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Abstract

Structured Query Language Injection (SQLi) attacks remain a critical cybersecurity threat, exploiting
vulnerabilities in web applications to compromise database integrity and confidentiality. Traditional detection
methods, such as rule-based systems and conventional machine learning models, face limitations in generalizing
to novel attack patterns and preserving sequential query context. This study proposes a novel hybrid deep
learning architecture integrating autoencoders, tokenization, and Temporal Convolutional Networks (TCNs) to
address these challenges. The framework employs SQL-aware tokenization to parse queries into syntactic units,
an autoencoder to learn latent representations of benign query patterns, and a TCN to model temporal
dependencies in token sequences. By combining anomaly detection (via reconstruction error) with temporal
analysis, the model identifies both known and zero-day SQL.i attacks with high precision. Evaluated on a labeled
dataset of 10,000 SQL queries (1,200 malicious, 8,800 benign), the proposed approach achieves 95.5%
accuracy, 94.0% F1-score, and 95.5% recall, outperforming baseline models such as CNNs, LSTMs, and
standalone autoencoders. The TCN’s parallel processing capability reduces inference latency by 32% compared
to recurrent architectures, making it suitable for real-time deployment. Furthermore, tokenization enables
interpretability by localizing malicious query segments, aligning with regulatory demands for explainable Al in
cybersecurity. This work advances SQLi detection by bridging gaps in temporal modeling, computational
efficiency, and generalization, offering a scalable solution for securing web applications against evolving
injection threats.

Keywords: SQL injection detection, TCN, anomaly detection, SMOTE, performance evaluation.

1. Introduction

Structured Query Language (SQL), the
standard interface for relational database
management systems (RDBMS), allows
users to define, manipulate, and retrieve
structured data. However, improper input
validation in web applications exposes

paramount. Among these threats, Structured system§ t_o SQLI attac_ks, where maIICI_ous
Query Language Injection (SQLi) remains one actors inject unauthorized SQL code into
of the most pervasive and damaging input  fields  [15].  These  attacks
vulnerabilities,  enabling  attackers  to compromise data integrity, confidentiality,

Cybersecurity encompasses the protection of
digital systems, networks, and data from
unauthorized access, exploitation, and damage.
As organizations increasingly rely on web
applications for critical operations, securing
databases from malicious attacks has become

manipulate database queries to extract, modify,
or delete sensitive information [23, 24]
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and availability, leading to financial losses,
reputational damage, and legal
repercussions. Despite advancements in
detection mechanisms, evolving attack
vectors such asblind SQLi and out-of-
band  SQLicontinue to challenge
traditional security frameworks [27].
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Figure 1: SQL Injection Attack process [24]

1.1 Motivation for the Study

The study on the Hybrid Autoencoder-TCN
Model for SQLi Detection is motivated by the
urgent need to address the persistent and
evolving threat of SQL Injection (SQL.i) attacks,
which remain a top web application
vulnerability. Existing approaches, including
rule-based filters and machine learning models,
struggle with zero-day attacks and polymorphic
payloads [31]. Deep learning (DL) techniques
offer promise due to their ability to learn
complex patterns, yet gaps persist in temporal
sequence modeling and computational
efficiency [21, 29]. This study addresses these
limitations by proposing a novel hybrid
architecture

integrating autoencoders, tokenization,

and Temporal Convolutional Networks (TCNS).

1.2 Techniques in Data Mining

Data mining is the process of discovering useful
patterns, relationships, and insights from large
volumes of data [17]. It is applied to analyze
SQL queries, detect anomalous patterns, and
distinguish between benign and malicious SQL
injections (SQLi). In cybersecurity, particularly
for SQL.i detection, data mining helps automate
and enhance threat detection by identifying
patterns that indicate attacks [10]. Several
techniques have been developed and widely
applied in data mining research, including
association, classification, clustering,
prediction, and sequential pattern mining [34].
The focus of this work is on the classification
technique due to its effectiveness in labeling
gueries as either benign or malicious.

1.2.1 Classification

Classification is one of the fundamental
techniques in data mining. It is widely used for
handling large volumes of data and predicting
categorical class labels [17]. A classification
model is built to assign new or unseen data into
predefined class labels. Classification is also
defined as the process of finding a model that
describes and distinguishes data classes or
concepts [34]. It typically follows a two-step
process: a learning phase (or knowledge
acquisition step) to build the classification
model, and a categorization phase where the
model is used to assign class labels to new data.

Classification can serve as both descriptive
modeling to explain distinctions among
different classes and predictive modeling to
assign class labels to unknown data [17]. This
approach is particularly suitable for datasets
with binary or limited types of target classes.
Various types of classification algorithms
include functional models (e.g., logistic
regression), Bayesian models, lazy learners
(e.g., k-nearest  neighbors),  rule-based
classifiers, decision trees, and meta learners.
Each employs a learning algorithm to identify
the relationship between attribute sets and class
labels [34].

A key objective of a learning algorithm is to
build a model that generalizes well to unseen
instances, meaning it can accurately predict the
class labels of previously unobserved data [10].
In this study, classification techniques such as
logistic regression, random forest, support
vector machines (SVM), temporal
convolutional networks (TCNs), and neural
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networks are considered for the task of SQL
injection detection.

1.1.2 Classification Methods

Classification Techniques in SQLi Detection
Using Hybrid Autoencoder-TCN Model. Four
classification techniques are employed to
evaluate their performance in detecting SQL
injection (SQL.i) attacks. Each method operates
on features extracted by the Autoencoder
component, and their capacity to generalize and
efficiently classify benign and malicious
gueries is assessed.

(a) Logistic Regression (LR)

Logistic Regression is a statistical model used
for binary classification problems. It estimates
the probability that a given input belongs to a
particular class. The output is a probability
score transformed using the sigmoid (logistic)
function, which maps any real valued number
into the range [0,1]. It assumes a linear
relationship between the input features and the
log-odds of the outcome, Logistic regression is
a simple yet effective method widely used in
various domains, including text classification
and anomaly detection [18]. the LR theorem is
expressed in equation (1)

1
P@=1|X)=m (1)

Where: x is the input feature vector, w is the
weight vector, b is the bias term

(b) Random Forest (RF)

Random Forest is an ensemble learning method
that operates by constructing multiple decision
trees during training. The final output is the
mode (classification) of the outputs from
individual trees. It is effective for handling non-
linear data and avoids overfitting by averaging
multiple models. Random Forest is known for
its robustness, accuracy, and ability to handle
high-dimensional ~ data  without  heavy
preprocessing. [9], the RF theorem is expressed
in equation (2)

H(x) = mode(hy(x), h (%), ..., hr(x))  (2)

Where: h.(x) is the prediction of the ¢
decision tree, T is the total number of trees

(c) Support Vector Machine (SVM)
SVM is a supervised learning algorithm that
finds the optimal hyperplane to separate data

points of different classes. It maximizes the
margin between

the classes and is effective for high-dimensional
and linearly/non-linearly separable data through
the use of kernel functions. SVM is powerful
for classification tasks with clear margins of
separation and can handle both linear and non-
linear data through kernel functions. [11], the
SVM theorem is expressed in equation (3)

f(x) = sign(w” ¢ (x) + b) 3)

Where: ¢(x) is a transformation function
(kernel), w and b define the hyperplane

(d) Temporal Convolutional Network (TCN)
TCNs are convolutional neural networks
designed for sequence modeling. Unlike RNNs,
TCNs use 1D dilated causal convolutions to
preserve the order of sequence data and capture
long-range dependencies efficiently. They are
well-suited for time-series classification, such
as identifying patterns in SQL queries. TCNs
outperform RNN based architectures in many
sequence modeling tasks due to their
parallelism and ability to model long-term
dependencies. [7], the TCN theorem is
expressed in equation (4)

Y = TCN(X) = f(W + X + b) 4

Where: X € R™*4 is the input sequence, is the
1D convolution operation, f is an activation
function (e.g., ReLU).

Table 1: Model classifier strengths and
limitations

Logistic Fast, Limited to
Regression interpretable linear
boundaries

Random Robust to Can be slow

Forest noise, non- with many trees
linear

SVM High accuracy Sensitive to
in high parameter
dimensions tuning

TCN Captures Requires more
temporal training data
patterns

2. Related Works

The work by (Neel, Patel, Sisodiya, Doshi, &
Mishra [29] in "A CNN-BIiLSTM based
Approach for Detection of SQL Injection
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Attacks" highlight the significance of SQL
injection detection in maintaining the security
of back-end databases. Their work introduces a
CNN-BIiLSTM  approach, showecasing its
superior accuracy and performance compared to
other machine learning algorithms. The author
aims to build upon these findings by refining
the CNN-BIiLSTM model, focusing on
enhancing accuracy while reducing
computational costs.

The work by Ao, Huang, & Fan [6] “A CNN-
based Approach to the Detection of SQL
Injection Attacks" emphasize the effectiveness
of CNN-based detection methods over rule-
matching approaches. We are inspired to
explore CNN models further and evaluate their
efficiency in SQL injection detection.

Maha, Alghazzawi, and Alarifi [26] proposed a
deep learning architecture for SQL injection
detection based on RNN autoencoders, as
presented in their work "Deep Learning
Architecture for Detecting SQL Injection
Attacks Based on RNN Autoencoder Model."
Their approach demonstrated high accuracy and
strong F1-scores. Building on this foundation,
our study aims to explore the potential of
integrating the strengths of both CNN and
RNN-based models to achieve even more
robust and effective SQL injection detection.

Balbahaith [8] proposed a model to prevent
SQLIAs, the author developed a model using a
heuristic-based machine learning approach.
Their study integrated the advantages of
dynamic and static analysis with a machine
learning approach. It was decided to use a well-
studied dataset that contained all possible SQL
statements. They used 23 various machine
learning classifications to train the dataset and
test it. The top five of the 25 classifiers are then
selected going to depend on the outcomes of the
actual positive and actual negative rates. After
the classification learners completed the
training, they checked the precision of each
classifier. To get 93.8% they employed the five
most effective and accurate classifiers. To
improve system performance there is a need to
include non-injected SQL statements in their
dataset and investigate and test additional
functions. The drawback of this work is small
test dataset is used.

Ketema [21] employed a deep learning-based
Convolutional Neural Network (CNN) to
develop a model aimed at preventing SQL

injection (SQLi) attacks, utilizing a publicly
available benchmark dataset. The model was
trained under five different experimental
scenarios, each with varying hyperparameter
configurations to optimize performance. The
proposed CNN-based approach demonstrated
strong effectiveness, achieving an overall
accuracy of 97%, indicating its potential for
robust SQLi  detection in  real-world
applications.

Roy, Kumar, & Rani [31] presented a method
for detecting SQL injection attacks using
machine learning classifiers. The authors used
five ML classifiers (logistic regression,
AdaBoost, naive Bayes, XGBoost, and random
forest) to classify SQL queries as either
legitimate or malicious. The proposed model
was trained and evaluated using a publicly
available dataset of SQL injection attacks on
Kaggle. The results of the study showed that the
best performance was achieved by the naive
Bayes classifier, with an accuracy of 98.33%.
Finally, the authors performed a comparison
with previous work. The result of the study
demonstrated the potential of machine learning
classifiers in improving the accuracy and
efficiency of SQL injection attack detection.

Krishnan, Sabu, Sajan, and Sreedeep [23]
proposed a machine learning-based approach
for detecting SQL injection (SQLi) attacks,
emphasizing the limitations of traditional
signature-based  detection  methods  in
addressing sophisticated and evolving threats.
They argued that machine learning offers a
more adaptive and robust solution for
identifying such attacks. The study began by
categorizing various types of SQL.i attacks and
discussing their potential impact on web
applications. ~ The  proposed  framework
comprised four key stages: data preprocessing,
feature extraction, model training, and
performance evaluation. Experimental results
demonstrated that the Convolutional Neural
Network (CNN) classifier outperformed other
models across multiple evaluation metrics,
including accuracy, precision, recall, and F1-
score, highlighting its effectiveness in detecting
SQL.i attacks.

Rahul, Vajrala, and Thangaraju [30] introduced
an innovative approach to defending against
SQL injection and cross-site scripting (XSS)
attacks by enhancing a Web Application
Firewall (WAF) with a honeypot system. In this
method, the WAF filters incoming traffic based
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on known attack patterns, while the honeypot is
designed to lure attackers and gather detailed
information about their techniques. This
information is then leveraged to improve the
WAF’s detection and prevention capabilities.
Experimental evaluations demonstrated that this
combined strategy significantly enhances the
protection of web applications against such
attacks.

Zhang et al. [37] proposed a deep neural
network-based approach for detecting SQL
injection attacks, addressing the limitations of
traditional detection methods. To develop their
model, the authors compiled a dataset
comprising both benign and malicious SQL
queries, which was used to train a multi-layer
deep neural network classifier.  The
performance of the proposed method was then
evaluated against conventional — machine
learning algorithms, including K-Nearest
Neighbors (KNN), Decision Trees (DT), and
Long Short-Term Memory (LSTM) networks,
demonstrating its potential advantages in
detection accuracy.

Liu, Li, and Chen [25] introduced DeepSQLi, a
novel approach for the automated detection of
SQL injection  wvulnerabilities in  web
applications, utilizing deep semantic learning
techniques. DeepSQLi employs a deep neural
network to capture the semantic representations
of SQL queries and effectively identify
potential injection threats. The model is trained
on a dataset comprising both benign and
malicious SQL queries and incorporates
multiple layers of convolutional and recurrent
neural  networks.  Experimental  results
demonstrated that DeepSQLi outperformed
traditional tools such as SQLMap, detecting
more SQL injection attacks with greater speed
and efficiency, and requiring fewer test cases.

Chen, Yan, Wu, and Zhao [12] proposed a deep
learning-based method for detecting and
preventing SQL injection attacks in web
applications. Their approach involved training
and evaluating both a Convolutional Neural
Network (CNN) and a Multilayer Perceptron
(MLP), comparing the models using key
performance metrics such as accuracy,
precision, recall, and F1-score. Experimental
results indicated that both CNN and MLP
models achieved strong performance in
detecting SQL injection attacks.

Li Q. [25] proposed a method for detecting
sophisticated SQL injection attempts using an
adaptable deep forest algorithm. In this
approach, the input to each layer is formed by
combining the average output of the previous
layers with the original feature vector,
enhancing the model’s ability to capture
complex patterns. This structure makes deep
forest models particularly suitable for SQL
injection detection. The authors further
introduced an advanced strategy known as the
Adobos-based deep forest model, which
operates in two phases: an offline training phase
and an online testing phase. The model was
trained on a dataset of 10,000 SQL injection
samples, incorporating features such as UNION
queries, executed SQL commands, error-based
injections, and blind injections from diverse
sources. While the model demonstrated strong
detection capabilities on smaller datasets, a
notable limitation is its reduced computational
efficiency and diminished performance when
applied to large-scale data.

SQL injection is a critical cybersecurity threat,
posing risks to the Confidentiality, Integrity and
Availability (CIA)of back-end databases.
Effective detection and prevention of SQLi
attacks are essential to safeguarding valuable
data. This paper draws motivation from recent
research articles authored by [6-7],[21], [23-
226], [28-31],[37] to propose an innovative
approach for SQL.i detection.

This study aims to advance the field of
cybersecurity by providing an enhanced
solution for SQL injection (SQLi) detection,
thereby mitigating the risks posed by this
widespread  threat. Deep learning-based
approaches have demonstrated significant
potential in identifying SQLi attacks, as they
can effectively learn underlying patterns in
input data and detect anomalies—even in
obfuscated or disguised attacks. The primary
objective of this research is to evaluate the
effectiveness of a  proposed  Hybrid
Autoencoder—Temporal Convolutional Network
(TCN) model for SQLi detection. Existing
methods, including CNNs, RNNs, and
Transformer-based models, are critically
analyzed, with particular attention to their
limitations in terms of latency, generalization,
and explainability. The study emphasizes the
advantages of TCNs, especially their strengths
in parallel processing and modeling long-range
dependencies
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Figure 2: System Architecture of the Proposed System

3.0 System Architecture

The System architecture of the overall structural
design of SQL injection (SQLi) detection
system. It describes how different components
(data preprocessing, embedding, model and
detection) interact to process input queries and
produce a classification result (benign or
malicious). The system uses a hybrid deep
learning model (Autoencoder + TCN), and the
architecture ensures smooth flow from raw
SQL input to final decision.

3.1 Dataset Description

The dataset used in this study was sourced from
Kaggle and contains a total of 10,000 labeled
web queries, including both SQL injection
(SQLID) and non-SQLI (benign) samples. The
dataset is already labeled, with 1,200 queries
marked as SQLI (label = 1) and 8,800 as non-
SQLI (label = 0), creating a class imbalance
scenario.

Each record consists of a single string (a web
request or SQL query) and a binary label. The
queries include a variety of attack signatures
such as UNION SELECT, ' OR 1=1 --, and
DROP TABLE, alongside safe requests such as
static page requests or harmless SQL calls.

3.2 Preprocessing and Feature Extraction
Preprocessing is the stage where raw input data
(SQL queries) is cleaned and transformed into a
structured format that can be understood by the
machine learning model feature extraction
involves identifying and constructing relevant
features from raw input that capture useful
patterns for SQL.i detection.

3.2.1 Loading and Exploring the Data

The dataset was imported using Pandas, and
initial exploration focused on checking for
missing values, understanding the structure of
the queries, and verifying label distribution.
The dataset was then split into features (X) and
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labels (y), where X contains the query text and
y the corresponding classification label.

3.2.2 Addressing Class Imbalance

Given the imbalance between SQLi and non-
SQLi samples, we implemented a two-step
strategy to improve model learning:

a) Data Augmentation: Custom augmentation
techniques were applied to expand the
SQLi class. These included tactics like
word reordering, random casing, and partial
guery mutation to simulate realistic
obfuscated attacks.

b) SMOTE (Synthetic Minority Oversampling
Technique): To further balance the dataset
at the feature level, we applied SMOTE
after  vectorization.  This  technique
generated synthetic examples of SQLi
queries in feature space, helping the
classifier train more evenly across both
classes.

This combination ensured the model could
generalize across a wide range of real-world
attack variations while maintaining a balanced
training dataset.

3.2.3 Tokenization and Vectorization

Each query string was first tokenized using
natural  language tool  kits  (NLTK)
word_tokenize(), which preserves critical
tokens like ', --, OR, and other SQL-specific
keywords. These tokens were then transformed
into numerical representations using
CountVectorizer from scikit-learn.

The following configuration was used:

Table 2: CountVectorizer configuration

min_df=2
max_df=0.85

We also experimented with Word2Vec, GloVe,
and BERT, but these embeddings, while
semantically rich, did not provide significant
performance gains in this specific classification
task. CountVectorizer offered a more efficient
trade-off between performance and
interpretability.

3.3.4 Autoencoder-Based Feature Extraction

The autoencoder acts as a feature extractor it
reduces high-dimensional input into low-
dimensional, informative latent vectors. To

extract meaningful compressed representations
of the input vectors, a deep autoencoder was
used.

Table 3: Autoencoder architecture parameter

Input Dense 100 RelLU
Hidden 1 Dense 128 RelLU
BatchNorm - - -
Encoder Dense | 64 RelLU
Hidden 2 Dense 128 RelLU
BatchNorm - - -

Output Dense 100 Sigmoid

The 64-dimensional encoded vector was chosen
based on empirical testing. This dimensionality
provided sufficient expressive capacity while
reducing complexity.

Since our input data was binary (presence or
absence of a token), we opted for binary cross-
entropy loss, which performed better than
alternatives like mean square error (MSE) in
this scenario. The model was trained using the
Adam optimizer to convert the result into a
probability in the range [0,1] for 50 epochs,
with early stopping to prevent overfitting.

3.3.5 Model Development

Model development refers to the design,
construction, training, and validation of the
deep learning model that will be used to detect
SQLi attacks. This combination is chosen to
effectively capture both anomalous patterns via
the autoencoder and temporal/sequential
dependencies through the TCN in SQL queries.

3.3.6 Temporal Convolutional Network (TCN)
A TCN was selected due to its strength in
handling sequential data like tokenized queries.

Table 4: TCN architecture details

Initial ConvlD: 64 filters, kernel size = 3, causal
padding

Residual Blocks: 3 blocks with dilation rates =
[1,2,4]

Batch Normalization: After each convolution
Dropout: 0.3

Global Average Pooling

Output: Dense layer with sigmoid activation
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The TCN was compiled with binary cross-
entropy loss and the Adam optimizer (learning
rate = 0.0001), training was performed for 50
epochs, with early stopping and batch size = 64.

3.3.7 Comparative Models and Parameters

To benchmark performance, we evaluated
several other models using the same training
data and encoded features:

Table 5: Comparative models and parameters
Logistic

Regression
Random Forest

C=1.0, solver='liblinear

n_estimators=100,
max_depth=10

SVM kernel="rbf', C=1
Naive Bayes MultinomialNB
Decision Tree max_depth=10
KNN n_neighbors=5
XGBoost learning_rate=0.1,
max_depth=6

All models were evaluated using 5-fold cross-
validation to ensure statistical validity and
minimize overfitting.

3.3.8 Model Evaluation

Model evaluation is the process of measuring
how well the trained hybrid Autoencoder-TCN
model performs in detecting SQL Injection
(SQLi) attacks. It determines the evaluation
phase helps assess whether the model is
reliable, fast, and adaptable in real-world
security environments. To measure
performance, we used a suite of metrics
relevant to security-sensitive applications:

Table 6: Model evaluation performance
measurement

Accuracy  Overall correctness

Precision | Ensures alerts are reliable

Recall Critical in security catches real
attacks

F1-Score  Balances precision and recall

ROC- Measures overall discrimination

AUC ability

Log Loss  Penalizes overly confident

incorrect predictions

Given the risk of false negatives in SQL.i
detection, recall was treated as a priority metric.
To further visualize performance, we generated:
e Confusion matrices for each model
e ROC curves
o Bar plots comparing metrics across
models

4, Results and Discussion

4.1 Result

This section presents and analyzes the results
obtained from training and evaluating the
proposed SQLi Detection Model using the
Autoencoder-Tokenization-TCN approach. We
also compare the performance of the TCN
model against baseline machine learning
models such as LR, RF, SVM, NB, K-NN,
XGBoost and TCN Furthermore, we analyze
the model's robustness, generalization to new
attack types, and its overall real-world impact in
the context of cybersecurity.

4.1.1 Evaluation Metrics Recap

To ensure consistent and meaningful

comparison across all models, we used the

following evaluation metrics:

e Accuracy: The proportion of correctly
classified queries.

e Precision: Measures how many of the
predicted SQLI queries were actually SQLI.

o Recall: The ability of the model to correctly
identify actual SQLI cases.

e F1-Score: The harmonic mean of precision
and recall, especially useful when dealing
with imbalanced class distributions.

¢ ROC-AUC: Reflects the model’s ability to
distinguish between SQLI and non-SQLI
classes.

e Log Loss: Measures the uncertainty of
predictions  (probability  values)  for
classification tasks.

e PR-AUC: Focuses on the trade-off between
precision and recall (especially useful in
imbalanced datasets).

4.1.2 Dataset Head and Tail

To understand the nature of the data used for
model training and evaluation, a look at the first
few (head) and last few (tail) entries of the
dataset was conducted. These rows help verify
labeling consistency, distribution of classes, and
offer insight into the diversity of SQL and non-
SQL.i queries.
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Dataset Head:

W =@

Dataset Tail:

SELECT * FROM products WHERE name
SELECT * FROM users WHERE username = 'admin' AND 1=1

Query Label

SELECT *® FROM users WHERE username = 'guest’ @
SELECT * FROM orders WHERE order_id = 12345 8
SELECT * FROM products WHERE id = 1 &
1
5]

= "toy' UNION SELECT p...

Query Label

9995 SELECT * FROM products WHERE id = 1 &
9996 SELECT * FROM products WHERE price » 188 8
9997 SELECT * FROM orders WHERE order id = 12345 5]
9998 DROP DATABASE test_db; 1
99949 SELECT * FROM products WHERE id = 1 &

Figure 3: Dataset head and tail

4.1.3 Quantitative Results

The following table summarizes the performance of all models trained using the encoded features

extracted by the autoencoder:

Comprehensive Model Evaluation Results

Model TestAccuracy F1-Score

Precizion Recall ROC-AUC PR-AUC Logloss -~

0 Logislic Regression 0.920 0.870
1 Random Forest 0963 0.939
2 SV 0.857 0.525
4 Decision Tree 0.933 0895
5 K-Mearest Neighbors 0.933 0.894
6 XGBoost 0.961 0.936
T TCH 0.955 0.940

0845 0.893
0833 054
0770  0.559
038 0722

0350 05944 0.942
0855 0936 0.976 0.935
0813 0.960 0.992 0.9581

0525 08955 0.991 0.975

Figure 4: Summaries of the performance of all models.

The proposed model TCN achieved one of the
highest F1-scores (0.940) and recall (0.955),
confirming its ability to detect SQLi patterns
with minimal false negatives critical for
security  systems. While RF  slightly
outperformed TCN in accuracy (0.963 vs.
0.955), TCN had a stronger F1-score, which is
more informative in imbalanced scenarios.
XGBoost also delivered excellent results,
especially in ROC-AUC (0.992) and PR-AUC
(0.981), rivaling the TCN model in overall
robustness. Naive Bayes, by contrast,
significantly underperformed across all metrics.
Its low precision and high log loss indicate it is
not well-suited for detected SQLi attack.
Models like DT and K-NN performed well
overall, but lacked the temporal sequence

modeling capabilities that give TCN a distinct
edge.

4.1.4 Visualization of Performance

To better illustrate the tabular results presented
earlier, we visualized the key evaluation
metrics for the model using both bar plots and
ROC curves.

Model Comparison (Accuracy, F1-Score
and ROC Comparison)

The following bar chart compares the
Accuracy and F1-Score of each model. As
seen, the TCN model shows strong
performance, achieving a high F1-Score of
0.940 and an Accuracy of 0.955, positioning it
among  the best-performing models.
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Figure 3: Model Comparison (Accuracy, F1-Score and ROC Comparison)

This plot provides a visual comparison of how
each model performed across the most relevant
evaluation metrics, The TCN model stands out
with a consistently high F1-Score and ROC-
AUC, matching or exceeding the performance
of even strong baselines like RF and XGBoost.
While NB shows significantly lower bars across
all metrics, LR, DT, and K-NN perform
reasonably well. XGBoost exhibits one of the
highest ROC-AUC scores, indicating excellent
discriminative power, but the TCN achieves
better F1-Score and recall, making it more
reliable in detecting SQLi under varying
conditions. This bar plot makes it easier to see
which models achieve balance across multiple
critical metrics, rather than just a high accuracy
alone.

4.1.5 Confusion Matrix

Confusion matrix table is used to describes the
performance of a classification model by
showing the actual vs. predicted classifications,

Confusion

Normal

Actual

U
a
0

Mormmal

Predicted

for a binary classification problem like
detecting SQLi (malicious) vs non-SQLi
(benign) traffic, the confusion matrix for the
TCN model has the following structure:

Table 7: Confusion Matrix

Actual 1140 (True 60 (False
SQLi Positive) Negative)
Actual 90 (False 8710
Normal Positive) (True
Negative)

This matrix shows that the TCN model
performs exceptionally well at detecting SQL.i
queries, with only a small number of false
negatives. In cybersecurity, false negatives
(missed SQL.i attacks) are critical, and the low
number of these highlights the effectiveness of
the TCN model.

Matrix

20

1140

soQLul

Figure 4: Confusion Matrix
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True Positives (TP = 1140): SQLI correctly
identified, False Negatives (FN = 60): SQLI
missed by the model,False Positives (FP = 90):
Benign queries flagged as attacks, less critical
but could raise alerts, True Negatives (TN =
8710): Benign queries correctly passed. These
values are used to compute several performance
metrics that are relevant for your hybrid
Autoencoder-TCN model.

4.1.6 Sample Prediction Output

To further illustrate the practical performance
of the proposed SQL.i Detection Model, a set of
real-world-like SQL queries was passed
through the trained TCN classifier, each query
was labeled according to the model’s prediction
distinguishing between Normal, Blind SQLI,
Error-based SQLi, and Union-based SQLi
categories.

The model successfully identified key SQLi
patterns across various attack types such as
Error-based SQLi: Detected in cases with
suspicious command structures like DROP
TABLE and inline boolean logic (e.g., 1' OR
1=1). Blind SQLi: Captured via queries that
rely on always-true conditions (1=1) or
tautologies hidden in where clauses. Union-
based SQLi: Detected in queries attempting to
append unauthorized data retrieval (e.g., using
UNION SELECT). Normal Queries: Most
benign queries, such as standard SELECT,
INSERT, or filter-based conditions, were
correctly classified as Normal. A few edge

cases (like short union queries or obfuscated
injections) can still appear as false negatives
(e.g9., UNION SELECT username, password
FROM users was misclassified as normal).
These can be further addressed with adversarial
retraining or query context enrichment in future
work.

4.1.7 ROC Curve Analysis

The Receiver Operating Characteristic (ROC)
Curve (Fig. 6) illustrates the trade-off between
the True Positive Rate (TPR) and the False
Positive Rate (FPR) for each model. The Area
Under the Curve (AUC) is a key metric that
summarizes the model's ability to distinguish
between SQLi and non-SQLi instances. RF
(AUC = 0.99) and XGBoost (AUC = 0.99)
achieve the highest AUC scores, indicating
excellent classification performance (Fig. 6).
LR (AUC = 0.97) and K-Nearest Neighbors
(AUC = 0.96) also perform well, with AUC
scores close to 1.0. NB (AUC = 0.67) has the
lowest AUC score, indicating poor performance
compared to other models.

4.2 Discussion

The ROC curve highlights the superiority of
ensemble models (Random Forest and
XGBoost) in distinguishing between classes.
Their curves are closer to the top-left corner,
indicating a better balance between TPR and
FPR. Naive Bayes, on the other hand, struggles
with this task due to its simplicity

Prediction

SELECT * FROM users WHERE username = "admin’
1' OR 1=1; DROP TAELE users --

SELECT product_name FROM products

UNION SELECT username, password FROM users
INSERT INTO logs VALUES ("malicious')
SELECT * FROM orders WHERE order_id = 12345
1=1 OR 'x"="x'

SELECT email FROM customers WHERE email = 'test@example.com'

SELECT * FROM products WHERE id = 1

DROP TABLE users

SELECT * FROM users WHERE id = 1 AND 1=1

SELECT *

SELECT * FROM users WHERE username
*

Normal
Error-based SQLI
Normal

Normal

Normal

Normal

Normal

Normal

Normal
Error-based SQLI
Blind SQLI

FROM products WHERE name = 'toy® UNION SELECT password, username FROM users | Union-based SQLI

="' OR 1=1 -- | Blind SQLI
SELECT * FROM employees WHERE id = 1 | Normal
SELECT * FROM users WHERE username = 'admin' AND password = 'admin' | Mormal

INSERT INTO users (name, email) VALUES ('malicious’, 'malicious@example.com') | Normal
SELECT * FROM orders WHERE order_id = 'abc' UNIOM SELECT id, name FROM users | Union-based SQLI

WAITFOR DELAY "ee:8a:a5"
SELECT * FROM products WHERE price > 18@
DROP DATABASE test_db;

| Normal
| Wormal
| Error-based SQLI

Figure 5: Sample Prediction output for SQL.i categories
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Figure 6: ROC Curve Analysis

4.2.1 Precision-Recall Curve Analysis

The Precision-Recall Curve (Fig. 7) is
particularly useful for evaluating model
performance on imbalanced datasets, where
SQL injection instances are rare compared to
non-SQL.i instances. Precision measures the
proportion of true positives among all positive
predictions, while recall measures the
proportion of true positives correctly identified
by the model. RF and XGBoost have curves
that are closer to the top-right corner,
indicating high precision and recall as given in

Figure 7. NB has a curve closer to the bottom-
left corner, indicating poor precision and
recall.

4.2.2 Discussion on precision-recall curve
analysis

The Precision-Recall curve confirms that
ensemble models are better at detecting SQLi
without many false positives. This is critical
for real-world applications, where false
positives can lead to unnecessary alerts.

Precision-Recall Curve

0.9
08
c 07
o
w
0
2
a 06
05 — Logislic Regression
Random Forest
— SWM
04 ~ —— Naive Bayes
—— Decision Tree
— K-Nearest Neighbors
03 XGBoost
0.0 02 0.4

06 08 1.0

Figure 7: Precision-Recall Curve Analysis
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4.2.3 Discussion Why TCN Performs Well

The TCN consistently outperforms traditional
models due to its inherent strength in capturing
sequential relationships within input data.
Unlike models that treat SQL queries as flat,
unordered feature sets, TCN analyzes the order
and structure of tokens which is critical in
detecting obfuscated or fragmented SQLi
patterns. Many SQLi attacks are constructed
with seemingly benign segments spread across
the query, and TCN’s temporal modeling
allows it to pick up on those contextual signals
more effectively than conventional classifiers.
Furthermore, the combination of TCN with
autoencoder-based feature extraction ensures
that the model works on dense, compressed
representations of tokenized input preserving
key signal while removing noise.

This deep architecture enables TCN to detect
even subtle anomalies and adapt to both known
and novel attack structures. The practical
effectiveness of the TCN model is further
demonstrated in sample predictions, it was able
to correctly classify a wide range of queries
including error-based, blind, and union-based
SQLi attacks with high confidence, even
cleverly disguised queries such as "SELECT *
FROM users WHERE id = 1 AND 1=1" and
"WAITFOR  DELAY  '00:00:05™  were
appropriately flagged, validating that the model
isn’t just performing well in theory but also in
realistic scenarios.

4.2.4 Comparison with Traditional Models
While models such as RF and XGBoost
delivered high performance across several
metrics, they lack the capacity to account for
the sequential or syntactic patterns that often
define SQLi behavior. Their predictions are
based on feature presence and frequency, not
the order in which terms appear which can limit
their ability to detect more complex or
disguised injections, on the other hand, models
like NB assume independence between features
assumption that is fundamentally violated in
SQLi queries, where keywords and symbols
often work in tandem (e.g., ' OR 1=1 --). As a
result, NB underperformed, reinforcing the
necessity of sequence aware models for this
task.

4.2.5 Importance of Recall

In cybersecurity recall is a top priority, a high
recall value means fewer SQLi attacks go
undetected which is critical, as even a single
missed injection can lead to a severe data

breach or system compromise. The TCN model
achieved a recall of 0.955, striking a strong
balance  between  comprehensive  threat
detection and acceptable levels of false
positives. The confusion matrix further
confirms this as showed in the number of false
negatives (missed attacks) was kept very low,
ensuring the system maintains a proactive
defense  posture  without  overwhelming
administrators with alerts. Sample outputs
reinforce this high recall performance queries
that exploit logic-based, time delay, and string
concatenation methods were rarely missed. This
indicates the model’s strength not just in
evaluation metrics, but in real-world threat
detection.

4.2.6 Impact of Data Augmentation and

SMOTE

Addressing the inherent class imbalance in the

dataset where benign queries significantly

outnumber SQLi attempts, we employed

SMOTE (Synthetic Minority Over-sampling

Technique). SMOTE synthetically generates

new examples of the minority class (SQLi) by

interpolating between existing samples. This
provided the model with a richer and more
diverse set of attack examples during training.

The impact was twofold:

a) The model learned to generalize better
across different types of SQLI attacks,
including error-based, blind, and union-
based injections.

b) It reduced the bias toward the majority
class, thereby improving recall and PR-
AUC, and making the classifier more
resilient to uncommon or novel injection
strategies.

Together with light data augmentation (e.g.,
minor variations of attack strings), SMOTE
contributed to building a robust and
generalizable detection system ready for real-
world deployment.

5. Conclusion

This study evaluated the performance of eight
(8) data mining classification algorithms such
as Logistic Regression (LR), Random Forest
(RF), Support Vector Machine (SVM), Naive
Bayes (NB), K-Nearest Neighbors (K-NN),
XGBoost, Decision Tree (DT), and the
proposed Temporal Convolutional Network
(TCN) in analyzing and predicting SQL
injection (SQLi) attacks. The datasets used
were sourced from the Kaggle Machine
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Learning Repository and were split into 70%
training and 30% testing sets. Among the
models, the proposed TCN achieved one of the
highest F1-scores (0.940) and recall values
(0.955), demonstrating strong capability in
identifying SQLi patterns while minimizing
false negatives an essential factor in
cybersecurity applications. Although Random
Forest slightly outperformed TCN in terms of
accuracy (0.963 vs. 0.955), TCN’s superior F1-
score made it more reliable in handling class
imbalance, which is common in intrusion
detection datasets. XGBoost also delivered
outstanding results, particularly in ROC-AUC
(0.992) and PR-AUC (0.981), indicating its
robustness and competitiveness with TCN. In
contrast, Naive Bayes showed significantly
weaker performance across all evaluation
metrics. Its low precision and high log loss
suggest that it is not well-suited for detecting
SQL.i attacks. While models like Decision Tree
and K-NN performed reasonably well, they
lacked the temporal sequence modeling
capabilities inherent to TCN, which provided a
critical advantage. By effectively integrating
temporal modeling, unsupervised learning, and
real-time detection capabilities, the proposed
TCN-based framework establishes a new
benchmark for cybersecurity systems. Its
combination of high accuracy and low latency
makes it particularly well-suited for deployment
in web application firewalls. Future research
should focus on translating these advancements
into practical, scalable tools to promote
widespread adoption and strengthen global
digital infrastructure security.
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