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Abstract  

 
Climate change, driven by both natural processes and human activities, has significantly disrupted living 

conditions across many countries. Among its most devastating effects is flooding, which impacts millions of 

people globally. Predicting the timing and severity of future floods remains a major challenge. This study adopts 

a data-driven methodology, employing machine learning techniques to forecast both the location and magnitude 

of floods based on historical flood data from Africa. We also investigate the most appropriate probability 

distribution models for recorded precipitation levels. Our findings indicate that, although Africa is a 

geographically distinct region that has received limited attention in the literature, its rainfall patterns can be 

effectively modeled using well-established probability distributions. Additionally, we identify the weeks with 

the highest and lowest rainfall as significant risk factors among various predictors of flooding. Our analysis 

further demonstrates that the accuracy of flood predictions is highly dependent on the choice of machine 

learning algorithm; with the optimal model, we achieve a prediction accuracy of approximately 85% for flood 

occurrence in targeted areas. These findings suggest that while certain flood predictors in Africa align with those 

commonly observed in other regions, region-specific factors must still be considered 
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1. Introduction 

The World Health Organization (WHO) 

identifies floods as the most recurring natural 

disaster (WHO, 2021). A flood occurs when 

water inundates land that is typically dry, and 

its consequences are often catastrophic—

causing loss of life, property damage, and 

environmental degradation (Mind’je et al., 

2019). Globally, floods are the most common 

severe weather event, affecting over 250 

million people each year and costing billions 

of dollars in damages (Matias, 2018). The 

increasing frequency and impact of flood 

events pose a growing threat to sustainable 

development (Nwigwe & Emberga, 2014). 

 

For instance, the 2022 floods in Nigeria had 

more severe impacts than those in 2012, 

affecting 2.8 million people and increasing 

fatalities by approximately 65% (IFRC n.d.; 

UNDP, 2023). Similarly, the floods induced 

by Cyclone Idai in 2015 and again in 2019 

devastated Malawi (News, 2015). These 

events illustrate the increasing threat of floods, 

exacerbated by climate change and human 

development. 

 

Floods can be categorized into flash floods, 

river floods, and coastal floods. Each type has 

distinct causes, including heavy rainfall, 

snowmelt, and storm surges. Flash floods, the 

most dangerous, combine high velocity with 

destructive force. Their likelihood is increased 

by both natural and human-induced factors, 

such as topography, impermeable surfaces, 

inadequate drainage, and deforestation 

(ResearchClue, 2020). 

 

Between 1998 and 2017, floods accounted for 

approximately 43% of major global disasters 

(UNDRR, 2018). Countries with significant 

populations exposed to flood risks span 

continents, with notable examples in Asia, 

Africa, and South America (Luo et al., 2015). 

In Africa, especially Nigeria, flooding has 

emerged as a recurrent crisis that impairs 
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social structures, economic activities, and food 

security. 

 

Flood damage is not limited to property and 

infrastructure; it often involves massive human 

displacement, fatalities, and long-term 

economic loss. In 2022 alone, floods in 

Pakistan affected 33 million people and caused 

$30 billion in damages (Margesson & 

Kronstadt, 2022). Bangladesh, South Africa, 

Nigeria, and the Democratic Republic of 

Congo also experienced significant losses 

(Abdullah et al., 2022; Jewkes et al., 2023; 

Oguntola, 2022; UNOCHA, 2022). 

 

Despite technological advancements in 

weather forecasting and disaster preparedness, 

floods remain unpredictable due to their 

stochastic nature. Prediction failures are often 

linked to poor information dissemination, 

inadequate infrastructure, and flawed decision-

making processes. As such, there is a need for 

more accurate and localized predictive models. 

 

While existing studies provide robust flood 

prediction models (e.g., Mosavi et al., 2018), 

there is a gap in research focusing on Africa. 

This study aims to fill that gap by applying 

machine learning algorithms to historical data 

to predict flood-prone areas and their likely 

severity. We demonstrate that rainfall patterns 

in Africa can be modeled using probability 

distributions such as Normal, Log-normal, 

Gamma, Gumbel, and Weibull. Our results 

show that machine learning models can predict 

floods with high accuracy, offering valuable 

insights into regional mitigation strategies. 

 

1.1 Flooding Events Around the World 

Flooding affects countries across all 

continents, leading to severe humanitarian and 

economic crises. According to Luo et al. 

(2015), fifteen countries account for 80% of 

the global population affected by river floods 

annually. These include countries in Asia, 

Africa, and South America (see Table 1). In 

Bangladesh, for example, one-third of the 

country is submerged during monsoon 

flooding (Bhuiyan & Al Baky, 2014; Coca, 

2020). India’s vulnerability to floods is 

attributed to monsoon rains, tropical storms, 

and siltation of rivers, with floods impacting 

nearly 84% of its GDP annually (Rehman et 

al., 2019). 

 

In Africa, Egypt and Nigeria suffer from flash 

and fluvial floods respectively. In Egypt, urban 

growth and mismanagement have exacerbated 

flood risks (Saber et al., 2020; Arnous et al., 

2022). In Nigeria, structural inadequacies, 

such as poor drainage and planning laws, 

contribute significantly to recurring floods 

(Echendu, 2020). 

 

These patterns reveal that while global flood 

risk factors may be shared, geographic and 

socio-economic differences require region-

specific predictive strategies. This study 

focuses on Africa, particularly rainfall-induced 

fluvial floods, and investigates machine 

learning methods for prediction and 

mitigation. 

 

The remainder of this paper is structured as 

follows: Section 2 reviews related literature 

and flood events; Section 3 presents 

methodology; Section 4 details the results and 

discussion; Section 5 concludes the paper. 

 

2.   Related Works 

 

2.1 Flood Prediction Using Machine Learning 

Flood prediction research increasingly 

employs machine learning (ML) algorithms 

that detect patterns in historical data. 

Commonly used algorithms include Decision 

Trees (DT), Random Forests (RF), Linear 

Regression (LinReg), Logistic Regression 

(LR), XGBoost, K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), and 

Artificial Neural Networks (ANN). Mind’je et 

al. (2019) used logistic regression with ten 

predictors (e.g., elevation, slope, NDVI, 

rainfall) on historical flood data in Rwanda, 

achieving a 79.8% prediction accuracy. 

Talukdar and Pal (2020) applied Markov 

Chain Cellular Automata and ANN to forecast 

floodplain transformation in the India-

Bangladesh region, achieving AUC values of 

84.4% and 86.8%. 

 

Talukdar et al. (2020) developed an ensemble 

model using REPtree, RF, M5P, and Random 

Tree. The M5P model, combined with 

bagging, showed superior performance with 

sensitivity of 86.25%, specificity of 88.75%, 

and AUC of 0.97. Rahman et al. (2019) 

assessed flood susceptibility in Bangladesh 

using a combination of ANN, logistic 

regression, frequency ratio, and AHP. Logistic 
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regression achieved the highest accuracy 

(86%).Cui and Cui (2020) employed linear 

regression to model spring floods in Canada, 

identifying four significant predictors and 

achieving an R² of 63%. 

 

Machine learning model selection depends 

heavily on data availability, study scope, and 

prediction objectives (Obarein & Amanambu, 

2019). This study adopts an exploratory 

approach, evaluating multiple ML models and 

statistical distributions to optimize flood 

prediction based on African rainfall data.  

 

Table 1 Annual Expected Population 

Affected by River Floods 

 

Countries Population 

(in millions) 

Continent 

India 4.84 Asia 

Bangladesh 3.48 Asia 

China 3.28 Asia 

Vietnam 0.93 Asia 

Pakistan 0.71 Asia 

Indonesia 0.64 Asia 

Egypt 0.46 Africa 

Myanmar 0.39 Asia 

Afghanistan 0.33 Asia 

Nigeria 0.29 Africa 

Brazil 0.27 South America 

Thailand 0.25 Asia 

Congo D.R. 0.24 Africa 

Iraq 0.19 Asia 

Cambodia 0.19 Asia 

Source: World Resources Institute [WRI], 2015 

 

3.  Methodology 

 

In this section, we analyze the precipitation 

data used for this study and examine the 

pattern of the probability distributions with 

histogram plots and kernel density estimation. 

Then, we present the most suitable probability 

distribution for precipitation data. 

 

Our dataset comes from real-world secondary 

data of historical floods obtained from the 

repository of Zindi—the first data science 

competition platform in Africa. The dataset 

consists of major flooding that hit Southern 

Malawi with cyclone Idai in 2015 and 2019. 

The location map is partitioned into 

approximately 1km2 rectangles, assigned with 

a target value, a fraction (percentage) of the 

rectangle flooded in 2015. The data is well-

labeled, specifying whether a flood happened 

in an area and the proportion of the surface 

area flooded. Thus, the dataset consists of 

16466 rows (entries). In this paper, we only 

consider the 2015 flood extent data. We train 

our machine learning models with 80% of the 

dataset and use the remaining 20% to measure 

the accuracy of the models. The selected 

features (variables) of interest include the 

following: 

 

a) Elevation – the mean elevation over the 

rectangle, based on the NASA Shuttle 

Radar Topography Mission (SRTM) 

Digital Elevation 30m dataset in Google 

Earth Engine. 

b) Dominant Land Cover Type – the surface 

cover on the ground, such as water, 

vegetation, bare soil, and urban 

infrastructure. 

c) Weekly precipitation – historical rainfall 

data for each rectangle for 18 weeks 

beginning two months before the flooding, 

based on the Tropical Rainfall Measuring 

Mission (TRMM) dataset in Google Earth 

Engine. 

d) Coordinates – the location’s longitude (Y ) 

and latitude (X), representing a rectangle 

0.01 degrees on each side, centered on that 

X − Y location. 

e) Target – the proportion of the flooded 

rectangle, with a value between 0 and 1. 

 

3.1  Analyses of Precipitation Data 

A major contributing factor to floods is rainfall 

(precipitation). Most existing flood prediction 

models focus on severe rainfall and hurricanes. 

However, some studies (Cui and Cui 2020) 

demonstrate that the amount of snow on the 

ground (snow melt) can also be a significant 

predictor. Rainfall data used in developing 

flood prediction models are typically obtained 

from weather stations or derived from remote 

sensing datasets.  Some researchers argue that 

gridded and modeled rainfall data may fail to 

accurately capture climate variability, leading 

to uncertainties in flood susceptibility 

modeling when compared to station-based data 

(Obarein and Amanambu, 2019; Mind’je et al., 

2019). Conversely, other studies suggest that 

remotely sensed rainfall data provide a reliable 

source, effectively capturing the seasonal 

patterns of precipitation (Dunning et al., 

2016). Nonetheless, the continued use of 
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precipitation gauges as direct measurement 

instruments remains strongly recommended. 

Distribution Pattern of the Precipitation 

Data 

 

In some machine learning models, continuous 

probability distributions are frequently 

employed, particularly in the distribution of 

numerical input and output variables and in the 

spread of model errors.  

 

Normal, Log-normal, Gamma, Gumbel, and 

Weibull are commonly used probability 

distributions in rainfall analysis. The Normal 

distribution is widely used because of its 

association with the central limit theorem and 

capacity to describe many natural occurrences. 

It is well-known that the Gamma distribution 

is a member of the two-parameter family of 

continuous probability distributions. The 

typical “exponential” and “chi-squared” 

distributions are special cases of the Gamma. 

 

Table 2 presents the summary statistics of 

precipitations for each week. The table shows 

that the maximum average rainfall was 

experienced in Week 9, with an average 

precipitation of 58.86mm. Following this is a 

sharp decline in Week 10, with an average 

rainfall value of 1.25mm, which indicates that 

the amount of rainfall will decline in the 

following weeks before the flood (see Figure 

1). But this is not so in the following weeks 

(Week 11 and Week 12). The last week (Week 

17) before the flooding event saw the least 

average precipitation for the entire period in 

the dataset, with an average precipitation of 

0.33mm. 

 

Although the summary statistics reveal 

potential fluctuations in precipitations, 

examining the probability distribution of 

rainfalls for each week in all locations is 

necessary. Such analyses will enable us to 

investigate possible changes in the 

distributional pattern of precipitations over the 

weeks before a flood event. 

 

 

Figure 2 presents the histogram plots for 

precipitation patterns for some selected weeks 

(e.g., weeks 6, 10, 11, and 14). The plots 

suggest that weekly precipitations exhibit 

different probability distributions, most 

positively skewed. For instance, weeks 10 and 

11 seem to have similar distributional trends; 

they are highly positively skewed. 

It is usually challenging to identify the exact 

probability distribution of a random variable 

using a histogram plot. Therefore, we estimate 

the probability distributions using a Kernel 

Density Estimator (KDE) function. 

 

3.1.1  Kernel Density Estimation (KDE) 

KDE, a non-parametric technique, estimates 

the random variable’s probability density 

function. It utilizes a kernel function, , to 

estimate an unknown probability density 

function. Unlike a histogram that counts the 

number of data points in random locations, 

KDE is the sum of a kernel function on each 

data point. 

 

Table 2  Summary statistics of precipitation data 

 

Precipitation Week Min. Precip. Max. Precip. Mean (µ) Std. Dev. (σ) 

Week 1 0.00 19.35 1.61 4.23 

Week 2 0.00 41.02 2.50 8.63 

Week 3 0.00 22.02 1.16 4.40 

Week 4 1.41 18.87 8.27 4.27 

Week 5 3.58 23.04 8.89 3.76 

Week 6 1.25 21.75 9.57 4.52 

Week 7 7.46 62.43 22.92 13.69 

Week 8 15.65 51.20 28.11 7.79 

Week 9 30.45 105.28 58.86 16.81 

Week 10 0.00 11.10 1.25 1.97 

Week 11 14.97 53.01 34.65 7.46 

Week 12 13.26 44.34 28.32 8.05 

Week 13 0.46 28.56 12.49 7.06 
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Week 14 0.28 15.72 3.80 2.67 

Week 15 6.73 36.97 17.07 6.07 

Week 16 3.28 25.71 9.11 4.57 

Week 17 0.00 4.95 0.33 1.01 

 

 

 
 

Figure 1 Bar plot of Average Precipitation for each week 

 

 

 
 

Figure 2 Histogram plot of precipitations 
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It is a basic data smoothing problem in which 

population inferences are drawn from a small 

sample of data.  

 

Consider independent and identically distributed 

(i.i.d.) samples, , sampled from 

some univariate distribution with an unknown 

density  at any given point . We would like to 

estimate the shape of this function . Its kernel 

density estimator is:  

 
 

where  is the kernel—a non-negative 

function—and  > 0 is a smoothing parameter 

called the bandwidth. A kernel with subscript  

is called the scaled kernel and defined as:  

 
 

The following are typical properties of the kernel 

function (Seabold and Perktold 2010): 

1. It is symmetrical  

2. It can be normalized such that 

 

3. It is monotonically decreasing, such that 

 when . 

4. The expected value equals zero (i.e., 

). 

5. Machine learning applications can make use 

of the Kernel Density Estimation approach. 

Because parameters in the estimation 

function define the kernel’s scope, a neural 

network can begin to train itself to correct its 

estimations and generate more accurate 

results. The bandwidth and amplitude 

estimations are continuously updated while 

the estimation process repeats itself, 

increasing the accuracy of the calculated 

probability density curve. 

 

KDE was used to estimate each of the weekly 

precipitation data in the dataset and the type of 

probability distribution function for each 

variable. The density plots in (Figure 3) show 

the precipitation data estimation for selected 

weeks (as in Figure 2). The precipitation data 

shows that all the variables exhibit a non-normal 

distribution. The result correlates with the 

outcome of the histogram plots (see Figure 2).  

 

 

 

 

3.2 Fitting Probability Distributions on 

Precipitation Data 

 

Comparing the histogram of the data with a 

probability distribution function (pdf) of a 

known distribution is a fundamental approach 

typically used to determine the underlying 

distribution that could have created a data set 

(e.g., normal distribution). The distribution’s 

parameters, however, are unknown, and there are 

many different distributions. As a result, an 

automatic method of fitting many distributions 

to the data would be beneficial, which is what is 

implemented here.  

 

We analyze the precipitation data to identify the 

best-fit probability distribution for each study 

period. The goal is to find a distribution that 

suits the data well. The distribution that gives a 

close fit is supposed to lead to good predictions. 

The best-fit probability distribution was 

determined using the least square method and 

based on the minimum deviation between actual 

and estimated values. 

 

Finding Best-Fit PDF 

The best-fit probability distribution for the 

precipitation data was obtained using a package 

in Python. A class in the Fitter package identifies 

the distribution from which a data sample is 

created. It employs 80 SciPy distributions and 

allows the plotting of the results to see which 

distribution is the most likely and which 

parameters are the best. The best-fit probability 

distribution is that with the minimum deviation 

between actual and estimated values. 

 

Table 3 contains the result of the fitted 

probability distribution functions for each 

weekly precipitation. Each table includes the top 

5 probability distributions out of the 80 fitted 

distributions. The best-fit probability distribution 

(in the first row of each table) is selected based 

on the least sum of square errors (SSE) as the 

default metric. The precipitation data for the 

period originates from one of Lomax, Wald, 

Double Gamma (dgamma), Skew Normal 

(skewnorm), Exponential (expon), Cauchy, 

Laplace, Half Cauchy, Semi Circular, Anglit, 

and Half Normal (halfnorm) distributions. The 

precipitation data of some weeks share the same 

distribution, such as Weeks 4,5 and 11 (Double 

Gamma), Weeks 7, 16, and 17 (Exponential), 

Weeks 1 and 2 (Lomax), and Weeks 8 and 15 

(Cauchy). In addition, most tables have a 

particular case of either Gamma or Weibull  
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Figure 3 Kernel Density Estimation of the precipitation data 

 

distributions, which are probability 

distributions commonly used to model rainfall 

data. Each table presents measures used in 

selecting the best-fit probability distributions. 

The Akaike Information Criterion (AIC) 

evaluates how well each probability density 

function fits the precipitation data. Based on the 

maximum likelihood estimate, AIC calculates 

the relative information value of the model. The 

AIC is computed using the following: 

 

, 

 

where k is the number of parameters in the 

density function and L  ̂ is the likelihood 

estimate. 

 

AIC scores with fewer parameters are better 

than those with more parameters. For any two 

models explaining the same amount of 

variation, the preferred model (i.e., better-fit 

model) usually has fewer parameters. The 

Bayesian Information Criterion (BIC) is similar 

to the AIC in selecting best-fit models. The 

BIC is obtained by evaluating 

 

 

 

where is the value that maximizes the 

likelihood function of the model,  is the 

number of data points in the sample size, and  

is the number of parameters estimated by the 

model. A lower BIC value is preferred. 

 

The Kullback-Leibler Divergence  

score, often known as the KL divergence score, 

measures how much one probability 

distribution differs from another. 

 

 
 

Thus, for distributions P and Q of a continuous 

random variable,  is defined by the 

integral 

 
The Probability Density Function plot of each 

precipitation week data in Table 3 is shown in 

Figure 4. The top legend in each plot indicates 

the best-fit probability density function.
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Table 3 Fitted probability distributions table for precipitation data 

 
PDF SSE AIC BIC KL 

div 

skewnorm 0.088494 238.810197 −199767.227754 ∞ 

moyal 0.088790 237.147174 −199721.885994 ∞ 

kstwobign 0.089376 235.383197 −199613.665203 ∞ 

gumbel r 0.090281 237.586676 −199447.771977 ∞ 

genlogistic 0.090978 240.133587 −199311.337092 ∞ 
 

PDF SSE AIC BIC KL 

div 

skewnorm 0.088494 238.810197 −199767.227754 ∞ 

moyal 0.088790 237.147174 −199721.885994 ∞ 

kstwobign 0.089376 235.383197 −199613.665203 ∞ 

gumbel r 0.090281 237.586676 −199447.771977 ∞ 

genlogistic 0.090978 240.133587 −199311.337092 ∞ 
 

(a) Week 6 (b) Week 10 

 

PDF SSE AIC BIC KL div 

dgamma 0.021283 295.603862 −223232.035078 ∞ 

dweibull 0.021351 295.363435 −223178.913023 ∞ 

gennorm 0.021503 295.445463 −223062.405693 ∞ 

laplace 0.021566 293.934913 −223023.649583 ∞ 

hypsecant 0.021576 293.733847 −223015.965548 ∞ 
 

PDF SSE AIC BIC KL div 

halfnorm 0.109094 265.923054 −196331.079234 ∞ 

moyal 0.116474 263.189679 −195253.162883 ∞ 

gumbel r 0.117977 274.493330 −195042.100244 ∞ 

rayleigh 0.120038 295.590630 −194756.832298 ∞ 

maxwell 0.124257 302.296821 −194188.095566 ∞ 

(a) Week 11 (a) Week 14 

 

 

4.  Results and Discussion 

We partition the dataset into 80:20 train-test split. 

The precipitation features were standardized 

using the z−score standardization method after 

splitting the datasets into train and test sets. We 

determine the mean (µ) and standard deviation 

(σ) of the train data, then obtain a standard score 

for a sample  using 

 

 
 

We feed the preprocessed data into six machine-

learning algorithms to train models suitable for 

flood prediction. Three of these algorithms are 

variants of the boosting algorithm: CatBoost, 

Extreme Gradient Boosting Regressor 

(XGBoost), and Light Gradient Boosting 

Regressor (LGB). The other three neural 

network schemes are Multilayer Perceptron, 

Support Vector Regressor, and Random Forest. 

We use the Python package running on a Google 

Colaboratory cloud notebook to implement the 

algorithms on the data. We consider the default 

parameters of each algorithm when training the 

models. After learning, the trained models were 

evaluated to see how well the algorithms could 

learn from the data. 

 

 

  

(a) Week 6 (b) Week 10 



    52   UIJSLICTR Vol. 14  No. 1 June. 2025  ISSN: 2714-3627 

 

  

(c) Week 11 (d) Week 14 

Figure 4 Plot of the best-fitted probability density function 

 

4.1. Model Evaluation 

Since the target variable of the dataset is 

continuous, the performance metrics such as 

Mean Square Error (MSE), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), 

and the Co-efficient of Determination (R2) were 

applied to evaluate how well the proposed 

models predict floods. Table 4 shows the 

performance of each model based on the selected 

metrics. 

 

From Table 4, the CatBoost model performs best 

with the lowest MSE and highest R2 value, 

followed by Random Forest. The SVR model 

has the worst performance. The implication of 

the R2 value from the CatBoost model is that the 

percentage of the flood (target variable) 

accounted for by the predictors (precipitation 

data, elevation, and coordinates) is 56.5%. In 

comparison, other factors may explain the 

remaining 43.5%; these include temperature, 

wetlands, and human activities. The RMSE 

value implies that the prediction that a particular 

location will be flooded may seem 15.1% off the 

target. These interesting results reveal the risk 

factors for floods in Africa and display a low 

probability of off-target prediction when an 

appropriate machine-learning algorithm is 

deployed. However, an improvement procedure 

is recommended to further reduce the off-target 

prediction probability. 

 

4.2. Prediction Plots 

The prediction plot lets us visualize and compare 

the actual and predicted values to see how well 

the models perform. The prediction plot for each 

of the models is shown in Figure 5. The blue 

color lines indicate the actual values of the target 

( ), while the orange color lines ( ) indicate the 

predicted values. From this plot, the SVR 

(Figure 5b) did not learn well and thus did not 

capture the data, thereby underfitting the data. 

The Catboost model performs best (Figure 5f), 

capturing the data, although some noise is 

noticeable 

 

4.3 Feature Importance Plot 

In this section, we present the ranking of the 

importance of feature variables. Based on their 

relevance, we use the feature importance 

technique to get a score of the predictors used in 

training the model. The ranking of the predictors 

based on the higher score from our best model 

(CatBoost) is obtained using a wrapper class 

contained in the algorithm. A higher score 

implies that the specific feature will significantly 

impact the model used in predicting the flood 

extent. 

 

 

Table 4 Model performance metrics table 

Model MAE MSE RMSE R2 

SVR 0.140 0.048 0.220 0.075 

XGBoost 0.073 0.027 0.166 0.472 

Catboost 0.060 0.022 0.151 0.565 

LGBoost 0.061 0.026 0.163 0.494 

RandomForest 0.058 0.025 0.160 0.51 

MultiLayerPerceptron 0.094 0.032 0.179 0.38 
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Figure 6 is a visual representation of the critical 

features of the CatBoost model. It shows the 

vital contributing predictors in the model in 

descending order. The most influencing 

predictor in the model is “elevation,” with a 

score greater than 50. Other important predictors 

are the location (X and Y coordinates), Week 17 

(the week with the lowest average rainfall and 

the preceding week to the flooding period), 

Week 9 (the week with the highest average 

rainfall) precipitation data, and Land Cover Type. 

Other predictors have a very low score, with 

Week 10 precipitation data being the least, 

indicating that the contributions of these low-

rank features (predictors) are not influencing the 

model significantly. Hence, dropping these 

variables may not necessarily affect the model’s 

performance in predicting flood extent in the 

targeted location. It may increase the model’s 

efficiency by reducing the prediction error rate 

(bias). 

 

5.  Conclusion 

In this paper, we consider mitigating flood 

occurrences by building predictive machine 

learning models that learn from historical flood 

patterns to make predictions of the location and 

extent of floods. We examine the probability 

distribution pattern of rainfall with the histogram 

and kernel density estimation plots and find that 

most precipitation features have different 

probability distributions, except for a few that 

share the same distribution pattern. We train the 

data using six machine-learning algorithms and 

evaluate model performances based on four 

metrics. We find that the Catboost performs best 

among the selected algorithms; adding 

topographical information could further improve 

prediction performance. Our findings reveal that 

56.5% of the variability observed in the target 

variable (proportion of the areas flooded) is 

explained by the predictors (i.e., elevation, 

coordinates, precipitation features, and land 

cover types) in the regression model. Still, 

predictions of floods at specific locations may be 

about 15% off the target. We determine that the 

most critical risk factors are the area’s height 

(elevation) and geographic location 

(coordinates). Additionally, the week preceding 

floods with the most and least rainfall is crucial. 

Therefore, decision-makers should reevaluate 

their prediction models and update the level of 

alertness as appropriate during the identified 

time frame. 

 

 

 

 

  
(a) Multilayer Perceptron (b) SVR 
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(c) LGB Regressor (d) XGBoost Regressor 
 

  

(e) Random Forest (f) Catboost Regressor 

 

Figure 5 Prediction plots comparing actual values against predicted values 

 

 

 
Figure 6 Rank of the important features 
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This study demonstrates that data-driven 

techniques for flood prediction in Africa are 

promising, with sufficient datasets and relevant 

features. Our results are helpful when 

determining some cost-effective and optimal 

evacuation decision policies proposed in the 

literature (see Taiwo et al. 2019) to mitigate the 

massive loss of lives and properties during 

floods.  

 

Further improvement can be made to the model 

for better prediction performance by including 

other relevant features such as climatic data (e.g., 

temperature) and topographical data (e.g., 

distance to wetlands). In addition, predictors 

with low relative importance (score) may be 

dropped; this often influences better prediction 

of machine learning models. While this study 

focuses on the case of Africa, our approach and 

insights provide leverage for decision-making at 

the global level platforms. However, the 

uniqueness of the case study location may limit 

the potential for the generalization of our results. 

 

Limitations: Because of the limited access to 

data, we could not extend our exploration of 

flooding events on the African continent beyond 

the case of Malawi. This is a limitation of our 

study. 
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Online Appendices 

I. EC.1. SOME DEFINITIONS OF TERMS 

The statistical metrics are defined as follows: 

 Mean Square Error (MSE) 

The mean squared error function calculates the expected value of the squared (quadratic) error 

or loss, a risk indicator. It is defined as:  

 

Lower MSE indicates a better fit. 

 Root Mean Square Error (RMSE) 

This is the square root of the mean square error, and it is defined as: 

 

 Mean Absolute Error (MAE) 

This function calculates mean absolute error, a risk metric representing the expected 

magnitude of an absolute error loss. It is defined as: 

 

 Coefficient of Determination ( ) 

It represents the fraction of the variation of the outcome variable ( ) explained by the model’s 

independent variables. The proportion of explained variance indicates the model goodness of 

fit and, thus, a measure of how well unseen samples are likely to be predicted by the model. 

 

Where ,  is the number of data points, y is the actual value, and iis the predicted 

value of the i-th data point. 

 

 


