bing image 

search, Flickr, Facebook, Instagram using 

keywords such as “#Nigerianfood”, 

“#Naijafoods”, “#NigerianRecipe”, 

“#food9ja”. The dataset contains 2,081 images 

of Nigerian dishes that are common, including 

Southwestern Nigerian, comprising 26 food 

components. The following criteria were used 

for the food image selection: The image must 

be traditional and popular Nigerian dishes, the 

images cover a diverse range of Nigerian food 

categories and the images must be of high-

resolution. Figure 4. Shows the distribution of 

the food components in the image dataset. 

 

  As observed in Figure 4, there is a class 

imbalance as some food components are 

consumed more than others ones. 

 

 

 
Figure 3. Framework for the Multi-label food components recognition
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Figure 4. Distribution of the food components in image dataset 

 

3.2 Image Preprocessing 

 

Cropping: The cropping process attempts to 

exclude or reduce the image's unwanted area 

(image background). Therefore, the resultant 

image would have the necessary part of the 

image (food image) which would form the 

features for the food component recognition. 

The image cropping was performed manually 

on the dataset to take out irrelevant 

backgrounds to ensure that the needed area 

(food image) was given as input to the model. 

Cropping also ensured that important features 

were extracted after the irrelevant background 

(non-food components) had been cropped out. 

 

Contrast Enhancement: Image contrast is a 

vital factor used to determine the quality of 

image [16]. It helps to differentiate an object 

from another as well as background. In image 

processing, contrast enhancement is used to 

augment the visual appearance of an image for 

human visual analysis or subsequent machine 

analysis. In this work, Contrast Limited 

Adaptive Histogram Equalization (CLAHE), an 

algorithm used to adjust too bright or too dark 

images, was used for contrast enhancement 

[25]. This was done using a threshold of 3.0 to 

clip the histogram of the intensity of an image 

and redistribute the histogram to adjust the 

contrast in the image. 

 

Resizing and Normalization: Since the 

necessary portion of the food images were 

obtained via cropping, each of the images was 

of varying sizes; hence, there was a need to 

resize the images to ensure that the images were 

configured (in height and width) for the input 

layer of the training model. Therefore, the 

images were resized to 224x224. For the 

normalization, the RGB values were divided by 

255 to obtain normalized values (between 0-1), 

following the standard practice in machine 

learning for easy computation. 

 

Labelling: Since, this work aimed at working 

exclusively on Nigerian foods, there were 

constrains and limited sources from which the 

research data was gotten. In essence, the value 

of one will be assigned to a food component 

that is present in an image and zero to a food 

component that is not in the image. 

 

Figure 5 depicts the sample of the food image 

dataset while Figure 6 highlights some of the 

labeling of the dataset. 

 

 
Figure 5. Sample of the food image dataset 
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Figure 6. Sample of the food image dataset labels in CSV file 

 

3.2 Experimental Analysis 

 

To maximize the use of software and hardware 

resources made available for researchers by 

Google, Google Colab was used for the training 

and testing of the model. Keras library with 

Tensor Flow was used for model 

implementation in the python programming 

language. To augment the limited dataset, the 

least ten instances of the dataset were 

augmented using flipping (vertically and 

horizontally) and rotation (90 and 180 degrees) 

techniques. Hence, the image summed up to 

10,405 food images. The dataset was then 

partitioned into 70/30% for training and 

validation, respectively while 7283 instances 

were used for training, the remaining 3122 

instances were used for the validation. 

 

Feature Extraction 

It has been proven that DCNN architecture 

performs better when used to extract features. 

Therefore, this study employed two types of 

convolutional neural architectures— deep 

(VGG-16) [26], and dense (DenseNet50) [27] 

learning models to extract deep features. instead 

of building a deep learning model from scratch. 

The network was initialized with the weights 

trained on ImageNet [28], and we fine-tuned it 

with the experimental datasets. Comparative 

analysis was also conducted to determine the 

suitability and appropriateness of the deep 

models for food components recognition.  

 

Recognition 

Having extracted the deep features using VGG-

16 and DenseNet50, the next process is to train 

the extracted deep features with our multi-label 

algorithm. Most of the previous works aimed at 

binary or multi-class classification tasks, but 

real-life problems sometimes call for multi-

label classification. These types of problems 

can be solved by developing a multi-label 

model framework which was done in this 

research work. From our research we note that, 

multi food components can be predicted as seen 

in Equation (1). 

    (1) 

Where n is the number of output labels. f might 

return values (from negative infinity to infinity) 

as seen in Equation (2). 

  (2) 

 

However, the model should produce each  

(predicted value) as binary where each  is 

either 1 or 0 depending on if the food 

component is present or not present in the 

image. Hence, Sigmoid ( )  is applied to 

produce values between 0 and 1, allowing 

multiple highly activated outputs (Equation 

(3)). 

        (3) 

Where = output value of the ith node in the 

output layer. 

 

Since mixed dish recognition is a multi-label 

classification task, binary cross-entropy will be 

used as the loss function referred to as 

summation of binary cross entropy over all 

classes as depicted in Equation (4). 

   (4) 

Where N is the total number of samples,  is 

the total number of food components (classes), 

y is the ground truth.  

 

During the backpropagation the weights of the 

network updated to optimize the recognition 

performance.  

 

The algorithm was extended to accommodate 

26 food components and plugged in three 

additional dense layers to recognize food 

components. As food components entail 

multiple labels, a threshold is essential to 

control the prediction/selection of labels. The 

threshold was set to 0.5 (50%) by the deep 

learning-based multi-label recognition 

standards.   
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Table 1: The Model Training Parameters 

 

Parameter Values 

Learning Rate 0.001 

Batch Size 32 

Optimizer Adam 

Epochs 30 

 

 

Table 2: The Performance Evaluation of the Food Components Recognition Model

Metric Score 

VGG16 DenseNet50 

Hamming Loss  0.081 0.102 

Precision 0.73 0.65 

Training Accuracy 99.98% 89.94% 

Validation Accuracy 91.90% 89.71% 

Training Loss  0.0037 0.2444 

Validation Loss  0.2296 0.2667 

 

In essence, only labels with prediction scores 

higher than the threshold are considered as 

being identified. Table 1 gives the details of the 

training parameters. 

 

However, to address class imbalance within the 

training data for our multi-label image 

classification task, we implemented a class-

weighting strategy during the training of our 

neural network model. The following steps 

outline the procedure used: To account for class 

imbalance, class weights using the ‘compute 

class weight function [29], was computed.  For 

classes absent in the computed class weights, 

we set default weights to 1.0. This step ensures 

that all classes are considered during training, 

even if they are not present in the initial class-

weight computation. The class weights were 

then incorporated during training to mitigate the 

impact of class imbalance. 

 

4.  Results and Discussion 

 

The food components recognition model results 

are hereby presented in this section and will be 

described with the following metrics: Accuracy, 

Hamming loss and precision. The results were 

validated with test dataset and independent test 

set. It is important to note that the closer to 1 

the metric score is, the better it is, except for the 

value of hamming loss. Figures 7 and 8 

illustrate the performance of the models while 

Table 2 showcases the performance of the 

optimal predictive models of VGG16, and 

DenseNet50 for comparative analysis. VGG-16 

demonstrated notable results. 

 

It was observed that VGG16 had better 

performance than DenseNet in this food 

component recognition task. The VGG-16 

model was used to make predictions on the 

independent test set. The output of these 

predictions were probabilistic scores, with 

values ranging between 0 and 1; hence to obtain 

the percentage of the prediction for each visual 

food component, the predicted results are 

multiplied by 100. Table 3 shows some of the 

predicted results obtained.  From image (a-e), it 

can be seen that the Model prediction of the 

food components was high and accurate.  It 

confirms that what was established in the 

ground truth holds. Furthermore, the aggregated 

confusion matrix was visualized as shown in 

Figure 9 to provide an overall view of the 

models’ performance across all labels. 
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Figure 7. The Training and Validation Accuracy of the Two Models 

 

 

 
Figure. 8. The Training and Validation Loss of the Two Models 

 

 

 
Figure 9 The Aggregated confusion matrix for the two Models 
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Table 3: Some Samples of Food Component Recognition on the Independent Test 

 

 Image Ground Truth Model Prediction  

a 

 
 

Stew 

Amala 

Beef 

Ewedu 

Stew (0.999) 

Amala (0.985) 

Beef (0.983) 

Ewedu (0.965) 

b  

 

White Rice 

Beans 

White Rice (0.993) 

Bean (0.895) 

c  

 

Yam 

Fried Egg 

Yam (0.967) 

Fried Egg (0.744) 

d  

 

Eba 

Vegetable 

Egusi Soup 

Beef 

Beef (0.993) 

Vegetable (0.967) 

Egusi Soup (0.945) 

Eba (0.905) 

e  

 

Eba 

Stew 

Fish 

Okra 

Beef 

Stew (0.999) 

Beef (0.998) 

Eba (0.964) 

Okra (0.905) 

Fish (0.715)  

    

 

The key result of this work is in two parts: the 

deep convolutional neural network model for 

food components recognition and the food image 

recognition dataset, which has more number of 

different food items compared to previous works 

in the field like [30] and, unlike this work, also 

contains a wide variety of food components  

This work has an accuracy of 91.90%, which is 

better than the accuracy values presented by the 

other deep convolutional neural network 

techniques on this subject matter like [31]. 

Nevertheless, the results of these (previous) 

studies cannot be directly compared to ours 

because testing was done on different datasets. 

Furthermore, it is worthy of note that the 

accuracy of the classification reduces typically 

as the number of classes (food components) in 
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the dataset increases, this makes the results 

much more promising, based on the number of 

classes (food components) in our dataset which 

surpasses the previous works cited above. 

 

As a result of the food images’ complication, 

several previously-proposed food recognition 

techniques had poor classification accuracy, this 

is where deep learning is beneficial. Food 

components have challenging features to 

describe, making automatic feature definition a 

more suitable technique. The results of this 

research further affirm this. Nevertheless, 

overfitting remains an issue with deep learning; 

in this case, the problem is that there are various 

diverse classes of food components, and due to 

the class imbalance, the scarcer classes create 

fewer images, which presents a bigger risk of 

overfitting on the little images of that class that 

are in the dataset. Overfitting might be a 

contributing factor to the training accuracy being 

lower than the accuracy on the testing subset; 

this was also affirmed by Mezgec and Seljak 

[15] in their study. 

 

Furthermore, the better performance of VGG16 

compared to DenseNet50 could be due to the 

nature of the data and the complexity of the task. 

DenseNet50 is a more complex model than 

VGG-16, and with increased complexity comes 

an increased demand for computational 

resources. The dataset used in the study is 

relatively small. Hence, VGG-16 has better 

generalizability due to its simplicity. In this 

current study, 26 different food components 

were classified. While that number is 

significantly more than what has been previously 

published in the field like in Deng [30] and 

Wang and Chen [31], it is still insignificant 

when compared to the number of food options. 

Future work will use Grad-CAM to perform 

visual analysis, so as to understand what 

information these models actually learn. 

 

5.  CONCLUSION  

 

This work aimed to develop a multi-label 

learning framework that could enumerate food 

components in food images. For this reason, a 

model was developed using a multi-label 

learning approach. The model was trained on a 

food image dataset collected both locally and 

from the internet, summing up 2150 images and 

increased to 10,405 after augmentation; to the 

best of our knowledge, this is the first Nigerian 

food image dataset on this subject matter. This 

research holds significant promise for improving 

dietary analysis, supporting food logging 

applications, and preserving cultural culinary 

traditions. The contributions of this research 

include, it could be used to assist persons that 

are visually impaired to know what they are 

eating, cultural specificity, West-African food 

image dataset was created, to the best of our 

knowledge, this is the first west-African food 

image dataset., and integration of cultural 

knowledge, the challenge of recognizing mixed 

dishes through the lens of multi-label learning 

was explored. Our framework is designed to 

recognize dishes at the region level with multiple 

granularities. while limitations include data 

availability, and generalization to other cuisines. 

 

In future it would be interesting to incorporate 

the food components recognition into purchasing 

or point of sales systems for restaurants. It could 

also be used as food components recognition in 

some mobile and web applications for food 

ordering system. As a result of the tedious task 

of gathering datasets, this work was able to 

gather over 2000 images. Thus, it would also be 

recommended that more data (food images 

including other food components) be added to 

the dataset. It would be interesting to propose 

more approaches to food components 

recognition, which will also compare this work 

in the future. Also, the application of association 

rule mining techniques for improved prediction 

since most people have a common way for 

combining the food components (items) to form 

a meal. Hence, association rule mining will help 

unveil these food components' combination 

pattern. 
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