
52 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

Integrating Zero-Trust Architecture with Deep Learning Algorithm to Prevent

Structured Query Language Injection Attack in Cloud Database

1 Timadi M. E., 2Obasi E.C.M.
1Government House, Creek Haven, Yenagoa, Bayelsa
2Department of Computer Science and Informatics, Federal University, Otuoke, Bayelsa State.

timadimatiel@gmail.com, obasiec@fuotuoke.edu.ng.

2 https://orcid.org/0009-0001-1513-9887

Abstract

The increasing reliance on cloud databases has made them a prime target for cyber attacks, with Structured

Query Language (SQL) injection being a particularly devastating threat. SQL injection attacks pose significant

threats to database security, compromising sensitive information. Deep learning algorithms have emerged as

effective solutions to detect and prevent SQL injection attacks. This study proposes a novel approach to

detecting SQL injection attack by integrating deep learning-based detection with zero-trust architectute. The

proposed system utilizes a Feed-Forward Neural Network (FNN)to analyze database queries and detect potential

SQL injection attacks. The FNN model is trained on a dataset of labelled queries, allowing it to learn patterns

and anomalies indictive of SQL injection attacks. The output of the FNN model is then integrated with zero-

trust architecture, which enforces strict access controls and authentication mechanisms based on the results

generated by the FNN model. The model exhibits a precision score approximating 100% accuracy in the

classification of queries deemed normal, while achieving a 94% rate of correct classification for queries

indicative of SQL injection attacks. By leveraging advanced machine learning techniques, our approach aims to

identify and block malicious queries in real-time, ensuring the integrity and security of cloud-based data.

Through a comprehensive evaluation, we demonstrate the effectiveness of our deep learning-based solution with

zero-trust architecture in detecting SQL injection attacks with high accuracy and low false positives.

Keywords: cyber attacks, SQL Injection Attack, zero-trust architecture, database protection, ML algorithm.

1. Introduction

The rapid integration of cloud computing has

fundamentally transformed the methodologies

by which organizations store, organize, and

retrieve data. In particular, cloud databases have

emerged as a crucial element of contemporary

information technology infrastructure, providing

attributes such as scalability, adaptability, and

economic efficiency. Implementing a robust

access control to protect sensitive data in a

database is crucial, as it directly impacts the

integrity and confidentiality of query results.

Obasi et. al. [11] improved the administration of

an organization by adopting an easy query

method using GraphQL and a Random Forest

Model. Nevertheless, the heightened

dependence on cloud databases has concurrently

introduced novel security vulnerabilities, with

Structured Query Language (SQL) injection

attacks representing a paramount concern. SQL

injection attacks are characterized by the use of

maliciously formulated queries that can

jeopardize the integrity of databases, extract

confidential information, or even seize control

of the entire system. Conventional security

protocols, including firewalls and intrusion

detection systems, frequently prove inadequate

against the sophisticated nature of SQL

injection attacks. Furthermore, the intricate

nature and substantial volume of data within

cloud databases render it particularly

challenging to detect and mitigate these threats

in real-time. Malicious actors can exploit web

applications by injecting SQL commands or

transmitting special characters via user input to

target the database tier, thereby gaining

unauthorized access to critical assets Chen [5].

The lack of adequate validation in certain web

applications, often attributable to programmer

Timadi M. E. and Obasi E. C. M. (2025). Integrating Zero-

Trust Architecture with Deep Learning Algorithm to

Prevent Structured Query Language Injection Attack in

Cloud Database, . University of Ibadan Journal of Science

and Logics in ICT Research (UIJSLICTR), Vol. 13 No. 1,

pp. 52 – 62

©U IJSLICTR Vol. 13, No. 1, January 2025

mailto:timadimatiel@gmail.com
mailto:obasiec@fuotuoke.edu.ng
https://orcid.org/0009-0001-1513-9887

53 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

oversight, allows attackers to circumvent

authentication protocols and access databases,

which enables them to extract or alter data

without the requisite authorization Zhang [17].

Consequently, there exists an urgent imperative

for innovative methodologies capable of

effectively safeguarding cloud databases from

SQL injection attacks. Singh and Kumar [15]

examined the security challenges associated

with cloud databases and underscored the

potential of deep learning algorithms in

countering SQL injection attacks.

Recent developments in deep learning and

machine learning have exhibited significant

potential in the identification and prevention of

cyber threats. Hilmi & Adnan [7] conducted a

review on the Detection of SQL Injection

Attacks utilizing Supervised Machine Learning

Algorithms. Their investigation elucidates that

machine learning possesses substantial

capabilities in the processes of identifying and

detecting SQL injection attacks. Patel &

Bhattacharya. [14] executed a deep learning-

oriented SQL injection prevention framework

within a cloud-based e-commerce platform.

Through the utilization of these advanced

technologies, it is feasible to construct

intelligent systems that can scrutinize queries,

discern patterns, and detect anomalies in real-

time, thereby averting SQL injection attacks.

This research endeavors to explore the

implementation of deep learning algorithms for

the protection of cloud databases against SQL

injection attacks, with the objective of

formulating a robust and efficacious security

solution.

1.1 Types of SQL Injection Attack

There are different types of SQL injection

attacks can be used to extract sensitive data,

modify database information, or even take

control of the database server. They demonstrate

the various techniques attackers use to exploit

vulnerabilities in web applications and

databases

1.1.1. Classic SQL Injection:

Injecting malicious SQL code into user input

fields to manipulate database queries.

Example: SELECT * FROM users WHERE

username = '$username'

1.1.2. Error-Based SQL Injection.

Exploiting error messages to extract sensitive

data or database information.

Example: SELECT * FROM users WHERE

username = '$username' OR 1=1

1.1.3. Blind SQL Injection.

Injecting malicious SQL code without receiving

error messages or direct output.

Example: SELECT * FROM users WHERE

username = '$username' AND

IF(1=1,SLEEP(5),0)

1.1.4. Time-Based SQL Injection.

Injecting malicious SQL code that takes

advantage of time delays to extract data.

Example: SELECT * FROM users WHERE

username = '$username' AND SLEEP(5)

1.1.5. Boolean-Based SQL Injection.

Injecting malicious SQL code that uses Boolean

logic to extract data.

Example: SELECT * FROM users WHERE

username = '$username' AND 1=1

1.1.6. Union-Based SQL Injection.

Injecting malicious SQL code that uses UNION

operators to combine queries.

Example: SELECT * FROM users WHERE

username = '$username' UNION SELECT *

FROM sensitive_data.

1.1.7. Stacked Queries SQL Injection.

Injecting malicious SQL code that executes

multiple queries.

Example: SELECT * FROM users WHERE

username = '$username'; DROP TABLE users;

1.1.8. Out-of-Band SQL Injection.

The act of deploying malicious SQL code that

leverages external conduits for the purpose of

data retrieval.

Example: SELECT * FROM users WHERE

username = '$username' AND

EXTRACTVALUE(xmltype('<root><data>'||us

ername||'</data></root>'),'/root/data')

1.1.9. SQL Injection using Stored Procedures.

54 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

Injecting malicious SQL code into stored

procedures.

Example: EXEC stored_procedure '$username'

1.1.10. Second-Order SQL Injection.

Injecting malicious SQL code that is executed

later, often through stored data.

Example: INSERT INTO users (username,

password) VALUES ('$username', '$password')

1.1.11. SQL Injection using XML.

Injecting malicious SQL code using XML data.

Example: SELECT * FROM users WHERE

username = '$username' AND

XMLType('<root><data>'||username||'</data></

root>').extract('//data/text()')

1.1.12. SQL Injection using JSON.

Injecting malicious SQL code using JSON data.

Example: SELECT * FROM users WHERE

username = '$username' AND

JSON_EXTRACT(json_data, '$.username')

2. Related Works

The application of deep learning algorithms to

secure against SQL injection (SQLi) attacks in

cloud databases has gained significant attention,

attributable to the escalating sophistication of

these threats. Numerous investigations

underscore the efficacy of neural networks and

deep belief networks in identifying and

alleviating the impact of such attacks.

Marina et al. [9] conducted a study entitled

"Machine Learning Blunts the Needle of

Advanced SQL Injections." The authors

perform a comparative analysis of various

methodologies, encompassing conventional

Rule-based Intrusion Detection Systems (IDS)

alongside advanced machine learning paradigms

such as Support Vector Machines, Multilayer

Perceptron, and Deep Learning models

(including Long Short-Term Memory and Gated

Recurrent Units). This comparative analysis is

essential for evaluating the efficacy of machine

learning in the detection of SQL injection

attempts. The results presented in the study

demonstrate that machine learning

methodologies markedly enhance the

identification of malicious patterns within

HTTP query strings when juxtaposed with

traditional techniques.

Obasi and Nlerum [12] worked on Intrusion

Detection System for Structured Query

Language Injection Attack in E-Commerce

Database. Their system introduces a filter layer

specifically designed to verify user inputs and

mitigate known SQL injection threats, thereby

enhancing the security of e-commerce

platforms.

Ayush et al. [3] investigated a "Deep Learning

Approach for Detection of SQL Injection

Attacks Using Convolutional Neural Networks."

The authors scrutinized the performance of an

array of machine learning algorithms, which

included Naive Bayes, Decision Trees, Support

Vector Machines, and K-nearest neighbors. This

comparative evaluation serves to establish a

reference point for assessing the efficacy of

their proposed methodology. The authors

executed experiments to evaluate the

performance of Convolutional Neural Networks

(CNNs) in relation to the aforementioned

algorithms, employing metrics such as accuracy,

precision, recall, and the area under the

Receiver Operating Characteristic (ROC) curve.

Stephan [16] examined "SQL Injection and Its

Detection Using Machine Learning Algorithms

and BERT." The manuscript advocates for the

employment of machine learning strategies to

augment the detection capabilities for SQL

Injection attacks. The authors contend that the

intricate nature of SQL queries, coupled with

the imperative for swift detection, renders

machine learning an appropriate solution. This

observation aligns with a contemporary trend in

cybersecurity research, wherein automated

systems are progressively utilized to recognize

threats. The objective of the paper is to identify

a framework that achieves both accuracy and

fine-tuning to yield optimal results while

evaluating each algorithm against various

performance metrics to discern the most

effective one. BERT demonstrated superior

performance, achieving a validation accuracy of

99.98%.

Abdalla et al. [1] engaged in research titled "An

Efficient Model to Detect and Prevent SQL

Injection Attack." They propose a model

designed to detect and prevent SQL injection

attacks, which employs runtime validation to

ascertain the occurrence of such threats. Their

proposed model is characterized by its

55 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

adaptability to any existing system,

necessitating no alterations to the client or

server, nor requiring access to the web

application source code. Additionally, the

independence of modifications is achieved

through the integration of supplementary

middleware situated between the client and

server. Consequently, all verification processes

are executed on this middleware, which

functions as a proxy capable of sanitizing inputs

for the detection and prevention of SQLIA.

Notably, the accuracy of their proposed model

reaches 86.6% in detecting and preventing

SQLIA.

Obasi and Nlerum [13] developed a model for

the Detection and Prevention of Backdoor

Attacks using CNN with Federated Learning.

The model was trained on a dataset that

comprises of 9 classes of MNIST images, of

which 8 classes of the dataset were of different

classes of backdoor attacks and the class is of

non-backdoor attack. The model achieved

an accuracy of 99.99% for training and 99.98

for validation.

Hao et al. [6] conducted a study on the

implementation and research of Deep Learning-

Based Detection Technology for SQL Injection.

Their research introduces a pioneering SQL

injection attack detection strategy that leverages

the capabilities of an enhanced TextCNN and

Long Short-Term Memory (LSTM) networks,

thereby significantly improving the recognition

rate of SQL injection attacks while concurrently

minimizing both false positive and false

negative rates.

Maha et al. [8] investigated a Deep Learning

Architecture for the Detection of SQL Injection

Attacks Utilizing a Recurrent Neural Network

Autoencoder Model. Their research proposes a

novel architecture aimed at identifying SQL

injection attacks through the application of a

recurrent neural network autoencoder,

exhibiting its efficacy in detecting SQL

injection attacks with a superior level of

accuracy relative to the alternative models

analyzed in the research.

Majid [10] advanced the field by proposing

deep learning methodologies for SQL injection

detection, specifically assessing Artificial

Neural Networks (ANNs), Convolutional

Neural Networks (CNNs), and Recurrent Neural

Networks (RNNs). His investigation critically

appraises the performance metrics of these three

predominant neural network configurations for

SQL injection attack detection, revealing that

the Convolutional Neural Network consistently

outperforms the others across nearly all

evaluated metrics.

Arzu [4] explored a deep learning methodology

grounded in multi-view consensus for the

detection of SQL injections. This research

implemented an innovative deep learning-based

SQL injection detection framework termed

“Bidirectional LSTM-CNN based on Multi-

View Consensus” (MVC-BiCNN), which

incorporates a preprocessing phase that

generates multiple perspectives from SQL data

by semantically encoding SQL statements into

their respective SQL tags.

Ahmed et al. [2] conducted an investigation into

a Multi-Phase Algorithmic Framework aimed at

mitigating SQL Injection Attacks through the

utilization of advanced Machine Learning and

Deep Learning methodologies to bolster real-

time Database security. In this scholarly article,

a multi-phase algorithmic framework is

delineated, which incorporates enhanced

parameterized machine learning and deep

learning techniques to fortify database security

in real-time at the database tier. The findings

illustrate that the proposed approach is capable

of preventing SQL Injection; ii) categorizing the

type of attack during the detection phase,

thereby ensuring the safeguarding of the

database.

3. Methodology

This study employs a quantitative research

design, utilizing a deep learning approach to

detect and prevent SQL injection attacks in

cloud databases. A labeled dataset of SQL

queries, including benign and malicious queries

(SQL attacks and non-SQL attacks) was

obtained from an online database, Kaggle.com.

The architecture of the proposed system is

shown in Figure 1.

Tokenization, normalization, and feature

extraction were carried out after obtaining the

dataset which includes SQL queries from public

sources and cloud database logs. The data was

pre-processed by tokenizing SQL queries,

removing stop words, and converting to

56 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

numerical representation. Tokenization splits

SQL queries into individual words or tokens.

Normalization transforms tokens into a

consistent format such as lowercasing and

punctuation removal. A Feed Forward Neural

Network (FFNN) algorithm was used to classify

SQL queries as benign or malicious (SQL

attacks and non-SQL attacks). 80% of the

dataset was used for training while 20% was

used for testing. The model achieved a training

result of about 98% and a test result of about

98%.

The classification report serves as a

comprehensive summary of the metrics

including accuracy, precision, recall, and f-

measure. Precision pertains to the accurate

classification of the model as it relates to false

positives, false negatives, true positives, and

true negatives. The precision score of the model

indicates an approximate 100% accuracy in the

classification of normal queries and a 94%

accuracy in the classification of queries

indicative of SQL injection attacks. The model

has successfully identified anomalies within

database queries and has signaled potential SQL

injection threats. Having detected anomalies,

Zero-trust principles are enforced based on the

output of the deep learning model. The output of

the model which is passed through a zero-trust

access model determines whether a user will be

granted access to a cloud database or not. Zero-

trust policy engine can enforce zero-trust

principles, such as:

i. Access Control: Deny or grant access to

the database.

ii. Multi-Factor Authentication: Require

additional authentication factors, such as

one-time passwords, secret key to decrypt

database information.

iii. Session Termination: Terminate the user

session if there is high likelihood of SQL

injection attack.

Enforcing zero-trust principles based on the

output of the deep learning model, reduces the

risk of SQL injection attacks.

4. Results and Discussion

4.1. Phase 1: Exploratory Data Analysis

Exploratory data analysis was carried out on the

dataset to visualize data distributions and

anomalies, detect anomalies, outliners, and

missing values. Figure 2 illustrates a heat map

function implemented in Python, which serves

to identify the presence of missing values within

the dataset. Figure 3 indicates that all missing

values have been entirely eliminated from the

dataset. In order to facilitate the training process

of the data, the datasets depicted in Figures 2

and 3 must undergo tokenization and

subsequent conversion into an array format as

demonstrated in Figure 4. This objective was

accomplished utilizing the CountVectorizer (),

in conjunction with the application of stop-

words and the tokenizer ().

Figure 1: Architecture of the Proposed System.

57 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

Figure 2: Result of dataset Heat map

Figure 3: Missing values has been removed from the dataset.

Figure 4: Tokenized and converted data

58 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

4.2. Phase 2: Model Training

Upon conducting an exploratory analysis of the

dataset, normalization and reshaping of the

dataset were performed. The processed data was

subsequently partitioned into two distinct subsets.

The initial subset constitutes 80% of the dataset,

while the subsequent subset comprises the

remaining 20% of the dataset. In order to classify

the SQL query as either malign or benign, a

feedforward neural network algorithm was

employed for training. The training procedure of

the model is illustrated in Figure 5. Figure 6

presents the accuracy metrics achieved for both

the training and validation phases. The training

and validation accuracy metrics serve as

indicators for evaluating the model's performance

during the training phase and on an independent

test dataset. The model attained a training

accuracy of approximately 98% and a testing

accuracy of about 98%. Figure 7 depicts the loss

values incurred by the model for both the training

and testing datasets. The model exhibited a loss

value below 0.1 for both training and testing

phases. Figure 8 shows the classification report of

the model. Figure 9 shows the confusion matrix

of the proposed system. Figure 10 shows normal

query where injection is not detected. Figure 11

shows abnormal query where injection is

detected. Figure 12 shows an access to a cloud

database where zero trust principle is employed.

Figure 5: Training Process of the Model

Figure 6: A graphical representation of Training Accuracy Vs Training Epochs.

59 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

Figure 7: A graphical representation of Training Loss Values Vs Training Epochs.

Figure 8: Classification report of Deep Learning.

Figure 9: Confusion Matrix of the proposed Feed Forward Neural Network

60 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

Figure 10: SQL Injection not detected

Figure 11: SQL Injection Detected

Figure 12: Access to a Cloud Database

4.3. Discussion of Results

From the research conducted, figure 2 shows the

heat map function in python which is being used

to check for missing values. The white lines in

figure 2 shows that some rows in the label

column are missing. The thick white line shows

that there are some missing values in row 19307

and 20307.

61 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

In order to have a well trainable model, the data

needs to be cleaned. That is to say that null or

missing values, needs to be removed. Figure 3

shows that the missing values in the dataset has

been removed completely. After this process,

feature extraction was applied on the dataset to

select the most important feature. Figure 3 shows

that after feature extraction, the most notable

features that are suitable for training the deep

learning model are the query column and the

label column. Before passing the data to the deep

learning model, the query column needs to pass

through tokenization process. This is to say that

the query column needs to be tokenized and

converted to arrays.

Figure 4 shows the tokenized and converted data.

Tokenization divides text into words, phrases, or

symbols, making it easier to process and data

conversion transforms tokenized text into

numerical representations that deep learning

models can process. Figure 5 and 6 shows the

accuracy obtained for both training and validation

test. The training and validation accuracy are

used in testing the performance of the model

during training and on a test dataset. The model

achieved a training result of about 98% and a test

result of about 98%.

Figure 7 shows the losses of the model for both

training and testing data. The model had a loss

value below 0.1 for both training and testing.

Figure 8 shows the classification report of the

model. The classification report is a summation

of accuracy, precision, recall and f- measure.

Precision has to do with the correct classification

of the model in terms of false positive, false

negative, true positive and true negative. The

precision score of the model is about 100%

correct classification for queries that are normal

and 94% correct classification for queries that are

of SQL injection attack. The support shows the

total number of classifications that was carried

out by the model. Figure 9 shows the confusion

matrix of the proposed system. Confusion matrix

depicts the total number of correct prediction and

the total number of false classifications.

The confusion matrix shows that out of 590

classifications on attacks that are of normal, the

model predicted correctly for 572 and predicted

falsely for 16 times. Then for attacks that are of

SQL injection, the model correctly predicted 251

times and predicted falsely for just 1. This shows

the performance of the model is in decent shape.

Figure 10 shows that SQL injection is not

detected. Figure 11 shows that the query contains

SQL injection.

5. Conclusion

Due to the rapid growth of SQL injection attacks

on web application, this research developed a

deep learning model in detecting SQL injection

attack. This paper presents a deep learning

algorithm in detecting SQL Injection Attacks on

web applications with high accuracy detection

rate. The system detects advanced SQL injection

(Second Order Attack, and Hybrid Attack). The

implementation of this system was carried out

beyond analysis and testing of model’s

performance using test data, but a real time

implementation of SQL injection attacks was

carried out by creating a web application using

Python flask. The system achieved an accuracy

rate of 97.65%.

To enhance the efficiency of the system, more

SQL statements (both injected and non-injected

statements) need to be considered for training and

testing our model. The outcomes generated by the

model are transmitted through a zero-trust engine

to either authorize or restrict access to a cloud-

based database. The amalgamation of deep

learning-driven detection methodologies with

zero-trust principles yields a formidable barrier

against SQL injection threats. This introduces an

innovative framework for fortifying the security

architecture of cloud databases. Our investigation

augments the comprehension of SQL injection

threats and their detection mechanisms, thereby

facilitating the formulation of more efficacious

security protocols.

This inquiry may be further expanded through the

utilization of hybrid deep learning algorithms. It

can also be advanced by integrating the model

into Android application environments. Our

framework exhibits scalability in that any

enhancements can be seamlessly integrated with

minimal adjustments.

References

[1] Abdalla, Hadabi., Eltyeb, S., A.,Elsamani.,Ali,

E., Abdallah., Rashad, Elhabob. (2022). An

Efficient Model to Detect and Prevent SQL

Injection Attack.

doi: 10.54388/jkues.v1i2.141.

[2] Ahmed, Abadulla, Ashlam., Atta, Badii.,

Frederic, T., Stahl. (2022). 2. Multi-Phase

Algorithmic Framework to Prevent SQL

62 UIJSLICTR Vol. 13 No. 1 Jan. 2025 ISSN: 2714-3627

Injection Attacks using Improved Machine

learning and Deep learning to Enhance

Database security in Real-time.

doi: 10.1109/SIN56466.2022.9970504.

[3] Ayush, Falor., Manav, Hirani., Henil, Vedant.,

Priyank, Mehta., Deepa, Krishnan. (2022). A

Deep Learning Approach for Detection of SQL

Injection Attacks Using Convolutional Neural

Networks. 293-304.

doi: 10.1007/978-981-16-6285-0_24.

[4] Arzu, Gorgulu, Kakisim. (2024). 1. A deep

learning approach based on multi-view

consensus for SQL injection detection.

International Journal of Information Security.

doi: 10.1007/s10207-023-00791-y.

[5] Chen, D.; Yan, Q.; Wu, C.; Zhao, J. SQL

Injection Attack Detection and Prevention

Techniques Using Deep Learning.(2021). J.

Phys. Conf. Ser. 1757, 012055.

[6] Hao, Sun., Yuejin, Du., Qi, Li. (2023). 9. Deep

Learning-Based Detection Technology for SQL

Injection Research and Implementation.

Applied Sciences, doi: 10.3390/app13169466.

[7] Hilmi S. A. & Adnan M.A. (2024). Detection

of SQL Injection Attacks based on Supervised

Machine Learning Algorithms: A Review.

International Journal of Informatics,

Information System and Computer

Engineering.5(2). 152-165.

[8] Maha, Alghawazi., Daniyal, M., Alghazzawi.,

Suaad, Alarifi. (2023). 7. Deep Learning

Architecture for Detecting SQL Injection

Attacks Based on RNN Autoencoder Model.

Mathematics.

doi: 10.3390/math11153286.

[9] Marina, Volkova., Petr, Chmelar., Lukas,

Sobotka. (2019). Machine Learning Blunts the

Needle of Advanced SQL Injections. 25(1):23-

30.

doi:10.13164/MENDEL.2019.1.023.

[10] Majid, Alshammari. (2023). 6. Deep learning

approaches to SQL injection detection:

evaluating ANNs, CNNs, and RNNs.

doi: 10.1117/12.3012620.

[11] Obasi, E. C. M., E., B., & Egbono, F. (2022).

Query Processing of Distributed Databases

using an Improved GraphQL Model and

Random Forest Algorithm. International

Journal of Scientific and Research Publications,

12(4), 454.

https://doi.org/10.29322/ijsrp.12.04.2022.p124

61.

[12] Obasi, E., & Nlerum, P. (2020). Intrusion

Detection System for Structured Query

Language Injection Attack in E-Commerce

Database. International Journal of Scientific

and Research Publications, 10(8), 446–

453.https://doi.org/10.29322/IJSRP.10.08.2020.

P10455.

[13] Obasi, E.C.M. & Nlerum, P.A. (2023). A

Model for the Detection and Prevention of

Backdoor Attacks using CNN with Federated

Learning. University of Ibadan Journal of

Science and Logics in ICT Research, 10(1), 9-

21.

[14] Patel, A., & Bhattacharya, S. (2019). Deep

learning-based SQL injection prevention.

International Journal of Intelligent Information

Systems, 8(2), 1-12.

[15] Singh, A., & Kumar, P. (2020). Cloud database

security challenges. Journal of Cloud

Computing, 9(1), 1-14.

[16] Stephan, Ladisch. (2023). SQL Injection and Its

Detection Using Machine Learning Algorithms

and BERT. Lecture Notes in Computer

Science, 3-16.

doi: 10.1007/978-3-031-28975-0_1.

[17] Zhang, W.; Li, Y.; Li, X.; Shao, M.; Mi, Y.;

Zhang, H.; Zhi, G.(2022).Deep Neural

Network-Based SQL Injection Detection

Method. Secur. Commun. Netw.4836289

