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Abstract

Climate change, driven by both natural processes and human activities, has significantly disrupted living
conditions across many countries. Among its most devastating effects is flooding, which impacts millions of
people globally. Predicting the timing and severity of future floods remains a major challenge. This study adopts
a data-driven methodology, employing machine learning techniques to forecast both the location and magnitude
of floods based on historical flood data from Africa. We also investigate the most appropriate probability
distribution models for recorded precipitation levels. Our findings indicate that, although Africa is a
geographically distinct region that has received limited attention in the literature, its rainfall patterns can be
effectively modeled using well-established probability distributions. Additionally, we identify the weeks with
the highest and lowest rainfall as significant risk factors among various predictors of flooding. Our analysis
further demonstrates that the accuracy of flood predictions is highly dependent on the choice of machine
learning algorithm; with the optimal model, we achieve a prediction accuracy of approximately 85% for flood
occurrence in targeted areas. These findings suggest that while certain flood predictors in Africa align with those

commonly observed in other regions, region-specific factors must still be considered

Keywords: disaster risk, flood, machine learning, prediction, rainfall analysis

1. Introduction

The World Health Organization (WHO)
identifies floods as the most recurring natural
disaster (WHO, 2021). A flood occurs when
water inundates land that is typically dry, and
its consequences are often catastrophic—
causing loss of life, property damage, and
environmental degradation (Mind’je et al.,
2019). Globally, floods are the most common
severe weather event, affecting over 250
million people each year and costing billions
of dollars in damages (Matias, 2018). The
increasing frequency and impact of flood
events pose a growing threat to sustainable
development (Nwigwe & Emberga, 2014).

For instance, the 2022 floods in Nigeria had
more severe impacts than those in 2012,
affecting 2.8 million people and increasing
fatalities by approximately 65% (IFRC n.d,;
UNDP, 2023). Similarly, the floods induced
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by Cyclone Idai in 2015 and again in 2019
devastated Malawi (News, 2015). These
events illustrate the increasing threat of floods,
exacerbated by climate change and human
development.

Floods can be categorized into flash floods,
river floods, and coastal floods. Each type has
distinct causes, including heavy rainfall,
snowmelt, and storm surges. Flash floods, the
most dangerous, combine high velocity with
destructive force. Their likelihood is increased
by both natural and human-induced factors,
such as topography, impermeable surfaces,
inadequate  drainage, and  deforestation
(ResearchClue, 2020).

Between 1998 and 2017, floods accounted for
approximately 43% of major global disasters
(UNDRR, 2018). Countries with significant
populations exposed to flood risks span
continents, with notable examples in Asia,
Africa, and South America (Luo et al., 2015).
In Africa, especially Nigeria, flooding has
emerged as a recurrent crisis that impairs
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social structures, economic activities, and food
security.

Flood damage is not limited to property and
infrastructure; it often involves massive human
displacement, fatalities, and long-term
economic loss. In 2022 alone, floods in
Pakistan affected 33 million people and caused
$30 billion in damages (Margesson &
Kronstadt, 2022). Bangladesh, South Africa,
Nigeria, and the Democratic Republic of
Congo also experienced significant losses
(Abdullah et al., 2022; Jewkes et al., 2023;
Oguntola, 2022; UNOCHA, 2022).

Despite  technological advancements in
weather forecasting and disaster preparedness,
floods remain unpredictable due to their
stochastic nature. Prediction failures are often
linked to poor information dissemination,
inadequate infrastructure, and flawed decision-
making processes. As such, there is a need for
more accurate and localized predictive models.

While existing studies provide robust flood
prediction models (e.g., Mosavi et al., 2018),
there is a gap in research focusing on Africa.
This study aims to fill that gap by applying
machine learning algorithms to historical data
to predict flood-prone areas and their likely
severity. We demonstrate that rainfall patterns
in Africa can be modeled using probability
distributions such as Normal, Log-normal,
Gamma, Gumbel, and Weibull. Our results
show that machine learning models can predict
floods with high accuracy, offering valuable
insights into regional mitigation strategies.

1.1 Flooding Events Around the World
Flooding affects countries across all
continents, leading to severe humanitarian and
economic crises. According to Luo et al.
(2015), fifteen countries account for 80% of
the global population affected by river floods
annually. These include countries in Asia,
Africa, and South America (see Table 1). In
Bangladesh, for example, one-third of the
country is submerged during monsoon
flooding (Bhuiyan & Al Baky, 2014; Coca,
2020). India’s vulnerability to floods is
attributed to monsoon rains, tropical storms,
and siltation of rivers, with floods impacting
nearly 84% of its GDP annually (Rehman et
al., 2019).

In Africa, Egypt and Nigeria suffer from flash
and fluvial floods respectively. In Egypt, urban
growth and mismanagement have exacerbated
flood risks (Saber et al., 2020; Arnous et al.,
2022). In Nigeria, structural inadequacies,
such as poor drainage and planning laws,
contribute significantly to recurring floods
(Echendu, 2020).

These patterns reveal that while global flood
risk factors may be shared, geographic and
socio-economic differences require region-
specific predictive strategies. This study
focuses on Africa, particularly rainfall-induced
fluvial floods, and investigates machine
learning methods for prediction and
mitigation.

The remainder of this paper is structured as
follows: Section 2 reviews related literature
and flood events; Section 3 presents
methodology; Section 4 details the results and
discussion; Section 5 concludes the paper.

2. Related Works

2.1 Flood Prediction Using Machine Learning
Flood prediction research increasingly
employs machine learning (ML) algorithms
that detect patterns in historical data.
Commonly used algorithms include Decision
Trees (DT), Random Forests (RF), Linear
Regression (LinReg), Logistic Regression
(LR), XGBoost, K-Nearest Neighbors (KNN),
Support  Vector Machines (SVM), and
Artificial Neural Networks (ANN). Mind’je et
al. (2019) used logistic regression with ten
predictors (e.g., elevation, slope, NDVI,
rainfall) on historical flood data in Rwanda,
achieving a 79.8% prediction accuracy.
Talukdar and Pal (2020) applied Markov
Chain Cellular Automata and ANN to forecast
floodplain  transformation in the India-
Bangladesh region, achieving AUC values of
84.4% and 86.8%.

Talukdar et al. (2020) developed an ensemble
model using REPtree, RF, M5P, and Random
Tree. The M5P model, combined with
bagging, showed superior performance with
sensitivity of 86.25%, specificity of 88.75%,
and AUC of 0.97. Rahman et al. (2019)
assessed flood susceptibility in Bangladesh
using a combination of ANN, logistic
regression, frequency ratio, and AHP. Logistic
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regression achieved the highest accuracy
(86%).Cui and Cui (2020) employed linear
regression to model spring floods in Canada,
identifying four significant predictors and
achieving an R2 of 63%.

Machine learning model selection depends
heavily on data availability, study scope, and
prediction objectives (Obarein & Amanambu,
2019). This study adopts an exploratory
approach, evaluating multiple ML models and
statistical distributions to optimize flood
prediction based on African rainfall data.

Table 1 Annual Expected
Affected by River Floods

Population

Countries  |Population (Continent
(in millions)
India 4.84 Asia
Bangladesh [3.48 Asia
China 3.28 Asia
\Vietnam 0.93 Asia
Pakistan 0.71 Asia
Indonesia  |0.64 Asia
Egypt 0.46 Africa
Myanmar  |0.39 Asia
IAfghanistan |0.33 Asia
Nigeria 0.29 Africa
Brazil 0.27 South America
Thailand 0.25 Asia
Congo D.R. |0.24 Africa
Iraq 0.19 Asia
Cambodia |0.19 Asia

Source: World Resources Institute [WRI], 2015
3. Methodology

In this section, we analyze the precipitation
data used for this study and examine the
pattern of the probability distributions with
histogram plots and kernel density estimation.
Then, we present the most suitable probability
distribution for precipitation data.

Our dataset comes from real-world secondary
data of historical floods obtained from the
repository of Zindi—the first data science
competition platform in Africa. The dataset
consists of major flooding that hit Southern
Malawi with cyclone Idai in 2015 and 2019.
The location map is partitioned into
approximately 1km2 rectangles, assigned with
a target value, a fraction (percentage) of the

rectangle flooded in 2015. The data is well-
labeled, specifying whether a flood happened
in an area and the proportion of the surface
area flooded. Thus, the dataset consists of
16466 rows (entries). In this paper, we only
consider the 2015 flood extent data. We train
our machine learning models with 80% of the
dataset and use the remaining 20% to measure
the accuracy of the models. The selected
features (variables) of interest include the
following:

a) Elevation — the mean elevation over the
rectangle, based on the NASA Shuttle
Radar Topography Mission (SRTM)
Digital Elevation 30m dataset in Google
Earth Engine.

b) Dominant Land Cover Type — the surface
cover on the ground, such as water,
vegetation, bare soil, and urban
infrastructure.

c) Weekly precipitation — historical rainfall
data for each rectangle for 18 weeks
beginning two months before the flooding,
based on the Tropical Rainfall Measuring
Mission (TRMM) dataset in Google Earth
Engine.

d) Coordinates — the location’s longitude (Y )
and latitude (X), representing a rectangle
0.01 degrees on each side, centered on that
X —Y location.

e) Target — the proportion of the flooded
rectangle, with a value between 0 and 1.

3.1 Analyses of Precipitation Data

A major contributing factor to floods is rainfall
(precipitation). Most existing flood prediction
models focus on severe rainfall and hurricanes.
However, some studies (Cui and Cui 2020)
demonstrate that the amount of snow on the
ground (snow melt) can also be a significant
predictor. Rainfall data used in developing
flood prediction models are typically obtained
from weather stations or derived from remote
sensing datasets. Some researchers argue that
gridded and modeled rainfall data may fail to
accurately capture climate variability, leading
to uncertainties in flood susceptibility
modeling when compared to station-based data
(Obarein and Amanambu, 2019; Mind’je et al.,
2019). Conversely, other studies suggest that
remotely sensed rainfall data provide a reliable
source, effectively capturing the seasonal
patterns of precipitation (Dunning et al.,
2016). Nonetheless, the continued use of
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precipitation gauges as direct measurement
instruments remains strongly recommended.
Distribution Pattern of the Precipitation
Data

In some machine learning models, continuous
probability  distributions are  frequently
employed, particularly in the distribution of
numerical input and output variables and in the
spread of model errors.

Normal, Log-normal, Gamma, Gumbel, and
Weibull are commonly used probability
distributions in rainfall analysis. The Normal
distribution is widely used because of its
association with the central limit theorem and
capacity to describe many natural occurrences.
It is well-known that the Gamma distribution
is a member of the two-parameter family of
continuous  probability distributions. The
typical “exponential” and “chi-squared”
distributions are special cases of the Gamma.

Table 2 presents the summary statistics of
precipitations for each week. The table shows
that the maximum average rainfall was
experienced in Week 9, with an average
precipitation of 58.86mm. Following this is a
sharp decline in Week 10, with an average
rainfall value of 1.25mm, which indicates that
the amount of rainfall will decline in the
following weeks before the flood (see Figure
1). But this is not so in the following weeks
(Week 11 and Week 12). The last week (Week
17) before the flooding event saw the least
average precipitation for the entire period in

the dataset, with an average precipitation of
0.33mm.

Although the summary statistics reveal
potential ~ fluctuations in  precipitations,
examining the probability distribution of
rainfalls for each week in all locations is
necessary. Such analyses will enable us to
investigate  possible  changes in  the
distributional pattern of precipitations over the
weeks before a flood event.

Figure 2 presents the histogram plots for
precipitation patterns for some selected weeks
(e.g., weeks 6, 10, 11, and 14). The plots
suggest that weekly precipitations exhibit
different  probability  distributions, most
positively skewed. For instance, weeks 10 and
11 seem to have similar distributional trends;
they are highly positively skewed.

It is usually challenging to identify the exact
probability distribution of a random variable
using a histogram plot. Therefore, we estimate
the probability distributions using a Kernel
Density Estimator (KDE) function.

3.1.1 Kernel Density Estimation (KDE)

KDE, a non-parametric technique, estimates
the random variable’s probability density
function. It utilizes a kernel function, -, to

estimate an unknown probability density
function. Unlike a histogram that counts the
number of data points in random locations,
KDE is the sum of a kernel function on each
data point.

Table 2 Summary statistics of precipitation data

Precipitation Week  |[Min. Precip. |Max. Precip. |[Mean (1) |Std. Dev. (o)
Week 1 0.00 19.35 1.61 4.23
Week 2 0.00 41.02 2.50 8.63
Week 3 0.00 22.02 1.16 4.40
Week 4 1.41 18.87 8.27 4.27
Week 5 3.58 23.04 8.89 3.76
Week 6 1.25 21.75 9.57 4.52
Week 7 7.46 62.43 22.92 13.69
Week 8 15.65 51.20 28.11 7.79
Week 9 30.45 105.28 58.86 16.81
Week 10 0.00 11.10 1.25 1.97
Week 11 14.97 53.01 34.65 7.46
Week 12 13.26 44.34 28.32 8.05
Week 13 0.46 28.56 12.49 7.06
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Week 14 0.28 15.72 3.80 2.67
Week 15 6.73 36.97 17.07 6.07
Week 16 3.28 25.71 0.11 4.57
Week 17 0.00 4.95 0.33 1.01
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Figure 1 Bar plot of Average Precipitation for each week
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Figure 2 Histogram plot of precipitations
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It is a basic data smoothing problem in which
population inferences are drawn from a small
sample of data.

Consider independent and identically distributed
(i.i.d.) samples, (x1, x5, ..., x,), sampled from
some univariate distribution with an unknown
density f at any given point x. We would like to
estimate the shape of this functionf . Its kernel
density estimator is:

=g Kate 0 =) % (5)
i=1 i-1

where K is the Kkernel—a non-negative
function—and h > 0 is a smoothing parameter

called the bandwidth. A kernel with subscript h
is called the scaled kernel and defined as:

6, 0) =39 (3)

The following are typical properties of the kernel

function (Seabold and Perktold 2010):

1. Itis symmetrical X (x) = K (—x).

2.1t can be normalized such
f_wm.'}((x)dx = 1.

3. It is monotonically decreasing, such that
K'(x) < Owhenx > 0.

4. The expected value equals zero (i.e.,
E[XK] = 0).

5. Machine learning applications can make use
of the Kernel Density Estimation approach.
Because parameters in the estimation
function define the kernel’s scope, a neural
network can begin to train itself to correct its
estimations and generate more accurate
results. The bandwidth and amplitude
estimations are continuously updated while
the estimation process repeats itself,
increasing the accuracy of the calculated
probability density curve.

that

KDE was used to estimate each of the weekly
precipitation data in the dataset and the type of
probability distribution function for each
variable. The density plots in (Figure 3) show
the precipitation data estimation for selected
weeks (as in Figure 2). The precipitation data
shows that all the variables exhibit a non-normal
distribution. The result correlates with the
outcome of the histogram plots (see Figure 2).

49

3.2 Fitting Probability Distributions
Precipitation Data

on

Comparing the histogram of the data with a
probability distribution function (pdf) of a
known distribution is a fundamental approach
typically used to determine the underlying
distribution that could have created a data set
(e.g., normal distribution). The distribution’s
parameters, however, are unknown, and there are
many different distributions. As a result, an
automatic method of fitting many distributions
to the data would be beneficial, which is what is
implemented here.

We analyze the precipitation data to identify the
best-fit probability distribution for each study
period. The goal is to find a distribution that
suits the data well. The distribution that gives a
close fit is supposed to lead to good predictions.
The best-fit probability distribution was
determined using the least square method and
based on the minimum deviation between actual
and estimated values.

Finding Best-Fit PDF

The best-fit probability distribution for the
precipitation data was obtained using a package
in Python. A class in the Fitter package identifies
the distribution from which a data sample is
created. It employs 80 SciPy distributions and
allows the plotting of the results to see which
distribution is the most likely and which
parameters are the best. The best-fit probability
distribution is that with the minimum deviation
between actual and estimated values.

Table 3 contains the result of the fitted
probability distribution functions for each
weekly precipitation. Each table includes the top
5 probability distributions out of the 80 fitted
distributions. The best-fit probability distribution
(in the first row of each table) is selected based
on the least sum of square errors (SSE) as the
default metric. The precipitation data for the
period originates from one of Lomax, Wald,
Double Gamma (dgamma), Skew Normal
(skewnorm), Exponential (expon), Cauchy,
Laplace, Half Cauchy, Semi Circular, Anglit,
and Half Normal (halfnorm) distributions. The
precipitation data of some weeks share the same
distribution, such as Weeks 4,5 and 11 (Double
Gamma), Weeks 7, 16, and 17 (Exponential),
Weeks 1 and 2 (Lomax), and Weeks 8 and 15
(Cauchy). In addition, most tables have a
particular case of either Gamma or Weibull
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—— Week6

Figure 3

distributions, which are probability
distributions commonly used to model rainfall
data. Each table presents measures used in
selecting the best-fit probability distributions.
The Akaike Information Criterion (AIC)
evaluates how well each probability density
function fits the precipitation data. Based on the
maximum likelihood estimate, AIC calculates
the relative information value of the model. The
AIC is computed using the following:

AlC = 2k — 21In(L),

where k is the number of parameters in the
density function and L" is the likelihood
estimate.

AIC scores with fewer parameters are better
than those with more parameters. For any two
models explaining the same amount of
variation, the preferred model (i.e., better-fit
model) usually has fewer parameters. The
Bayesian Information Criterion (BIC) is similar
to the AIC in selecting best-fit models. The
BIC is obtained by evaluating

BIC = klIn(n) — Zln(f),

06 Week 10

04

Density
o
w

0.200 —— Week 14

Kernel Density Estimation of the precipitation data

where L is the value that maximizes the
likelihood function of the model, n is the
number of data points in the sample size, and k
is the number of parameters estimated by the
model. A lower BIC value is preferred.

The Kullback-Leibler Divergence (KLg;,)
score, often known as the KL divergence score,

measures how much one probability
distribution differs from another.
plog(p/@) —p+q p>04qg<0
KLy, (p.q) =1 q p=0qg=0
oo Otherwise

Thus, for distributions P and Q of a continuous
random variable, (KLg;,) is defined by the
integral

KLy, (p,q) = D (P||1Q) = fp(x) lﬂg(%)dx

The Probability Density Function plot of each
precipitation week data in Table 3 is shown in
Figure 4. The top legend in each plot indicates
the best-fit probability density function.
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Table 3 Fitted probability distributions table for precipitation data

PDF SSE AIC BIC KL
div

PDF SSE AIC BIC KL
div

skewnorm|0.088494 [238.810197 [—199767.227754 o0

moyal [0.088790 [237.147174 |-199721.885994 0
kstwobign|0.089376 [235.383197 |-199613.665203 00
gumbel r 0.090281 [237.586676 |-199447.771977 )
genlogistic0.090978 [240.133587 |-199311.337092 )

skewnorm|0.088494 [238.810197 |-199767.227754 o

moyal |0.088790 237.147174|-199721.885994 o
kstwobign|0.089376 [235.383197 |-199613.665203 o
gumbel r [0.090281 [237.586676 |-199447.771977 oo
genlogistic0.090978 [240.133587 |-199311.337092 o

(a) Week 6

(b) Week 10

PDF SSE AIC BIC|KL div,

PDF SSE AIC BIC| KL div

dgamma [0.021283)295.603862] —223232.035078 oG
dweibull [0.021351295.363435 —223178.913023 oG
gennorm (0.021503[295.445463 —223062.405693 e
laplace [0.021566[293.934913 —223023.649583 oG
hypsecant|0.021576[293.733847| —223015.965548 o

(@) Week 11

4. Results and Discussion

We partition the dataset into 80:20 train-test split.
The precipitation features were standardized
using the z—score standardization method after
splitting the datasets into train and test sets. We
determine the mean (W) and standard deviation
(o) of the train data, then obtain a standard score
for a sample x using

.
I

Z

We feed the preprocessed data into six machine-
learning algorithms to train models suitable for
flood prediction. Three of these algorithms are

skewnorm

— moyal

—— kstwabign
—— gumbel_r
— genlogistic
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halfnorm |0.109094265.923054 —196331.079234 oo

moyal |0.116474263.189679 —195253.162883 oo
gumbel r |0.117977274.493330 —195042.100244 oo
rayleigh |0.120038295.590630 —194756.832298 oo
maxwell |0.124257]302.296821 —194188.095566 oo

(a) Week 14

variants of the boosting algorithm: CatBoost,
Extreme  Gradient  Boosting  Regressor
(XGBoost), and Light Gradient Boosting
Regressor (LGB). The other three neural
network schemes are Multilayer Perceptron,
Support Vector Regressor, and Random Forest.
We use the Python package running on a Google
Colaboratory cloud notebook to implement the
algorithms on the data. We consider the default
parameters of each algorithm when training the
models. After learning, the trained models were
evaluated to see how well the algorithms could
learn from the data.

~— halfcauchy
— gilbrat
— wald

—— expon
—— cauchy

08
06
04

02

00

= - I
8

(B) Week 10
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Figure 4

4.1. Model Evaluation

Since the target variable of the dataset is
continuous, the performance metrics such as
Mean Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE),
and the Co-efficient of Determination (R?) were
applied to evaluate how well the proposed
models predict floods. Table 4 shows the
performance of each model based on the selected
metrics.

From Table 4, the CatBoost model performs best
with the lowest MSE and highest R? value,
followed by Random Forest. The SVR model
has the worst performance. The implication of
the R%value from the CatBoost model is that the
percentage of the flood (target variable)
accounted for by the predictors (precipitation
data, elevation, and coordinates) is 56.5%. In
comparison, other factors may explain the
remaining 43.5%; these include temperature,
wetlands, and human activities. The RMSE
value implies that the prediction that a particular
location will be flooded may seem 15.1% off the
target. These interesting results reveal the risk
factors for floods in Africa and display a low
probability of off-target prediction when an
appropriate  machine-learning  algorithm s
deployed. However, an improvement procedure

(d) Week 14~

Plot of the best-fitted probability density function

is recommended to further reduce the off-target
prediction probability.

4.2. Prediction Plots

The prediction plot lets us visualize and compare
the actual and predicted values to see how well
the models perform. The prediction plot for each
of the models is shown in Figure 5. The blue
color lines indicate the actual values of the target
(v), while the orange color lines () indicate the
predicted values. From this plot, the SVR
(Figure 5b) did not learn well and thus did not
capture the data, thereby underfitting the data.
The Catboost model performs best (Figure 5f),
capturing the data, although some noise is
noticeable

4.3 Feature Importance Plot

In this section, we present the ranking of the
importance of feature variables. Based on their
relevance, we use the feature importance
technique to get a score of the predictors used in
training the model. The ranking of the predictors
based on the higher score from our best model
(CatBoost) is obtained using a wrapper class
contained in the algorithm. A higher score
implies that the specific feature will significantly
impact the model used in predicting the flood
extent.

Table 4 Model performance metrics table

Model MAE MSE |RMSE [R2
SVR 0.140 (0.048 [0.220 [0.075
XGBoost 0.073 [0.027 [0.166 |0.472
Catboost 0.060 (0.022 [0.151 |0.565
LGBoost 0.061 (0.026 [0.163 (0.494
RandomForest 0.058 1[0.025 [0.160 [0.51
MultiLayerPerceptron |0.094 [0.032 [0.179  |0.38
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Figure 6 is a visual representation of the critical
features of the CatBoost model. It shows the
vital contributing predictors in the model in
descending order. The most influencing
predictor in the model is “elevation,” with a
score greater than 50. Other important predictors
are the location (X and Y coordinates), Week 17
(the week with the lowest average rainfall and
the preceding week to the flooding period),
Week 9 (the week with the highest average

rainfall) precipitation data, and Land Cover Type.

Other predictors have a very low score, with
Week 10 precipitation data being the least,
indicating that the contributions of these low-
rank features (predictors) are not influencing the
model significantly. Hence, dropping these
variables may not necessarily affect the model’s
performance in predicting flood extent in the
targeted location. It may increase the model’s
efficiency by reducing the prediction error rate
(bias).

5. Conclusion

In this paper, we consider mitigating flood
occurrences by building predictive machine
learning models that learn from historical flood
patterns to make predictions of the location and
extent of floods. We examine the probability

Neural Network

(a) Multilayer Perceptron

distribution pattern of rainfall with the histogram
and kernel density estimation plots and find that
most  precipitation features have different
probability distributions, except for a few that
share the same distribution pattern. We train the
data using six machine-learning algorithms and
evaluate model performances based on four
metrics. We find that the Catboost performs best
among the selected algorithms; adding
topographical information could further improve
prediction performance. Our findings reveal that
56.5% of the variability observed in the target
variable (proportion of the areas flooded) is
explained by the predictors (i.e., elevation,
coordinates, precipitation features, and land
cover types) in the regression model. Still,
predictions of floods at specific locations may be
about 15% off the target. We determine that the
most critical risk factors are the area’s height
(elevation) and geographic location
(coordinates). Additionally, the week preceding
floods with the most and least rainfall is crucial.
Therefore, decision-makers should reevaluate
their prediction models and update the level of
alertness as appropriate during the identified
time frame.

Support Vector Regressor

— original

() SWR
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This study demonstrates that data-driven
techniques for flood prediction in Africa are
promising, with sufficient datasets and relevant
features. Our results are helpful when
determining some cost-effective and optimal
evacuation decision policies proposed in the
literature (see Taiwo et al. 2019) to mitigate the
massive loss of lives and properties during
floods.

Further improvement can be made to the model
for better prediction performance by including
other relevant features such as climatic data (e.g.,
temperature) and topographical data (e.g.,
distance to wetlands). In addition, predictors
with low relative importance (score) may be
dropped; this often influences better prediction
of machine learning models. While this study
focuses on the case of Africa, our approach and
insights provide leverage for decision-making at
the global level platforms. However, the
uniqueness of the case study location may limit
the potential for the generalization of our results.

Limitations: Because of the limited access to
data, we could not extend our exploration of
flooding events on the African continent beyond
the case of Malawi. This is a limitation of our
study.
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Online Appendices

EC.1. SOME DEFINITIONS OF TERMS
The statistical metrics are defined as follows:
e Mean Square Error (MSE)

The mean squared error function calculates the expected value of the squared (quadratic) error

or loss, a risk indicator. It is defined as:

n
1 -~
MSE= - (7~ 9
i1

Lower MSE indicates a better fit.
e Root Mean Square Error (RMSE)

This is the square root of the mean square error, and it is defined as:

e Mean Absolute Error (MAE)

This function calculates mean absolute error, a risk metric representing the expected

magnitude of an absolute error loss. It is defined as:
n
1 -~
MAE =~ |y, - 3|
i=1

e Coefficient of Determination (R?)

It represents the fraction of the variation of the outcome variable (y) explained by the model’s
independent variables. The proportion of explained variance indicates the model goodness of
fit and, thus, a measure of how well unseen samples are likely to be predicted by the model.

B i (i — y:)?
Y (i —y)?

R*(y,y) =1

Wherey = )i, ¥;, n is the number of data points, y is the actual value, and ¥ is the predicted
value of the i-th data point.

57 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627



