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Abstract  

The increasing reliance on cloud databases has made them a prime target for cyber attacks, with Structured 

Query Language (SQL) injection being a particularly devastating threat. SQL injection attacks pose significant 

threats to database security, compromising sensitive information. Deep learning algorithms have emerged as 

effective solutions to detect and prevent SQL injection attacks. This study proposes a novel approach to 

detecting SQL injection attack by integrating deep learning-based detection with zero-trust architectute. The 

proposed system utilizes a Feed-Forward Neural Network (FNN)to analyze database queries and detect potential 

SQL injection attacks. The FNN model is trained on a dataset of labelled queries, allowing it to learn patterns 

and anomalies indictive of SQL injection attacks. The output of the FNN model is then integrated with zero-

trust architecture, which enforces strict access controls and authentication mechanisms based on the results 

generated by the FNN model. The model exhibits a precision score approximating 100% accuracy in the 

classification of queries deemed normal, while achieving a 94% rate of correct classification for queries 

indicative of SQL injection attacks. By leveraging advanced machine learning techniques, our approach aims to 

identify and block malicious queries in real-time, ensuring the integrity and security of cloud-based data. 

Through a comprehensive evaluation, we demonstrate the effectiveness of our deep learning-based solution with 

zero-trust architecture in detecting SQL injection attacks with high accuracy and low false positives. 
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1.   Introduction 

 

The rapid integration of cloud computing has 

fundamentally transformed the methodologies 

by which organizations store, organize, and 

retrieve data. In particular, cloud databases have 

emerged as a crucial element of contemporary 

information technology infrastructure, providing 

attributes such as scalability, adaptability, and 

economic efficiency. Implementing a robust 

access control to protect sensitive data in a 

database is crucial, as it directly impacts the 

integrity and confidentiality of query results. 

Obasi et. al. [11] improved the administration of 

an organization by adopting an easy query 

method using GraphQL and a Random Forest 

Model. Nevertheless, the heightened 

dependence on cloud databases has concurrently 

introduced novel security vulnerabilities, with 

Structured Query Language (SQL) injection 

attacks representing a paramount concern. SQL 

injection attacks are characterized by the use of 

maliciously formulated queries that can 

jeopardize the integrity of databases, extract 

confidential information, or even seize control 

of the entire system. Conventional security 

protocols, including firewalls and intrusion 

detection systems, frequently prove inadequate 

against the sophisticated nature of SQL 

injection attacks. Furthermore, the intricate 

nature and substantial volume of data within 

cloud databases render it particularly 

challenging to detect and mitigate these threats 

in real-time. Malicious actors can exploit web 

applications by injecting SQL commands or 

transmitting special characters via user input to 

target the database tier, thereby gaining 

unauthorized access to critical assets Chen [5].  

 

The lack of adequate validation in certain web 

applications, often attributable to programmer 

Timadi M. E. and Obasi E. C. M. (2025). Integrating Zero-

Trust Architecture with Deep Learning Algorithm to 

Prevent Structured Query Language Injection Attack in 

Cloud Database, . University of Ibadan Journal of Science 

and Logics in ICT Research (UIJSLICTR), Vol. 13 No. 1, 

pp. 52 – 62  

 
©U IJSLICTR Vol. 13, No. 1,  January  2025    

mailto:timadimatiel@gmail.com
mailto:obasiec@fuotuoke.edu.ng
https://orcid.org/0009-0001-1513-9887


53   UIJSLICTR Vol. 13 No. 1 Jan.  2025 ISSN: 2714-3627 

 

oversight, allows attackers to circumvent 

authentication protocols and access databases, 

which enables them to extract or alter data 

without the requisite authorization Zhang [17]. 

Consequently, there exists an urgent imperative 

for innovative methodologies capable of 

effectively safeguarding cloud databases from 

SQL injection attacks. Singh and Kumar [15] 

examined the security challenges associated 

with cloud databases and underscored the 

potential of deep learning algorithms in 

countering SQL injection attacks. 

 

Recent developments in deep learning and 

machine learning have exhibited significant 

potential in the identification and prevention of 

cyber threats. Hilmi & Adnan [7] conducted a 

review on the Detection of SQL Injection 

Attacks utilizing Supervised Machine Learning 

Algorithms. Their investigation elucidates that 

machine learning possesses substantial 

capabilities in the processes of identifying and 

detecting SQL injection attacks. Patel & 

Bhattacharya. [14] executed a deep learning-

oriented SQL injection prevention framework 

within a cloud-based e-commerce platform. 

Through the utilization of these advanced 

technologies, it is feasible to construct 

intelligent systems that can scrutinize queries, 

discern patterns, and detect anomalies in real-

time, thereby averting SQL injection attacks. 

This research endeavors to explore the 

implementation of deep learning algorithms for 

the protection of cloud databases against SQL 

injection attacks, with the objective of 

formulating a robust and efficacious security 

solution. 

 

1.1 Types of SQL Injection Attack 

There are different types of SQL injection 

attacks can be used to extract sensitive data, 

modify database information, or even take 

control of the database server. They demonstrate 

the various techniques attackers use to exploit 

vulnerabilities in web applications and 

databases 

 

1.1.1. Classic SQL Injection: 

Injecting malicious SQL code into user input 

fields to manipulate database queries. 

 

Example: SELECT * FROM users WHERE 

username = '$username' 

1.1.2. Error-Based SQL Injection. 

Exploiting error messages to extract sensitive 

data or database information. 

 

Example: SELECT * FROM users WHERE 

username = '$username' OR 1=1 

 

1.1.3. Blind SQL Injection. 

Injecting malicious SQL code without receiving 

error messages or direct output. 

 

Example: SELECT * FROM users WHERE 

username = '$username' AND 

IF(1=1,SLEEP(5),0) 

 

1.1.4. Time-Based SQL Injection. 

Injecting malicious SQL code that takes 

advantage of time delays to extract data. 

 

Example: SELECT * FROM users WHERE 

username = '$username' AND SLEEP(5) 

 

1.1.5. Boolean-Based SQL Injection. 

Injecting malicious SQL code that uses Boolean 

logic to extract data. 

 

Example: SELECT * FROM users WHERE 

username = '$username' AND 1=1 

 

1.1.6. Union-Based SQL Injection. 

Injecting malicious SQL code that uses UNION 

operators to combine queries. 

 

Example: SELECT * FROM users WHERE 

username = '$username' UNION SELECT * 

FROM sensitive_data. 

 

1.1.7. Stacked Queries SQL Injection. 

Injecting malicious SQL code that executes 

multiple queries. 

 

Example: SELECT * FROM users WHERE 

username = '$username'; DROP TABLE users; 

 

1.1.8. Out-of-Band SQL Injection. 

The act of deploying malicious SQL code that 

leverages external conduits for the purpose of 

data retrieval. 

 

Example: SELECT * FROM users WHERE 

username = '$username' AND 

EXTRACTVALUE(xmltype('<root><data>'||us

ername||'</data></root>'),'/root/data') 

 

1.1.9. SQL Injection using Stored Procedures. 
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Injecting malicious SQL code into stored 

procedures. 

 

Example: EXEC stored_procedure '$username' 

1.1.10. Second-Order SQL Injection. 

Injecting malicious SQL code that is executed 

later, often through stored data. 

 

Example: INSERT INTO users (username, 

password) VALUES ('$username', '$password') 

1.1.11. SQL Injection using XML. 

Injecting malicious SQL code using XML data. 

 

Example: SELECT * FROM users WHERE 

username = '$username' AND 

XMLType('<root><data>'||username||'</data></

root>').extract('//data/text()') 

 

1.1.12. SQL Injection using JSON. 

Injecting malicious SQL code using JSON data. 

 

Example: SELECT * FROM users WHERE 

username = '$username' AND 

JSON_EXTRACT(json_data, '$.username') 

 

2.    Related Works 

 

The application of deep learning algorithms to 

secure against SQL injection (SQLi) attacks in 

cloud databases has gained significant attention, 

attributable to the escalating sophistication of 

these threats. Numerous investigations 

underscore the efficacy of neural networks and 

deep belief networks in identifying and 

alleviating the impact of such attacks. 

 

Marina et al. [9] conducted a study entitled 

"Machine Learning Blunts the Needle of 

Advanced SQL Injections." The authors 

perform a comparative analysis of various 

methodologies, encompassing conventional 

Rule-based Intrusion Detection Systems (IDS) 

alongside advanced machine learning paradigms 

such as Support Vector Machines, Multilayer 

Perceptron, and Deep Learning models 

(including Long Short-Term Memory and Gated 

Recurrent Units). This comparative analysis is 

essential for evaluating the efficacy of machine 

learning in the detection of SQL injection 

attempts. The results presented in the study 

demonstrate that machine learning 

methodologies markedly enhance the 

identification of malicious patterns within 

HTTP query strings when juxtaposed with 

traditional techniques. 

 

Obasi and Nlerum [12] worked on Intrusion 

Detection System for Structured Query 

Language Injection Attack in E-Commerce 

Database. Their system introduces a filter layer 

specifically designed to verify user inputs and 

mitigate known SQL injection threats, thereby 

enhancing the security of e-commerce 

platforms. 

 

Ayush et al. [3] investigated a "Deep Learning 

Approach for Detection of SQL Injection 

Attacks Using Convolutional Neural Networks." 

The authors scrutinized the performance of an 

array of machine learning algorithms, which 

included Naive Bayes, Decision Trees, Support 

Vector Machines, and K-nearest neighbors. This 

comparative evaluation serves to establish a 

reference point for assessing the efficacy of 

their proposed methodology. The authors 

executed experiments to evaluate the 

performance of Convolutional Neural Networks 

(CNNs) in relation to the aforementioned 

algorithms, employing metrics such as accuracy, 

precision, recall, and the area under the 

Receiver Operating Characteristic (ROC) curve. 

 

Stephan [16] examined "SQL Injection and Its 

Detection Using Machine Learning Algorithms 

and BERT." The manuscript advocates for the 

employment of machine learning strategies to 

augment the detection capabilities for SQL 

Injection attacks. The authors contend that the 

intricate nature of SQL queries, coupled with 

the imperative for swift detection, renders 

machine learning an appropriate solution. This 

observation aligns with a contemporary trend in 

cybersecurity research, wherein automated 

systems are progressively utilized to recognize 

threats. The objective of the paper is to identify 

a framework that achieves both accuracy and 

fine-tuning to yield optimal results while 

evaluating each algorithm against various 

performance metrics to discern the most 

effective one. BERT demonstrated superior 

performance, achieving a validation accuracy of 

99.98%. 

 

Abdalla et al. [1] engaged in research titled "An 

Efficient Model to Detect and Prevent SQL 

Injection Attack." They propose a model 

designed to detect and prevent SQL injection 

attacks, which employs runtime validation to 

ascertain the occurrence of such threats. Their 

proposed model is characterized by its 
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adaptability to any existing system, 

necessitating no alterations to the client or 

server, nor requiring access to the web 

application source code. Additionally, the 

independence of modifications is achieved 

through the integration of supplementary 

middleware situated between the client and 

server. Consequently, all verification processes 

are executed on this middleware, which 

functions as a proxy capable of sanitizing inputs 

for the detection and prevention of SQLIA. 

Notably, the accuracy of their proposed model 

reaches 86.6% in detecting and preventing 

SQLIA. 

 

Obasi and Nlerum [13] developed a model for 

the Detection and Prevention of Backdoor 

Attacks using CNN with Federated Learning. 

The model was trained on a dataset that 

comprises of 9 classes of MNIST images, of 

which 8 classes of the dataset were of different 

classes of backdoor attacks and the class is of 

non-backdoor attack. The   model   achieved   

an   accuracy   of 99.99% for training and 99.98 

for validation. 

 

Hao et al. [6] conducted a study on the 

implementation and research of Deep Learning-

Based Detection Technology for SQL Injection. 

Their research introduces a pioneering SQL 

injection attack detection strategy that leverages 

the capabilities of an enhanced TextCNN and 

Long Short-Term Memory (LSTM) networks, 

thereby significantly improving the recognition 

rate of SQL injection attacks while concurrently 

minimizing both false positive and false 

negative rates. 

 

Maha et al. [8] investigated a Deep Learning 

Architecture for the Detection of SQL Injection 

Attacks Utilizing a Recurrent Neural Network 

Autoencoder Model. Their research proposes a 

novel architecture aimed at identifying SQL 

injection attacks through the application of a 

recurrent neural network autoencoder, 

exhibiting its efficacy in detecting SQL 

injection attacks with a superior level of 

accuracy relative to the alternative models 

analyzed in the research. 

 

Majid [10] advanced the field by proposing 

deep learning methodologies for SQL injection 

detection, specifically assessing Artificial 

Neural Networks (ANNs), Convolutional 

Neural Networks (CNNs), and Recurrent Neural 

Networks (RNNs). His investigation critically 

appraises the performance metrics of these three 

predominant neural network configurations for 

SQL injection attack detection, revealing that 

the Convolutional Neural Network consistently 

outperforms the others across nearly all 

evaluated metrics. 

 

Arzu [4] explored a deep learning methodology 

grounded in multi-view consensus for the 

detection of SQL injections. This research 

implemented an innovative deep learning-based 

SQL injection detection framework termed 

“Bidirectional LSTM-CNN based on Multi-

View Consensus” (MVC-BiCNN), which 

incorporates a preprocessing phase that 

generates multiple perspectives from SQL data 

by semantically encoding SQL statements into 

their respective SQL tags. 

 

Ahmed et al. [2] conducted an investigation into 

a Multi-Phase Algorithmic Framework aimed at 

mitigating SQL Injection Attacks through the 

utilization of advanced Machine Learning and 

Deep Learning methodologies to bolster real-

time Database security. In this scholarly article, 

a multi-phase algorithmic framework is 

delineated, which incorporates enhanced 

parameterized machine learning and deep 

learning techniques to fortify database security 

in real-time at the database tier. The findings 

illustrate that the proposed approach is capable 

of preventing SQL Injection; ii) categorizing the 

type of attack during the detection phase, 

thereby ensuring the safeguarding of the 

database. 

 

3.   Methodology  

 

This study employs a quantitative research 

design, utilizing a deep learning approach to 

detect and prevent SQL injection attacks in 

cloud databases. A labeled dataset of SQL 

queries, including benign and malicious queries 

(SQL attacks and non-SQL attacks) was 

obtained from an online database, Kaggle.com. 

The architecture of the proposed system is 

shown in Figure 1.  

 

Tokenization, normalization, and feature 

extraction were carried out after obtaining the 

dataset which includes SQL queries from public 

sources and cloud database logs. The data was 

pre-processed by tokenizing SQL queries, 

removing stop words, and converting to 
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numerical representation. Tokenization splits 

SQL queries into individual words or tokens. 

Normalization transforms tokens into a 

consistent format such as lowercasing and 

punctuation removal. A Feed Forward Neural 

Network (FFNN) algorithm was used to classify 

SQL queries as benign or malicious (SQL 

attacks and non-SQL attacks). 80% of the 

dataset was used for training while 20% was 

used for testing. The model achieved a training 

result of about 98% and a test result of about 

98%.  

 

The classification report serves as a 

comprehensive summary of the metrics 

including accuracy, precision, recall, and f-

measure. Precision pertains to the accurate 

classification of the model as it relates to false 

positives, false negatives, true positives, and 

true negatives. The precision score of the model 

indicates an approximate 100% accuracy in the 

classification of normal queries and a 94% 

accuracy in the classification of queries 

indicative of SQL injection attacks. The model 

has successfully identified anomalies within 

database queries and has signaled potential SQL 

injection threats. Having detected anomalies, 

Zero-trust principles are enforced based on the 

output of the deep learning model. The output of 

the model which is passed through a zero-trust 

access model determines whether a user will be 

granted access to a cloud database or not. Zero-

trust policy engine can enforce zero-trust 

principles, such as: 

 

i. Access Control: Deny or grant access to 

the database. 

 

 

ii. Multi-Factor Authentication: Require 

additional authentication factors, such as 

one-time passwords, secret key to decrypt 

database information. 

iii. Session Termination: Terminate the user 

session if there is high likelihood of SQL 

injection attack. 

 

Enforcing zero-trust principles based on the 

output of the deep learning model, reduces the 

risk of SQL injection attacks. 

 

 

4. Results and Discussion 

 

4.1. Phase 1: Exploratory Data Analysis 

Exploratory data analysis was carried out on the 

dataset to visualize data distributions and 

anomalies, detect anomalies, outliners, and 

missing values. Figure 2 illustrates a heat map 

function implemented in Python, which serves 

to identify the presence of missing values within 

the dataset. Figure 3 indicates that all missing 

values have been entirely eliminated from the 

dataset. In order to facilitate the training process 

of the data, the datasets depicted in Figures 2 

and 3 must undergo tokenization and 

subsequent conversion into an array format as 

demonstrated in Figure 4. This objective was 

accomplished utilizing the CountVectorizer (), 

in conjunction with the application of stop-

words and the tokenizer (). 

 

Figure 1: Architecture of the Proposed System. 
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Figure 2: Result of dataset Heat map 

 

 

 
Figure 3: Missing values has been removed from the dataset. 

 

 
 

Figure 4: Tokenized and converted data 
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4.2.  Phase 2: Model Training 

 

Upon conducting an exploratory analysis of the 

dataset, normalization and reshaping of the 

dataset were performed. The processed data was 

subsequently partitioned into two distinct subsets. 

The initial subset constitutes 80% of the dataset, 

while the subsequent subset comprises the 

remaining 20% of the dataset. In order to classify 

the SQL query as either malign or benign, a 

feedforward neural network algorithm was 

employed for training. The training procedure of 

the model is illustrated in Figure 5. Figure 6 

presents the accuracy metrics achieved for both 

the training and validation phases. The training 

and validation accuracy metrics serve as 

indicators for evaluating the model's performance 

during the training phase and on an independent 

test dataset. The model attained a training 

accuracy of approximately 98% and a testing 

accuracy of about 98%. Figure 7 depicts the loss 

values incurred by the model for both the training 

and testing datasets. The model exhibited a loss 

value below 0.1 for both training and testing 

phases. Figure 8 shows the classification report of 

the model. Figure 9 shows the confusion matrix 

of the proposed system. Figure 10 shows normal 

query where injection is not detected. Figure 11 

shows abnormal query where injection is 

detected. Figure 12 shows an access to a cloud 

database where zero trust principle is employed. 

 

 

 
 

Figure 5: Training Process of the Model 

 

 

 
 

Figure 6: A graphical representation of Training Accuracy Vs Training Epochs. 
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Figure 7: A graphical representation of Training Loss Values Vs Training Epochs. 

 

 

 

 
 

Figure 8: Classification report of Deep Learning. 

 

 

 
 

Figure 9: Confusion Matrix of the proposed Feed Forward Neural Network 
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Figure 10: SQL Injection not detected 
 

 
 

Figure 11: SQL Injection Detected 

 

 
 

Figure 12: Access to a Cloud Database 

 

 

4.3. Discussion of Results 

 

From the research conducted, figure 2 shows the 

heat map function in python which is being used 

to check for missing values. The white lines in 

figure 2 shows that some rows in the label 

column are missing. The thick white line shows 

that there are some missing values in row 19307 

and 20307. 
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In order to have a well trainable model, the data 

needs to be cleaned. That is to say that null or 

missing values, needs to be removed. Figure 3 

shows that the missing values in the dataset has 

been removed completely. After this process, 

feature extraction was applied on the dataset to 

select the most important feature. Figure 3 shows 

that after feature extraction, the most notable 

features that are suitable for training the deep 

learning model are the query column and the 

label column. Before passing the data to the deep 

learning model, the query column needs to pass 

through tokenization process. This is to say that 

the query column needs to be tokenized and 

converted to arrays.  

 

Figure 4 shows the tokenized and converted data. 

Tokenization divides text into words, phrases, or 

symbols, making it easier to process and data 

conversion transforms tokenized text into 

numerical representations that deep learning 

models can process.  Figure 5 and 6 shows the 

accuracy obtained for both training and validation 

test. The training and validation accuracy are 

used in testing the performance of the model 

during training and on a test dataset. The model 

achieved a training result of about 98% and a test 

result of about 98%.  

 

Figure 7 shows the losses of the model for both 

training and testing data. The model had a loss 

value below 0.1 for both training and testing. 

Figure 8 shows the classification report of the 

model. The classification report is a summation 

of accuracy, precision, recall and f- measure. 

Precision has to do with the correct classification 

of the model in terms of false positive, false 

negative, true positive and true negative. The 

precision score of the model is about 100% 

correct classification for queries that are normal 

and 94% correct classification for queries that are 

of SQL injection attack. The support shows the 

total number of classifications that was carried 

out by the model. Figure 9 shows the confusion 

matrix of the proposed system. Confusion matrix 

depicts the total number of correct prediction and 

the total number of false classifications.  

 

The confusion matrix shows that out of 590 

classifications on attacks that are of normal, the 

model predicted correctly for 572 and predicted 

falsely for 16 times. Then for attacks that are of 

SQL injection, the model correctly predicted 251 

times and predicted falsely for just 1. This shows 

the performance of the model is in decent shape. 

Figure 10 shows that SQL injection is not 

detected. Figure 11 shows that the query contains 

SQL injection.  

 

 

5. Conclusion 

 

Due to the rapid growth of SQL injection attacks 

on web application, this research developed a 

deep learning model in detecting SQL injection 

attack. This paper presents a deep learning 

algorithm in detecting SQL Injection Attacks on 

web applications with high accuracy detection 

rate. The system detects advanced SQL injection 

(Second Order Attack, and Hybrid Attack). The 

implementation of this system was carried out 

beyond analysis and testing of model’s 

performance using test data, but a real time 

implementation of SQL injection attacks was 

carried out by creating a web application using 

Python flask. The system achieved an accuracy 

rate of 97.65%.  

 

To enhance the efficiency of the system, more 

SQL statements (both injected and non-injected 

statements) need to be considered for training and 

testing our model. The outcomes generated by the 

model are transmitted through a zero-trust engine 

to either authorize or restrict access to a cloud-

based database. The amalgamation of deep 

learning-driven detection methodologies with 

zero-trust principles yields a formidable barrier 

against SQL injection threats. This introduces an 

innovative framework for fortifying the security 

architecture of cloud databases. Our investigation 

augments the comprehension of SQL injection 

threats and their detection mechanisms, thereby 

facilitating the formulation of more efficacious 

security protocols.  

 

This inquiry may be further expanded through the 

utilization of hybrid deep learning algorithms. It 

can also be advanced by integrating the model 

into Android application environments. Our 

framework exhibits scalability in that any 

enhancements can be seamlessly integrated with 

minimal adjustments. 
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