
82 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

University of Ibadan Journal of

Science and Logics in ICT

Research (UIJSLICTR)
ISSN: 2714-3627

A Journal of the Department of Computer Science, University of Ibadan, Ibadan, Nigeria

Volume 14 No. 1, June, 2025

journals.ui.edu.ng/uijslictr

http://uijslictr.org.ng/

83 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

Performance Analysis of a Hybrid Autoencoder-TCN Model for SQLi

Detection: Accuracy, Efficiency and Generalizability

Okhuoya Omoibu Joseph¹, Akinyede R. O.², Iwasokun G. B..3 and Gabriel Arome

Junior4

1Computer Science Department, University of Benin, Benin city, Edo State, Nigeria.
2Information Systems and Security department, Federal university of technology, Akure, Ondo State, Nigeria
3Software Engineering Department, Federal university of technology, Akure, Ondo State, Nigeria
4Cybersecurity Department, Federal university of technology, Akure, Ondo State, Nigeria
1joseph.okhuoya@uniben.edu, 2roakinyede@futa.edu.ng, 3gbiwasokun@futa.edu.ng 4ajgabriel@futa.edu.ng

Abstract

Structured Query Language Injection (SQLi) attacks remain a critical cybersecurity threat, exploiting

vulnerabilities in web applications to compromise database integrity and confidentiality. Traditional detection

methods, such as rule-based systems and conventional machine learning models, face limitations in generalizing

to novel attack patterns and preserving sequential query context. This study proposes a novel hybrid deep

learning architecture integrating autoencoders, tokenization, and Temporal Convolutional Networks (TCNs) to

address these challenges. The framework employs SQL-aware tokenization to parse queries into syntactic units,

an autoencoder to learn latent representations of benign query patterns, and a TCN to model temporal

dependencies in token sequences. By combining anomaly detection (via reconstruction error) with temporal

analysis, the model identifies both known and zero-day SQLi attacks with high precision. Evaluated on a labeled

dataset of 10,000 SQL queries (1,200 malicious, 8,800 benign), the proposed approach achieves 95.5%

accuracy, 94.0% F1-score, and 95.5% recall, outperforming baseline models such as CNNs, LSTMs, and

standalone autoencoders. The TCN’s parallel processing capability reduces inference latency by 32% compared

to recurrent architectures, making it suitable for real-time deployment. Furthermore, tokenization enables

interpretability by localizing malicious query segments, aligning with regulatory demands for explainable AI in

cybersecurity. This work advances SQLi detection by bridging gaps in temporal modeling, computational

efficiency, and generalization, offering a scalable solution for securing web applications against evolving

injection threats.

 Keywords: SQL injection detection, TCN, anomaly detection, SMOTE, performance evaluation.

1. Introduction

Cybersecurity encompasses the protection of

digital systems, networks, and data from

unauthorized access, exploitation, and damage.

As organizations increasingly rely on web

applications for critical operations, securing

databases from malicious attacks has become

paramount. Among these threats, Structured

Query Language Injection (SQLi) remains one

of the most pervasive and damaging

vulnerabilities, enabling attackers to

manipulate database queries to extract, modify,

or delete sensitive information [23, 24]

Structured Query Language (SQL), the

standard interface for relational database

management systems (RDBMS), allows

users to define, manipulate, and retrieve

structured data. However, improper input

validation in web applications exposes

systems to SQLi attacks, where malicious

actors inject unauthorized SQL code into

input fields [15]. These attacks

compromise data integrity, confidentiality,

and availability, leading to financial losses,

reputational damage, and legal

repercussions. Despite advancements in

detection mechanisms, evolving attack

vectors such as blind SQLi and out-of-

band SQLi continue to challenge

traditional security frameworks [27].

Okhuoya Omoibu Joseph, Akinyede R. O., Iwasokun G. B..

and Gabriel Arome Junior (2025). Performance Analysis of

a Hybrid Autoencoder-TCN Model for SQLi Detection:

Accuracy, Efficiency and Generalizability. University of

Ibadan Journal of Science and Logics in ICT Research

(UIJSLICTR), Vol. 14 No. 1, pp. 83 - 97

©U IJSLICTR Vol. 14, No. 1, June 2025

84 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 1: SQL Injection Attack process [24]

1.1 Motivation for the Study

The study on the Hybrid Autoencoder-TCN

Model for SQLi Detection is motivated by the

urgent need to address the persistent and

evolving threat of SQL Injection (SQLi) attacks,

which remain a top web application

vulnerability. Existing approaches, including

rule-based filters and machine learning models,

struggle with zero-day attacks and polymorphic

payloads [31]. Deep learning (DL) techniques

offer promise due to their ability to learn

complex patterns, yet gaps persist in temporal

sequence modeling and computational

efficiency [21, 29]. This study addresses these

limitations by proposing a novel hybrid

architecture

integrating autoencoders, tokenization,

and Temporal Convolutional Networks (TCNs).

1.2 Techniques in Data Mining

Data mining is the process of discovering useful

patterns, relationships, and insights from large

volumes of data [17]. It is applied to analyze

SQL queries, detect anomalous patterns, and

distinguish between benign and malicious SQL

injections (SQLi). In cybersecurity, particularly

for SQLi detection, data mining helps automate

and enhance threat detection by identifying

patterns that indicate attacks [10]. Several

techniques have been developed and widely

applied in data mining research, including

association, classification, clustering,

prediction, and sequential pattern mining [34].

The focus of this work is on the classification

technique due to its effectiveness in labeling

queries as either benign or malicious.

1.2.1 Classification

Classification is one of the fundamental

techniques in data mining. It is widely used for

handling large volumes of data and predicting

categorical class labels [17]. A classification

model is built to assign new or unseen data into

predefined class labels. Classification is also

defined as the process of finding a model that

describes and distinguishes data classes or

concepts [34]. It typically follows a two-step

process: a learning phase (or knowledge

acquisition step) to build the classification

model, and a categorization phase where the

model is used to assign class labels to new data.

Classification can serve as both descriptive

modeling to explain distinctions among

different classes and predictive modeling to

assign class labels to unknown data [17]. This

approach is particularly suitable for datasets

with binary or limited types of target classes.

Various types of classification algorithms

include functional models (e.g., logistic

regression), Bayesian models, lazy learners

(e.g., k-nearest neighbors), rule-based

classifiers, decision trees, and meta learners.

Each employs a learning algorithm to identify

the relationship between attribute sets and class

labels [34].

A key objective of a learning algorithm is to

build a model that generalizes well to unseen

instances, meaning it can accurately predict the

class labels of previously unobserved data [10].

In this study, classification techniques such as

logistic regression, random forest, support

vector machines (SVM), temporal

convolutional networks (TCNs), and neural

85 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

networks are considered for the task of SQL

injection detection.

1.1.2 Classification Methods

Classification Techniques in SQLi Detection

Using Hybrid Autoencoder-TCN Model. Four

classification techniques are employed to

evaluate their performance in detecting SQL

injection (SQLi) attacks. Each method operates

on features extracted by the Autoencoder

component, and their capacity to generalize and

efficiently classify benign and malicious

queries is assessed.

(a) Logistic Regression (LR)

Logistic Regression is a statistical model used

for binary classification problems. It estimates

the probability that a given input belongs to a

particular class. The output is a probability

score transformed using the sigmoid (logistic)

function, which maps any real valued number

into the range [0,1]. It assumes a linear

relationship between the input features and the

log-odds of the outcome, Logistic regression is

a simple yet effective method widely used in

various domains, including text classification

and anomaly detection [18]. the LR theorem is

expressed in equation (1)

 (1)

Where: is the input feature vector, is the

weight vector, is the bias term

(b) Random Forest (RF)

Random Forest is an ensemble learning method

that operates by constructing multiple decision

trees during training. The final output is the

mode (classification) of the outputs from

individual trees. It is effective for handling non-

linear data and avoids overfitting by averaging

multiple models. Random Forest is known for

its robustness, accuracy, and ability to handle

high-dimensional data without heavy

preprocessing. [9], the RF theorem is expressed

in equation (2)

 (2)

Where: is the prediction of the

decision tree, is the total number of trees

(c) Support Vector Machine (SVM)

SVM is a supervised learning algorithm that

finds the optimal hyperplane to separate data

points of different classes. It maximizes the

margin between

the classes and is effective for high-dimensional

and linearly/non-linearly separable data through

the use of kernel functions. SVM is powerful

for classification tasks with clear margins of

separation and can handle both linear and non-

linear data through kernel functions. [11], the

SVM theorem is expressed in equation (3)

 (3)

Where: is a transformation function

(kernel), and define the hyperplane

(d) Temporal Convolutional Network (TCN)

TCNs are convolutional neural networks

designed for sequence modeling. Unlike RNNs,

TCNs use 1D dilated causal convolutions to

preserve the order of sequence data and capture

long-range dependencies efficiently. They are

well-suited for time-series classification, such

as identifying patterns in SQL queries. TCNs

outperform RNN based architectures in many

sequence modeling tasks due to their

parallelism and ability to model long-term

dependencies. [7], the TCN theorem is

expressed in equation (4)

 (4)

Where: is the input sequence, is the

1D convolution operation, is an activation

function (e.g., ReLU).

Table 1: Model classifier strengths and

limitations

Classifier Strengths Limitations

Logistic

Regression

Fast,

interpretable

Limited to

linear

boundaries

Random

Forest

Robust to

noise, non-

linear

Can be slow

with many trees

SVM High accuracy

in high

dimensions

Sensitive to

parameter

tuning

TCN Captures

temporal

patterns

Requires more

training data

2. Related Works

The work by (Neel, Patel, Sisodiya, Doshi, &

Mishra [29] in "A CNN-BiLSTM based

Approach for Detection of SQL Injection

86 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Attacks" highlight the significance of SQL

injection detection in maintaining the security

of back-end databases. Their work introduces a

CNN-BiLSTM approach, showcasing its

superior accuracy and performance compared to

other machine learning algorithms. The author

aims to build upon these findings by refining

the CNN-BiLSTM model, focusing on

enhancing accuracy while reducing

computational costs.

The work by Ao, Huang, & Fan [6] “A CNN-

based Approach to the Detection of SQL

Injection Attacks" emphasize the effectiveness

of CNN-based detection methods over rule-

matching approaches. We are inspired to

explore CNN models further and evaluate their

efficiency in SQL injection detection.

Maha, Alghazzawi, and Alarifi [26] proposed a

deep learning architecture for SQL injection

detection based on RNN autoencoders, as

presented in their work "Deep Learning

Architecture for Detecting SQL Injection

Attacks Based on RNN Autoencoder Model."

Their approach demonstrated high accuracy and

strong F1-scores. Building on this foundation,

our study aims to explore the potential of

integrating the strengths of both CNN and

RNN-based models to achieve even more

robust and effective SQL injection detection.

Balbahaith [8] proposed a model to prevent

SQLIAs, the author developed a model using a

heuristic-based machine learning approach.

Their study integrated the advantages of

dynamic and static analysis with a machine

learning approach. It was decided to use a well-

studied dataset that contained all possible SQL

statements. They used 23 various machine

learning classifications to train the dataset and

test it. The top five of the 25 classifiers are then

selected going to depend on the outcomes of the

actual positive and actual negative rates. After

the classification learners completed the

training, they checked the precision of each

classifier. To get 93.8% they employed the five

most effective and accurate classifiers. To

improve system performance there is a need to

include non-injected SQL statements in their

dataset and investigate and test additional

functions. The drawback of this work is small

test dataset is used.

Ketema [21] employed a deep learning-based

Convolutional Neural Network (CNN) to

develop a model aimed at preventing SQL

injection (SQLi) attacks, utilizing a publicly

available benchmark dataset. The model was

trained under five different experimental

scenarios, each with varying hyperparameter

configurations to optimize performance. The

proposed CNN-based approach demonstrated

strong effectiveness, achieving an overall

accuracy of 97%, indicating its potential for

robust SQLi detection in real-world

applications.

Roy, Kumar, & Rani [31] presented a method

for detecting SQL injection attacks using

machine learning classifiers. The authors used

five ML classifiers (logistic regression,

AdaBoost, naive Bayes, XGBoost, and random

forest) to classify SQL queries as either

legitimate or malicious. The proposed model

was trained and evaluated using a publicly

available dataset of SQL injection attacks on

Kaggle. The results of the study showed that the

best performance was achieved by the naive

Bayes classifier, with an accuracy of 98.33%.

Finally, the authors performed a comparison

with previous work. The result of the study

demonstrated the potential of machine learning

classifiers in improving the accuracy and

efficiency of SQL injection attack detection.

Krishnan, Sabu, Sajan, and Sreedeep [23]

proposed a machine learning-based approach

for detecting SQL injection (SQLi) attacks,

emphasizing the limitations of traditional

signature-based detection methods in

addressing sophisticated and evolving threats.

They argued that machine learning offers a

more adaptive and robust solution for

identifying such attacks. The study began by

categorizing various types of SQLi attacks and

discussing their potential impact on web

applications. The proposed framework

comprised four key stages: data preprocessing,

feature extraction, model training, and

performance evaluation. Experimental results

demonstrated that the Convolutional Neural

Network (CNN) classifier outperformed other

models across multiple evaluation metrics,

including accuracy, precision, recall, and F1-

score, highlighting its effectiveness in detecting

SQLi attacks.

Rahul, Vajrala, and Thangaraju [30] introduced

an innovative approach to defending against

SQL injection and cross-site scripting (XSS)

attacks by enhancing a Web Application

Firewall (WAF) with a honeypot system. In this

method, the WAF filters incoming traffic based

87 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

on known attack patterns, while the honeypot is

designed to lure attackers and gather detailed

information about their techniques. This

information is then leveraged to improve the

WAF’s detection and prevention capabilities.

Experimental evaluations demonstrated that this

combined strategy significantly enhances the

protection of web applications against such

attacks.

Zhang et al. [37] proposed a deep neural

network-based approach for detecting SQL

injection attacks, addressing the limitations of

traditional detection methods. To develop their

model, the authors compiled a dataset

comprising both benign and malicious SQL

queries, which was used to train a multi-layer

deep neural network classifier. The

performance of the proposed method was then

evaluated against conventional machine

learning algorithms, including K-Nearest

Neighbors (KNN), Decision Trees (DT), and

Long Short-Term Memory (LSTM) networks,

demonstrating its potential advantages in

detection accuracy.

Liu, Li, and Chen [25] introduced DeepSQLi, a

novel approach for the automated detection of

SQL injection vulnerabilities in web

applications, utilizing deep semantic learning

techniques. DeepSQLi employs a deep neural

network to capture the semantic representations

of SQL queries and effectively identify

potential injection threats. The model is trained

on a dataset comprising both benign and

malicious SQL queries and incorporates

multiple layers of convolutional and recurrent

neural networks. Experimental results

demonstrated that DeepSQLi outperformed

traditional tools such as SQLMap, detecting

more SQL injection attacks with greater speed

and efficiency, and requiring fewer test cases.

Chen, Yan, Wu, and Zhao [12] proposed a deep

learning-based method for detecting and

preventing SQL injection attacks in web

applications. Their approach involved training

and evaluating both a Convolutional Neural

Network (CNN) and a Multilayer Perceptron

(MLP), comparing the models using key

performance metrics such as accuracy,

precision, recall, and F1-score. Experimental

results indicated that both CNN and MLP

models achieved strong performance in

detecting SQL injection attacks.

Li Q. [25] proposed a method for detecting

sophisticated SQL injection attempts using an

adaptable deep forest algorithm. In this

approach, the input to each layer is formed by

combining the average output of the previous

layers with the original feature vector,

enhancing the model’s ability to capture

complex patterns. This structure makes deep

forest models particularly suitable for SQL

injection detection. The authors further

introduced an advanced strategy known as the

Adobos-based deep forest model, which

operates in two phases: an offline training phase

and an online testing phase. The model was

trained on a dataset of 10,000 SQL injection

samples, incorporating features such as UNION

queries, executed SQL commands, error-based

injections, and blind injections from diverse

sources. While the model demonstrated strong

detection capabilities on smaller datasets, a

notable limitation is its reduced computational

efficiency and diminished performance when

applied to large-scale data.

SQL injection is a critical cybersecurity threat,

posing risks to the Confidentiality, Integrity and

Availability (CIA)of back-end databases.

Effective detection and prevention of SQLi

attacks are essential to safeguarding valuable

data. This paper draws motivation from recent

research articles authored by [6-7],[21], [23-

226], [28-31],[37] to propose an innovative

approach for SQLi detection.

This study aims to advance the field of

cybersecurity by providing an enhanced

solution for SQL injection (SQLi) detection,

thereby mitigating the risks posed by this

widespread threat. Deep learning-based

approaches have demonstrated significant

potential in identifying SQLi attacks, as they

can effectively learn underlying patterns in

input data and detect anomalies—even in

obfuscated or disguised attacks. The primary

objective of this research is to evaluate the

effectiveness of a proposed Hybrid

Autoencoder–Temporal Convolutional Network

(TCN) model for SQLi detection. Existing

methods, including CNNs, RNNs, and

Transformer-based models, are critically

analyzed, with particular attention to their

limitations in terms of latency, generalization,

and explainability. The study emphasizes the

advantages of TCNs, especially their strengths

in parallel processing and modeling long-range

dependencies

88 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

.

3. Methodology

Figure 2: System Architecture of the Proposed System

3.0 System Architecture

The System architecture of the overall structural

design of SQL injection (SQLi) detection

system. It describes how different components

(data preprocessing, embedding, model and

detection) interact to process input queries and

produce a classification result (benign or

malicious). The system uses a hybrid deep

learning model (Autoencoder + TCN), and the

architecture ensures smooth flow from raw

SQL input to final decision.

3.1 Dataset Description

The dataset used in this study was sourced from

Kaggle and contains a total of 10,000 labeled

web queries, including both SQL injection

(SQLI) and non-SQLI (benign) samples. The

dataset is already labeled, with 1,200 queries

marked as SQLI (label = 1) and 8,800 as non-

SQLI (label = 0), creating a class imbalance

scenario.

Each record consists of a single string (a web

request or SQL query) and a binary label. The

queries include a variety of attack signatures

such as UNION SELECT, ' OR 1=1 --, and

DROP TABLE, alongside safe requests such as

static page requests or harmless SQL calls.

3.2 Preprocessing and Feature Extraction

Preprocessing is the stage where raw input data

(SQL queries) is cleaned and transformed into a

structured format that can be understood by the

machine learning model feature extraction

involves identifying and constructing relevant

features from raw input that capture useful

patterns for SQLi detection.

3.2.1 Loading and Exploring the Data

The dataset was imported using Pandas, and

initial exploration focused on checking for

missing values, understanding the structure of

the queries, and verifying label distribution.

The dataset was then split into features (X) and

89 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

labels (y), where X contains the query text and

y the corresponding classification label.

3.2.2 Addressing Class Imbalance

Given the imbalance between SQLi and non-

SQLi samples, we implemented a two-step

strategy to improve model learning:

a) Data Augmentation: Custom augmentation

techniques were applied to expand the

SQLi class. These included tactics like

word reordering, random casing, and partial

query mutation to simulate realistic

obfuscated attacks.

b) SMOTE (Synthetic Minority Oversampling

Technique): To further balance the dataset

at the feature level, we applied SMOTE

after vectorization. This technique

generated synthetic examples of SQLi

queries in feature space, helping the

classifier train more evenly across both

classes.

This combination ensured the model could

generalize across a wide range of real-world

attack variations while maintaining a balanced

training dataset.

3.2.3 Tokenization and Vectorization

Each query string was first tokenized using

natural language tool kits (NLTK)

word_tokenize(), which preserves critical

tokens like ', --, OR, and other SQL-specific

keywords. These tokens were then transformed

into numerical representations using

CountVectorizer from scikit-learn.

The following configuration was used:

Table 2: CountVectorizer configuration

stop_words='english'

min_df=2

max_df=0.85

We also experimented with Word2Vec, GloVe,

and BERT, but these embeddings, while

semantically rich, did not provide significant

performance gains in this specific classification

task. CountVectorizer offered a more efficient

trade-off between performance and

interpretability.

3.3.4 Autoencoder-Based Feature Extraction

The autoencoder acts as a feature extractor it

reduces high-dimensional input into low-

dimensional, informative latent vectors. To

extract meaningful compressed representations

of the input vectors, a deep autoencoder was

used.

Table 3: Autoencoder architecture parameter

Layer Type Units Activation

Input Dense 100 ReLU

Hidden 1 Dense 128 ReLU

BatchNorm - - -

Encoder Dense 64 ReLU

Hidden 2 Dense 128 ReLU

BatchNorm - - -

Output Dense 100 Sigmoid

The 64-dimensional encoded vector was chosen

based on empirical testing. This dimensionality

provided sufficient expressive capacity while

reducing complexity.

Since our input data was binary (presence or

absence of a token), we opted for binary cross-

entropy loss, which performed better than

alternatives like mean square error (MSE) in

this scenario. The model was trained using the

Adam optimizer to convert the result into a

probability in the range [0,1] for 50 epochs,

with early stopping to prevent overfitting.

3.3.5 Model Development

Model development refers to the design,

construction, training, and validation of the

deep learning model that will be used to detect

SQLi attacks. This combination is chosen to

effectively capture both anomalous patterns via

the autoencoder and temporal/sequential

dependencies through the TCN in SQL queries.

3.3.6 Temporal Convolutional Network (TCN)

A TCN was selected due to its strength in

handling sequential data like tokenized queries.

Table 4: TCN architecture details

Input Shape: (None, 1)

Initial Conv1D: 64 filters, kernel size = 3, causal

padding

Residual Blocks: 3 blocks with dilation rates =

[1, 2, 4]

Batch Normalization: After each convolution

Dropout: 0.3

Global Average Pooling

Output: Dense layer with sigmoid activation

90 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

The TCN was compiled with binary cross-

entropy loss and the Adam optimizer (learning

rate = 0.0001), training was performed for 50

epochs, with early stopping and batch size = 64.

3.3.7 Comparative Models and Parameters

To benchmark performance, we evaluated

several other models using the same training

data and encoded features:

Table 5: Comparative models and parameters

Model Parameters

Logistic

Regression

C=1.0, solver='liblinear'

Random Forest n_estimators=100,

max_depth=10

SVM kernel='rbf', C=1

Naive Bayes MultinomialNB

Decision Tree max_depth=10

KNN n_neighbors=5

XGBoost learning_rate=0.1,

max_depth=6

All models were evaluated using 5-fold cross-

validation to ensure statistical validity and

minimize overfitting.

3.3.8 Model Evaluation

Model evaluation is the process of measuring

how well the trained hybrid Autoencoder-TCN

model performs in detecting SQL Injection

(SQLi) attacks. It determines the evaluation

phase helps assess whether the model is

reliable, fast, and adaptable in real-world

security environments. To measure

performance, we used a suite of metrics

relevant to security-sensitive applications:

Table 6: Model evaluation performance

measurement

Metric Relevance

Accuracy Overall correctness

Precision Ensures alerts are reliable

Recall Critical in security catches real

attacks

F1-Score Balances precision and recall

ROC-

AUC

Measures overall discrimination

ability

Log Loss Penalizes overly confident

incorrect predictions

Given the risk of false negatives in SQLi

detection, recall was treated as a priority metric.

To further visualize performance, we generated:

 Confusion matrices for each model

 ROC curves

 Bar plots comparing metrics across

models

4. Results and Discussion

4.1 Result

This section presents and analyzes the results

obtained from training and evaluating the

proposed SQLi Detection Model using the

Autoencoder-Tokenization-TCN approach. We

also compare the performance of the TCN

model against baseline machine learning

models such as LR, RF, SVM, NB, K-NN,

XGBoost and TCN Furthermore, we analyze

the model's robustness, generalization to new

attack types, and its overall real-world impact in

the context of cybersecurity.

4.1.1 Evaluation Metrics Recap

To ensure consistent and meaningful

comparison across all models, we used the

following evaluation metrics:

 Accuracy: The proportion of correctly

classified queries.

 Precision: Measures how many of the

predicted SQLI queries were actually SQLI.

 Recall: The ability of the model to correctly

identify actual SQLI cases.

 F1-Score: The harmonic mean of precision

and recall, especially useful when dealing

with imbalanced class distributions.

 ROC-AUC: Reflects the model’s ability to

distinguish between SQLI and non-SQLI

classes.

 Log Loss: Measures the uncertainty of

predictions (probability values) for

classification tasks.

 PR-AUC: Focuses on the trade-off between

precision and recall (especially useful in

imbalanced datasets).

4.1.2 Dataset Head and Tail

To understand the nature of the data used for

model training and evaluation, a look at the first

few (head) and last few (tail) entries of the

dataset was conducted. These rows help verify

labeling consistency, distribution of classes, and

offer insight into the diversity of SQL and non-

SQLi queries.

91 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 3: Dataset head and tail

4.1.3 Quantitative Results

The following table summarizes the performance of all models trained using the encoded features

extracted by the autoencoder:

Figure 4: Summaries of the performance of all models.

The proposed model TCN achieved one of the

highest F1-scores (0.940) and recall (0.955),

confirming its ability to detect SQLi patterns

with minimal false negatives critical for

security systems. While RF slightly

outperformed TCN in accuracy (0.963 vs.

0.955), TCN had a stronger F1-score, which is

more informative in imbalanced scenarios.

XGBoost also delivered excellent results,

especially in ROC-AUC (0.992) and PR-AUC

(0.981), rivaling the TCN model in overall

robustness. Naive Bayes, by contrast,

significantly underperformed across all metrics.

Its low precision and high log loss indicate it is

not well-suited for detected SQLi attack.

Models like DT and K-NN performed well

overall, but lacked the temporal sequence

modeling capabilities that give TCN a distinct

edge.

4.1.4 Visualization of Performance

To better illustrate the tabular results presented

earlier, we visualized the key evaluation

metrics for the model using both bar plots and

ROC curves.

Model Comparison (Accuracy, F1-Score

and ROC Comparison)

The following bar chart compares the

Accuracy and F1-Score of each model. As

seen, the TCN model shows strong

performance, achieving a high F1-Score of

0.940 and an Accuracy of 0.955, positioning it

among the best-performing models.

92 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 3: Model Comparison (Accuracy, F1-Score and ROC Comparison)

This plot provides a visual comparison of how

each model performed across the most relevant

evaluation metrics, The TCN model stands out

with a consistently high F1-Score and ROC-

AUC, matching or exceeding the performance

of even strong baselines like RF and XGBoost.

While NB shows significantly lower bars across

all metrics, LR, DT, and K-NN perform

reasonably well. XGBoost exhibits one of the

highest ROC-AUC scores, indicating excellent

discriminative power, but the TCN achieves

better F1-Score and recall, making it more

reliable in detecting SQLi under varying

conditions. This bar plot makes it easier to see

which models achieve balance across multiple

critical metrics, rather than just a high accuracy

alone.

4.1.5 Confusion Matrix

Confusion matrix table is used to describes the

performance of a classification model by

showing the actual vs. predicted classifications,

for a binary classification problem like

detecting SQLi (malicious) vs non-SQLi

(benign) traffic, the confusion matrix for the

TCN model has the following structure:

Table 7: Confusion Matrix

 Predicted

SQLI

Predicted

Normal

Actual

SQLi

1140 (True

Positive)

60 (False

Negative)

Actual

Normal

90 (False

Positive)

8710

(True

Negative)

This matrix shows that the TCN model

performs exceptionally well at detecting SQLi

queries, with only a small number of false

negatives. In cybersecurity, false negatives

(missed SQLi attacks) are critical, and the low

number of these highlights the effectiveness of

the TCN model.

Figure 4: Confusion Matrix

93 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

True Positives (TP = 1140): SQLI correctly

identified, False Negatives (FN = 60): SQLI

missed by the model,False Positives (FP = 90):

Benign queries flagged as attacks, less critical

but could raise alerts, True Negatives (TN =

8710): Benign queries correctly passed. These

values are used to compute several performance

metrics that are relevant for your hybrid

Autoencoder-TCN model.

4.1.6 Sample Prediction Output

To further illustrate the practical performance

of the proposed SQLi Detection Model, a set of

real-world-like SQL queries was passed

through the trained TCN classifier, each query

was labeled according to the model’s prediction

distinguishing between Normal, Blind SQLi,

Error-based SQLi, and Union-based SQLi

categories.

The model successfully identified key SQLi

patterns across various attack types such as

Error-based SQLi: Detected in cases with

suspicious command structures like DROP

TABLE and inline boolean logic (e.g., 1' OR

1=1). Blind SQLi: Captured via queries that

rely on always-true conditions (1=1) or

tautologies hidden in where clauses. Union-

based SQLi: Detected in queries attempting to

append unauthorized data retrieval (e.g., using

UNION SELECT). Normal Queries: Most

benign queries, such as standard SELECT,

INSERT, or filter-based conditions, were

correctly classified as Normal. A few edge

cases (like short union queries or obfuscated

injections) can still appear as false negatives

(e.g., UNION SELECT username, password

FROM users was misclassified as normal).

These can be further addressed with adversarial

retraining or query context enrichment in future

work.

4.1.7 ROC Curve Analysis

The Receiver Operating Characteristic (ROC)

Curve (Fig. 6) illustrates the trade-off between

the True Positive Rate (TPR) and the False

Positive Rate (FPR) for each model. The Area

Under the Curve (AUC) is a key metric that

summarizes the model's ability to distinguish

between SQLi and non-SQLi instances. RF

(AUC = 0.99) and XGBoost (AUC = 0.99)

achieve the highest AUC scores, indicating

excellent classification performance (Fig. 6).

LR (AUC = 0.97) and K-Nearest Neighbors

(AUC = 0.96) also perform well, with AUC

scores close to 1.0. NB (AUC = 0.67) has the

lowest AUC score, indicating poor performance

compared to other models.

4.2 Discussion

The ROC curve highlights the superiority of

ensemble models (Random Forest and

XGBoost) in distinguishing between classes.

Their curves are closer to the top-left corner,

indicating a better balance between TPR and

FPR. Naive Bayes, on the other hand, struggles

with this task due to its simplicity

.

Figure 5: Sample Prediction output for SQLi categories

94 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 6: ROC Curve Analysis

4.2.1 Precision-Recall Curve Analysis

The Precision-Recall Curve (Fig. 7) is

particularly useful for evaluating model

performance on imbalanced datasets, where

SQL injection instances are rare compared to

non-SQLi instances. Precision measures the

proportion of true positives among all positive

predictions, while recall measures the

proportion of true positives correctly identified

by the model. RF and XGBoost have curves

that are closer to the top-right corner,

indicating high precision and recall as given in

Figure 7. NB has a curve closer to the bottom-

left corner, indicating poor precision and

recall.

4.2.2 Discussion on precision-recall curve

analysis

The Precision-Recall curve confirms that

ensemble models are better at detecting SQLi

without many false positives. This is critical

for real-world applications, where false

positives can lead to unnecessary alerts.

Figure 7: Precision-Recall Curve Analysis

95 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

4.2.3 Discussion Why TCN Performs Well

The TCN consistently outperforms traditional

models due to its inherent strength in capturing

sequential relationships within input data.

Unlike models that treat SQL queries as flat,

unordered feature sets, TCN analyzes the order

and structure of tokens which is critical in

detecting obfuscated or fragmented SQLi

patterns. Many SQLi attacks are constructed

with seemingly benign segments spread across

the query, and TCN’s temporal modeling

allows it to pick up on those contextual signals

more effectively than conventional classifiers.

Furthermore, the combination of TCN with

autoencoder-based feature extraction ensures

that the model works on dense, compressed

representations of tokenized input preserving

key signal while removing noise.

This deep architecture enables TCN to detect

even subtle anomalies and adapt to both known

and novel attack structures. The practical

effectiveness of the TCN model is further

demonstrated in sample predictions, it was able

to correctly classify a wide range of queries

including error-based, blind, and union-based

SQLi attacks with high confidence, even

cleverly disguised queries such as "SELECT *

FROM users WHERE id = 1 AND 1=1" and

"WAITFOR DELAY '00:00:05'" were

appropriately flagged, validating that the model

isn’t just performing well in theory but also in

realistic scenarios.

4.2.4 Comparison with Traditional Models

While models such as RF and XGBoost

delivered high performance across several

metrics, they lack the capacity to account for

the sequential or syntactic patterns that often

define SQLi behavior. Their predictions are

based on feature presence and frequency, not

the order in which terms appear which can limit

their ability to detect more complex or

disguised injections, on the other hand, models

like NB assume independence between features

assumption that is fundamentally violated in

SQLi queries, where keywords and symbols

often work in tandem (e.g., ' OR 1=1 --). As a

result, NB underperformed, reinforcing the

necessity of sequence aware models for this

task.

4.2.5 Importance of Recall

In cybersecurity recall is a top priority, a high

recall value means fewer SQLi attacks go

undetected which is critical, as even a single

missed injection can lead to a severe data

breach or system compromise. The TCN model

achieved a recall of 0.955, striking a strong

balance between comprehensive threat

detection and acceptable levels of false

positives. The confusion matrix further

confirms this as showed in the number of false

negatives (missed attacks) was kept very low,

ensuring the system maintains a proactive

defense posture without overwhelming

administrators with alerts. Sample outputs

reinforce this high recall performance queries

that exploit logic-based, time delay, and string

concatenation methods were rarely missed. This

indicates the model’s strength not just in

evaluation metrics, but in real-world threat

detection.

4.2.6 Impact of Data Augmentation and

SMOTE

Addressing the inherent class imbalance in the

dataset where benign queries significantly

outnumber SQLi attempts, we employed

SMOTE (Synthetic Minority Over-sampling

Technique). SMOTE synthetically generates

new examples of the minority class (SQLi) by

interpolating between existing samples. This

provided the model with a richer and more

diverse set of attack examples during training.

The impact was twofold:

a) The model learned to generalize better

across different types of SQLI attacks,

including error-based, blind, and union-

based injections.

b) It reduced the bias toward the majority

class, thereby improving recall and PR-

AUC, and making the classifier more

resilient to uncommon or novel injection

strategies.

Together with light data augmentation (e.g.,

minor variations of attack strings), SMOTE

contributed to building a robust and

generalizable detection system ready for real-

world deployment.

5. Conclusion

This study evaluated the performance of eight

(8) data mining classification algorithms such

as Logistic Regression (LR), Random Forest

(RF), Support Vector Machine (SVM), Naive

Bayes (NB), K-Nearest Neighbors (K-NN),

XGBoost, Decision Tree (DT), and the

proposed Temporal Convolutional Network

(TCN) in analyzing and predicting SQL

injection (SQLi) attacks. The datasets used

were sourced from the Kaggle Machine

96 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Learning Repository and were split into 70%

training and 30% testing sets. Among the

models, the proposed TCN achieved one of the

highest F1-scores (0.940) and recall values

(0.955), demonstrating strong capability in

identifying SQLi patterns while minimizing

false negatives an essential factor in

cybersecurity applications. Although Random

Forest slightly outperformed TCN in terms of

accuracy (0.963 vs. 0.955), TCN’s superior F1-

score made it more reliable in handling class

imbalance, which is common in intrusion

detection datasets. XGBoost also delivered

outstanding results, particularly in ROC-AUC

(0.992) and PR-AUC (0.981), indicating its

robustness and competitiveness with TCN. In

contrast, Naive Bayes showed significantly

weaker performance across all evaluation

metrics. Its low precision and high log loss

suggest that it is not well-suited for detecting

SQLi attacks. While models like Decision Tree

and K-NN performed reasonably well, they

lacked the temporal sequence modeling

capabilities inherent to TCN, which provided a

critical advantage. By effectively integrating

temporal modeling, unsupervised learning, and

real-time detection capabilities, the proposed

TCN-based framework establishes a new

benchmark for cybersecurity systems. Its

combination of high accuracy and low latency

makes it particularly well-suited for deployment

in web application firewalls. Future research

should focus on translating these advancements

into practical, scalable tools to promote

widespread adoption and strengthen global

digital infrastructure security.

References

[1] Adhikari, A. K. (2014). A SQL injection:

Internal investigation of injection, detection and

prevention of SQL injection

attacks. International Journal of Engineering

Research & Technology (IJERT), 3 (1), 1–10.

[2] Ajit, K. A. (2020). A review of convolutional

neural networks. Proceedings of the

International Conference on Emerging Trends

in Information Technology and Engineering (ic-

ETITE). IEEE.

[3] Alenezi, M. N. (2021). SQL injection attacks

countermeasures assessments. Indonesian

Journal of Electrical Engineering and

Computer Science, 21(2), 1121–

1131. DOI: http://doi.org/10.11591/ijeecs.v21.i2

.pp1121-1131.

[4] Alghawazi, M., Alghazzawi, D., & Alarifi, S.

(2022). Detection of SQL injection attack using

machine learning techniques: A systematic

literature review. Journal of Cybersecurity and

Privacy, 2 (4),764–777.

 https://doi.org/10.3390/jcp2040039.

[5] Ali, S. A. (2018). Investigation framework of

web applications vulnerabilities, attacks and

protection techniques in structured query

language injection attacks. International

Journal of Wireless and Mobile Computing, 14

(2), 89–101.

[6] Ao, L., Huang, W., & Fan, W. (2019). A CNN-

based approach to the detection of SQL

injection attacks. Journal of Information

Security and Applications, 48,

102361.https://doi.org/10.1016/j.jisa.2019.1023

61.

[7] Bai, S., Kolter, J. Z., & Koltun, V. (2018). An

Empirical Evaluation of Generic Convolutional

and Recurrent Networks for Sequence

Modeling. arXiv preprint arXiv:1803.01271.

https://arxiv.org/abs/1803.01271.

[8] Balbahaith, M. H. (2019). Detection of SQL

injection attacks: A machine learning

approach. Proceedings of the International

Conference on Electrical and Computing

Technologies and Applications (ICECTA).

IEEE. https://doi.org/10.1109/icecta48151.2019

.8959617.

[9] Breiman, L. (2001). Random forests. Machine

Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324.

[10] Chandola, V., Banerjee, A., & Kumar, V.

(2009). Anomaly detection: A survey. ACM

Computing Surveys (CSUR), 41(3), 1–58.

https://doi.org/10.1145/1541880.1541882.

[11] Cortes, C., & Vapnik, V. (1995). Support-

vector networks. Machine Learning, 20(3),

273–297. https://doi.org/10.1007/BF00994018.

[12] Chen, D., Yan, Q., Wu, C., & Zhao, J. (2021).

SQL injection attack detection and prevention

techniques using deep learning. Journal of

Physics: Conference Series, 1757(1), 012055.

DOI 10.1088/1742-6596/1757/1/012055.

[13] Craigen, N. D.-T. (2014). Defining

cybersecurity. Technology Innovation

Management Review, 4(10), 13–21.

[14] Elham, W. P. (2019, April). Cyber security in

the quantum era. Communications of the

ACM, 62(4), 120–129.

[15] Fortinet. (2023). SQL injection. Retrieved

from https://www.fortinet.com/resources/cyber

glossary/sql-injection.

[16] George, G. (2023). How Nigerian institutions

can strengthen their cybersecurity to safeguard

themselves against illegal hackers. Journal of

Cybersecurity Education, 8(1), 45–60.

[17] Han, J., Pei, J., & Kamber, M. (2011). Data

mining: Concepts and techniques (3rd ed.).

Morgan Kaufmann.

[18] Hosmer, D. W., Lemeshow, S., & Sturdivant,

R. X. (2013). Applied Logistic Regression.

John Wiley & Sons.

http://doi.org/10.11591/ijeecs.v21.i2.pp1121-1131
http://doi.org/10.11591/ijeecs.v21.i2.pp1121-1131
https://doi.org/10.3390/jcp2040039
https://doi.org/10.1016/j.jisa.2019.102361
https://doi.org/10.1016/j.jisa.2019.102361
https://arxiv.org/abs/1803.01271
https://doi.org/10.1109/icecta48151.2019.8959617
https://doi.org/10.1109/icecta48151.2019.8959617
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1007/BF00994018
https://www.fortinet.com/resources/cyberglossary/sql-injection
https://www.fortinet.com/resources/cyberglossary/sql-injection

97 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

[19] Kaggle. (2022). SQL injection dataset.

Retrieved from

https://www.kaggle.com/datasets/sajid576/sql-

injection-dataset.

[20] Kelvin, R. (2018). SQL injection detection

using machine learning techniques and

multiple data sources (Master’s thesis). San

Jose State University.

[21] Ketema, A. (2022). Developing SQL injection

prevention model using deep learning

technique (PhD thesis). St. Mary’s University.

[22] Khosravi, H. G. (2022). Pooling methods in

deep neural networks, a review. Journal of

Artificial Intelligence Research, 15(3), 45–67.

[23] Krishnan, S., Sabu, A., Sajan, P., & Sreedeep,

A. (2021). SQL injection detection using

machine learning. Revista Geintec-Gestão

Inovação e Tecnologias, 11(3), 300–310.

[24] Li, Q., & Wang, L. (2019). A SQL injection

detection method based on adaptive deep

forest. IEEE Access, 7, 145259–

145270. https://doi.org/10.1109/ACCESS.2019

.2945954

[25] Liu, M., Li, K., & Chen, T. (2020). DeepSQLi:

Deep semantic learning for testing SQL

injection. Proceedings of the ACM/IEEE

International Conference on Software

Engineering, 286–

297. https://doi.org/10.1145/3395363.3397375

[26] Maha, A., Alghazzawi, D., & Alarifi, S.

(2023). Deep learning architecture for

detecting SQL injection attacks based on RNN

autoencoder model. IEEE Transactions on

Dependable and Secure Computing, 20(2), 1–

15.

[27] Nanang, A. A. (2023). SQL injection detection

using deep learning: A project report. Journal

of Cybersecurity Research, 12(4), 112–130.

[28] Nash, K. O. (2015). An introduction to

convolutional neural networts. arXiv

Preprint. https://doi.org/10.48550/arXiv.1511.

08458.

[29] Neel, G., Patel, J., Sisodiya, R., Doshi, N., &

Mishra, S. (2021). A CNN-BiLSTM based

approach for detection of SQL injection

attacks. IEEE Access, 9, 154362–154374.

[30] Rahul, S., Vajrala, C., & Thangaraju, B.

(2021). A novel method of honeypot inclusive

WAF to protect from SQL injection and

XSS. Proceedings of the International

Conference on Disruptive Technologies for

Multi-Disciplinary Research and Applications

(CENTCON), 1–8.

[31] Roy, P., Kumar, R., & Rani, P. (2022). SQL

injection attack detection by machine learning

classifier. Proceedings of the International

Conference on Applied Artificial Intelligence

and Computing (ICAAIC), 394–400.

[32] Soomlek, K. K. (2016). Machine learning for

SQL injection prevention on server-side

scripting. Journal of Computer Security, 24(5),

701–720.

[33] Srinivasu, V. T. (2019). Efficient CNN for

lung cancer detection. International Journal of

Recent Technology and Engineering

(IJRTE), 8(2S3), 1–10.

[34] Tan, P.-N., Steinbach, M., Karpatne, A., &

Kumar, V. (2018). Introduction to data mining

(2nd ed.). Pearson.

[35] Tajpour, S. I. (2023). SQL injection detection

and prevention techniques (PhD thesis).

Universiti Teknologi Malaysia.

[36] Zar. C. S. S. Hlaing and M. Khaing, "A

Detection and Prevention Technique on SQL

Injection Attacks," Faculty of Information

Science, University of Computer Studies

(Magway).

[37] Zhang, W., Li, Y., Li, X., Shao, M., Mi, Y.,

Zhang, H., & Zhi, G. (2022). Deep neural

network-based SQL injection detection

method. Security and Communication

Networks, 4836289.

https://doi.org/10.1155/2022/4836289.

https://www.kaggle.com/datasets/sajid576/sql-injection-dataset
https://www.kaggle.com/datasets/sajid576/sql-injection-dataset
https://doi.org/10.1109/ACCESS.2019.2945954
https://doi.org/10.1109/ACCESS.2019.2945954
https://doi.org/10.1145/3395363.3397375
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.48550/arXiv.1511.08458
https://doi.org/10.1155/2022/4836289

