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Abstract 

Malaria is a significant health concern, primarily affecting tropical and subtropical regions. Traditional 

diagnostic methods for malaria detection, such as microscopic blood smear analysis of cell images, are time-

consuming, dependent on trained specialists, and prone to variability. Timely and accurate malaria detection is 

crucial for prompt treatment and preventing severe complications. Therefore, this study developed a machine 

learning (ML)-based model that could accurately predict malaria by analysing microscopic cell images, 

enabling efficient and reliable diagnosis to support timely treatment decisions. Using the Kaggle malaria 

dataset comprising 26,159 blood smear images, this study uniquely integrates forward feature selection and 

Support Vector Machines (SVM) to enhance malaria prediction accuracy. Unlike existing works, it addresses 

gaps in transparency and reproducibility in feature selection methods used for high-dimensional medical image 

datasets. Forward selection was employed to optimise and select relevant features for the model, reducing 

computational complexity and enhancing its performance. The SVM model achieved an accuracy of 97.1%, 

recall of 97.4%, precision of 96.8%, F1-score of 96.9%, and an AUC score of 97.4%. These findings highlight 

the potential of ML in automating malaria detection and demonstrate the practical advantage of combining 

feature selection with high-performing classifier to optimise diagnostic workflows, especially in resource-

limited settings. 
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1. Introduction 

Malaria remains one of the most prevalent 

and life-threatening infectious diseases 

worldwide, posing significant health and 

socioeconomic challenges [1]. The disease is 

particularly severe in tropical and subtropical 

regions, such as sub-Saharan Africa and 

South Asia, where favourable conditions 

enable widespread transmission [2]. Malaria 

is caused by Plasmodium parasites, with P. 

falciparum and P. vivax being the most 

common and dangerous species affecting 

humans. These parasites are transmitted 

through the bites of infected female 

Anopheles mosquitoes, causing symptoms 

that range from mild fever to severe illness, 

which, if untreated, can result in death [3]. 

Globally, malaria places a heavy burden on 

public health, with approximately 300 to 500 

million clinical cases reported annually, 

resulting in 1.5 to 2.7 million deaths [4]. 

Beyond mortality and morbidity, the disease 

disproportionately affects economically 

disadvantaged regions, exacerbating poverty, 

reducing productivity, and hindering 

economic growth. Vulnerable groups, such as 

children under five and pregnant women, are 

particularly at risk [5]. 

 

Timely and accurate malaria diagnosis is 

critical for effective disease management and 

reducing mortality [6]. While manual 

microscopy of peripheral blood smears 

remains the conventional gold standard for 

diagnosing malaria due to its reliability [7], 

this method is labour-intensive, time-

consuming, and heavily reliant on skilled 

personnel, making it challenging to scale in 

resource-limited settings [8]. 
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Recent advances in machine learning (ML), a 

subset of artificial intelligence (AI), offer 

promising alternatives to traditional 

diagnostic methods [9]. ML enables 

computers to learn from data, identify 

patterns, and make predictions without 

explicit programming [10]. Leveraging vast 

datasets and advanced computational 

techniques, ML has demonstrated significant 

breakthroughs across fields, including 

medical imaging. In malaria diagnostics, ML 

models have shown potential in analyzing 

high-dimensional datasets to uncover patterns 

related to patient demographics, clinical 

symptoms, and environmental factors, 

improving diagnostic accuracy and efficiency 

[11]. 

 

However, high-dimensional datasets present 

challenges for ML, such as the curse of 

dimensionality, which leads to data sparsity, 

reduced generalisation, and an increased risk 

of overfitting [12]. Redundant or irrelevant 

features can introduce noise, diminishing 

predictive performance, while computational 

complexity and multicollinearity among 

features further hinder model reliability and 

interpretability [12]. Addressing these 

challenges requires dimensionality reduction 

techniques that optimise model performance 

while preserving essential information [12-

13]. 

 

Feature selection methods, such as forward 

selection, mutual information, and recursive 

feature elimination, help identify relevant 

features, reduce noise, and emphasise critical 

variables [14]. Dimensionality reduction 

techniques like Principal Component 

Analysis (PCA) and autoencoders streamline 

datasets, while regularization methods, such 

as LASSO, improve interpretability by 

penalizing irrelevant features [15-16]. 

Advanced ML models, including tree-based 

ensemble methods and deep neural networks, 

also effectively handle high-dimensional data. 

Despite their computational complexity, 

support Vector Machines (SVM) is widely 

regarded as one of the best ML algorithms for 

classification and regression tasks. Their 

robustness to overfitting and ability to 

identify optimal decision boundaries using 

kernel functions make them highly effective 

for high-dimensional datasets [17]. SVM has 

achieved remarkable results in medical 

applications, including cell image analysis, 

tumour detection in MRI, and lesion 

classification in CT scans [18-19]. Recent 

advancements in kernel functions and feature 

extraction techniques have further enhanced 

SVM's performance in medical diagnostics 

[19]. 

 

Building on these developments, this study 

addresses gaps in existing research on 

automated malaria detection. Many prior 

studies focus on feature extraction from 

medical images using neural networks or 

ensemble methods but often overlook the 

impact of feature selection on overall model 

performance. Additionally, the lack of 

transparency in feature selection processes 

limits the reproducibility and adaptability of 

these approaches in diverse clinical settings 

[20]. 

 

To address these limitations, this research 

employs forward selection as a transparent 

and sequential feature selection method. 

Forward selection optimises model 

performance by iteratively adding features 

based on their predictive contributions, 

effectively mitigating the curse of 

dimensionality in high-dimensional datasets. 

Unlike PCA, which relies on linear 

transformations and reduces interpretability, 

the forward selection provides an intuitive 

framework for identifying relevant features 

[21] while maintaining model transparency; 

which is critical in medical diagnostics. 

 

Furthermore, SVM's proven efficacy in 

handling high-dimensional data and finding 

optimal decision boundaries [22] makes it an 

ideal model for this study. By combining 

forward selection with SVM, this research 

tackles the dual challenges of feature 

optimisation and model accuracy in malaria 

prediction. The resulting framework offers a 

reproducible, efficient, and accurate approach 

to malaria detection, with significant 



111     UIJSLICTR Vol. 13 No. 1 Jan.  2025 ISSN: 2714-3627 

 

implications for improving diagnostic 

outcomes in resource-limited settings. 

 

2. Related Works 

Machine learning techniques have been 

extensively utilised to detect and classify 

malaria prediction and various diseases in 

general with reasonable performance. 

Researchers have employed diverse datasets, 

classifiers, and feature selection methods to 

enhance diagnostic accuracy and model 

performance [23]. While some studies 

focused on traditional ML classifiers, others 

leveraged deep learning and hybrid 

approaches to address challenges such as 

imbalanced datasets, limited sample sizes, 

and feature extraction [24]. The following 

section reviews significant contributions in 

the field, highlighting their methodologies, 

achievements, and limitations. 

 

Dharpal and Malviya [25] proposed an 

automated malaria parasite enumeration 

system using an SVM classifier. The model 

achieved an accuracy of 97.02% and a 

sensitivity of 98.98%. However, the dataset 

used was imbalanced, which might have 

affected the model's performance in detecting 

malaria parasites accurately. 

 

Rajaraman et al. [26] presented pre-trained 

convolutional neural network (CNN) as a 

feature extractor to improve malaria parasite 

detection in thin blood smear images. The 

model achieved an accuracy of 98.6% and an 

F1 score of 98.7%. Despite the promising 

results, the dataset used was imbalanced, 

which may have affected the model's 

generalisation ability for detecting malaria 

parasites in diverse cases. 

 

Onyijen et al. [27] presented data pre-

processing and feature selection using 

secondary data from a Kaggle study. The 

dataset included physical examination 

indexes such as country, year, number of 

cases, number of deaths, and WHO region. 

Several ML models were employed, 

including Random Forest (RF), Decision Tree 

(DT), K-Nearest Neighbor (KNN), Artificial 

Neural Networks (ANN), and Gradient 

Boosting (GB). The Decision Tree algorithm 

utilised the Recursive Partitioning Algorithm 

(RPA) to iteratively decompose the sample 

responses into sub-samples for decision-

making, achieving an accuracy of 91.4%. 

Random Forest applied non-parametric 

classifiers or regressors to bootstrapped data 

samples using a fixed tree depth or pruning 

coefficient and randomly selected variable 

subsets, resulting in an accuracy of 90.1%. 

The K-Nearest Neighbor algorithm 

determined the class of a recognised object 

by calculating the number of objects in each 

class within a hypersphere, achieving an 

accuracy of 81.5%. Gradient Boosting 

progressively fit each tree in the series to the 

negative gradient of the loss function 

evaluated at the pseudo-residuals of previous 

trees, achieving the highest accuracy of 

98.8%. 

 

Barraclough et al. [28] proposes a combined 

of AI and ML classifiers to achieve high 

accuracy in malaria classification. Using the 

InfoGainAttributeEval feature selection 

technique, they analysed 3,490 collected 

questionnaires out of 4,000 distributed, 

incorporating clinical symptom data. Various 

classifiers, including ANN, NB, RF, and EM, 

were evaluated using WEKA. The study also 

employed a fuzzy If-Then rules system for 

real-time diagnosis during clinical visits. 

Findings revealed a disparity between self-

reported malaria symptoms (87.3%) and 

actual clinical diagnoses (12.7%), 

highlighting healthcare accessibility issues. 

 

3. Methodology 

This section outlines the methodology 

adopted for developing the proposed model, 

which is divided into four phases. The first 

phase involves the collection of data for 

malaria cell prediction. The second phase 

focuses on preprocessing the dataset using 

various techniques to ensure its quality and 

readiness for analysis. The third phase applies 

a feature selection algorithm to identify the 

most relevant features. Finally, the fourth 

phase uses the SVM algorithm as the 
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classification model for predicting malaria 

cells.  

 

3.1 Dataset Collection 

The study utilised a dataset consisting of 

images of malaria-infected and uninfected 

cells. The dataset was collected from publicly 

accessible Kaggle repository. It contains a 

total of 26,159 images, comprising 13,132 

images of infected cells (labeled as "1") and 

13,027 images of uninfected. 

 

3.2 Image Data Preprocessing 

Image preprocessing involves various 

techniques and procedures to prepare raw 

image data for analysis or as input to ML 

models [29]. The goal is to enhance image 

quality and transform it into a format that can 

be effectively processed by the model. In this 

study, a few preprocessing methods were 

applied before further analysis. The 

preprocessing steps include image resizing 

and image flattening. 

 

3.2.1 Image Resizing 

Image resizing is a crucial preprocessing step 

in computer vision and image analysis tasks. 

It involves adjusting the height and width of 

an image to predefined dimensions. This step 

is essential for standardising the input size 

required by ML models, which often operate 

with fixed input dimensions for tasks 

involving computer vision and image 

processing [30]. Resizing ensures that all 

images in the dataset have consistent size and 

dimensions [31]. Initially, the imported 

images might not have had uniform sizes, 

leading to potential inconsistencies in 

processing. By resizing the images, the model 

can consistently evaluate all photographs in 

the dataset, facilitating easier comparison and 

analysis.  

 

3.2.2 Image Flattening 

Image flattening refers to the process of 

converting a 2D image into a 1D array of 

pixel values. This transformation is essential 

for certain ML models that require vectorised 

input data rather than multi-dimensional 

arrays [32]. In this study, image flattening 

was a key preprocessing step following image 

resizing, particularly for SVM, which 

requires vector input. Flattening simplifies 

the data structure, reduces dimensional 

complexity, and ensures uniform 

representation of image data. This process 

transforms 3D image matrices into 1D 

vectors, making it compatible with SVM 

algorithms and ready for fully connected 

neural network layers [33]. By doing so, it 

facilitates effective feature extraction and 

classification from the images. 

 

3.3 Dataset Splitting 

The dataset, consisting of 26159 images of 

malaria cells, was divided into two subsets: 

70% for training and 30% for testing. This 

allocation resulted in 18,311 images being 

used for training and 7,848 images for testing. 

The division ensures that sufficient data is 

available for both training the model and 

evaluating its performance. By using 70% of 

the data for training, the model learns from a 

substantial portion of the dataset, while the 

remaining 30% is reserved for testing to 

assess its performance on unseen data. This 

split provides a balanced approach, enabling 

an unbiased evaluation of the model's 

generalisation ability to new data. Following 

the dataset splitting, feature selection 

techniques, namely forward selection and 

correlation-based methods, were applied, 

with SVM used as the classification 

algorithm. 

 

3.4 Forward Selection 

Forward selection, a stepwise regression 

technique, was used for feature selection in 

this study. This method starts with an empty 

model and incrementally adds features that 

improve the model's performance, aiming to 

identify the key variables that enhance 

predictive accuracy [34]. The process begins 

by evaluating each feature individually, 

training the model (e.g., SVM) with one 

feature at a time, and assessing its 

performance using an appropriate evaluation 

metric [35]. The feature that provides the best 

performance is selected. Subsequently, the 

process iterates by combining the selected 

features with each remaining feature, training 

the model with the new set of features, and 
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evaluating its performance through cross-

validation or a holdout validation set. The 

feature that results in the greatest 

performance improvement is added to the 

model. This process continues until a 

predefined stopping criterion is met, such as 

reaching a set number of features, observing 

no further improvement, or detecting 

performance degradation. Once the stopping 

criterion is satisfied, the final set of selected 

features is used to train the model [36]. This 

approach ensures the inclusion of the most 

relevant features, improving the model’s 

efficiency and predictive performance while 

reducing the risk of overfitting [37]. 

 

3.5 Support Vector Machine  

Support Vector Machine works by finding the 

optimal separating hyperplane that best 

divides the dataset into distinct classes [38]. 

This hyperplane maximises the margin, 

defined as the distance between the 

hyperplane and the nearest data points from 

each class, known as support vectors. By 

maximising this margin, SVM ensures better 

generalisation and classification accuracy. 

The mathematical formulation of the SVM is 

as follows: 

 

Given a training dataset 

 where 

 and , SVM seeks to find a 

hyperplane defined by the equation 1: 

                (1)

  

where  is the weight vector,  is the feature 

vector, and  is the bias term. 

 

4. Results and Discussion 

The malaria prediction model was 

implemented in Python 3.10 on Google Colab 

and optimised using the forward selection 

feature selection method. The aim was to 

enhance the performance of the SVM 

classifier in solving the binary classification 

problem of detecting malaria from blood 

smear images. To ensure robustness, the 

model was trained and validated on 18,311 

instances and evaluated on a test set of 7,848 

samples, which included 3,941 malaria and 

3,907 non-malaria patients. The confusion 

matrix is presented in Figure 1. 

 

 
Figure 1: Confusion Matrix Generated for the Malaria Model 
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Figure 1 presents the confusion matrix for the 

model's predictions. Out of the 3,941 malaria 

cases, the model correctly identified 3,815 

cases, yielding a high true positive rate. 

However, 126 cases were incorrectly 

classified as non-malaria (false negatives), 

which could result in missed diagnoses. This 

low rate of false negatives is crucial in 

malaria detection, as timely treatment is 

critical in preventing severe complications. 

 

Similarly, out of the 3,907 non-malaria cases, 

the model correctly identified 3,807 cases as 

non-malaria, with only 100 instances 

misclassified as malaria (false positives). The 

model's ability to minimise false positives 

reflects its reasonable specificity in 

identifying patients without malaria, reducing 

unnecessary treatments and associated 

healthcare costs. 

 

Table 1 summarises the evaluation of the a 

SVM model's performance, including 

accuracy, precision, recall, F1 score, and 

ROC/AUC score, all derived from the 

confusion matrix shown in Figure 1. 

 

As presented in Table 1, the SVM classifier 

achieved a high accuracy of 97.1%, 

indicating that it correctly classified the 

majority of instances in the test set. Precision 

was recorded at 96.8%, demonstrating the 

model's ability to minimise false positive 

predictions, which is particularly important in 

resource-limited settings where unnecessary 

treatment of non-malaria cases could strain 

resources. Recall (or sensitivity) was 97.4%, 

highlighting the model's strong capacity to 

correctly identify malaria cases, thereby 

reducing the likelihood of missed diagnoses. 

The F1 score, which balances precision and 

recall, was 97.1%, reflecting the model's 

overall reliability and effectiveness in 

handling the binary classification task. 

Additionally, the ROC/AUC score of 97.1% 

underscores the model's excellent 

discriminative ability, effectively 

distinguishing between malaria and non-

malaria cases. 

 

The results demonstrate the potential of ML 

models, particularly those leveraging feature 

selection methods and robust classifiers like 

SVM, to automate and optimise malaria 

detection. By accurately predicting malaria 

cases with minimal false positives and false 

negatives, the model offers a valuable tool for 

improving diagnostic workflows, especially 

in resource-constrained environments. The 

application of forward selection in feature 

selection was instrumental in reducing 

dimensionality, thereby enhancing the SVM 

model's performance. 

 

Moreover, the high sensitivity ensures timely 

identification of malaria cases, enabling 

prompt treatment and reducing disease 

burden, while the model's high specificity 

minimises unnecessary interventions. These 

findings align with previous research 

advocating the use of ML for disease 

prediction and highlight the scalability of 

such approaches for broader healthcare 

applications. 

 

Table 1: Result of Model Evaluation using standard performance metrics 

Metrics Value (%) 

Accuracy 97.1 

Recall 97.4 

Precision 96.8 

F-measure 97.1 

ROC/AUC Score 97.4 
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5. Conclusions and Future Work 

 

This study demonstrated the significant 

impact of feature selection technique, 

particularly forward selection, on enhancing 

the performance of malaria prediction models 

using SVM. Achieving an F1-score, accuracy, 

recall, and AUC all close to 97%, the model 

underscores the potential of ML in 

automating malaria diagnosis with high 

reliability and precision. These findings set a 

benchmark for malaria prediction models and 

emphasised the critical role of robust feature 

selection in optimising medical diagnostics.  

 

Despite the model's strong performance, 

several limitations exist. The dataset used in 

this study, while well-annotated, may not 

fully capture the diversity of blood smear 

images encountered in real-world clinical 

settings. Future work should focus on 

validating the model with larger, more 

diverse datasets to improve its robustness and 

generalisability across various populations 

and healthcare environments. Additionally, 

incorporating advanced feature selection 

methods, ensemble learning techniques, and 

explainable artificial intelligence tools could 

further enhance the model's performance, 

interpretability, and trustworthiness for 

healthcare professionals. Cross-validation 

techniques should also be implemented to 

ensure the model's reliability in real-world 

applications.  

 

Extending this framework to other medical 

imaging classification challenges could 

further improve diagnostic accuracy across 

different contexts. Regular updates and 

evaluations will be essential to maintain 

optimal performance as the field progresses. 
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