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Abstract

Case-Based Reasoning (CBR) is a human-inspired problem-solving approach where new problems are solved by
recalling and adapting solutions from similar past cases. The performance of a CBR system critically depends on
how cases are represented and how similarity between cases is computed. These two factors determine the
accuracy, efficiency and applicability of CBR systems across diverse domains. This paper presents a
comprehensive and comparative review of various case representation techniques and similarity measures. The
review evaluates these methods based on important measures such as interpretability, scalability, adaptability,
computational complexity and retrieval effectiveness. It further explores their suitability across domains
including healthcare, finance, engineering and disaster management. The analysis reveals that no single
technique is universally optimal; rather, the alignment between representation format and similarity computation,
often through hybridization or domain-specific adaptation, is critical to achieving optimal system performance.
Through rich literature insights and practical illustrations, the paper identifies emerging trends such as machine
learning-driven similarity adaptation, ontology automation and real-time retrieval, offering a roadmap for the

next generation of intelligent and context-aware CBR systems.
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1. Introduction

Case-Based Reasoning (CBR) is an Atrtificial
Intelligence (Al) methodology where problem-
solving and decision-making are based on the
retrieval and reuse of past experiences or
“cases.” This operates under the principle that
similar problems have similar solutions. This
approach aligns with human problem-solving
strategies, where the decision-making process is
influenced by previous encounters with similar
situations. CBR systems work by comparing a
new problem with previously solved problems
which are stored in a library (called case bases).
If an exact match is found, the stored solution is
applied. Otherwise, the system adapts an
existing case to fit the new situation.

CBR systems represent problem situations as
cases. A case serves as a condensed repository
of knowledge extracted from past experiences.
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It encapsulates not only the “distilled”
knowledge gained from previous encounters but
also the contextual framework in which these
lessons derived their significance. Depending
on the type of case, a case is composed of two
integral components:

i Problem Description: a part, which
represents the attributes of the case

i Solution: which gives the corresponding
outcome or solution of the previous case.

Ever since Schank and Abelson first presented
CBR in 1977, it has evolved significantly [1].
The most widely used abstraction of CBR is the
Aarnodt and Plaza (1994) cycle [2]. The model,
presented in figure 1, is commonly known as
the 4R workflow model. It is expressed as a
cycle comprising of four phases and include;

Retrieval Phase: cases that have some form of
similarity to the new problem are retrieved,

Reuse Phase: the identified solutions from the
retrieved cases are used as solution to the new
problem;
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Revise Phase: adapts prospective solutions to
fit where available solution does not perfectly
fit and needs more revision; and

Retain Phase: revised case(s) learned by the
system is finally stored.

One of the several attempts to improve the
performance and reasoning framework of CBR
led to the integration of case representation by
Finnie and Sun (2003). They proposed the "5R"
model of CBR by incorporating the case
representation into the “4R” model [3].
Although, case representation is not a cyclic
phase, it plays a crucial role in how CBR
systems store and retrieve knowledge. It is a
phase that precedes the case retrieval phase.

Problem — .
(New case)
Similarity
cases
<]
s
v
</
l Reuse

Solutions that adapt
Repaired to new cases

new case

Figure 1: The 4R CBR Cyclic Structure [2]

The case retrieval phase is considered as being
crucial in determining a CBR system's
efficiency. Finding solutions that are most
similar to a given problem requires the use of
case representation and similarity measures
during the retrieval phase of a CBR system [4].
The success and/or efficiency of a CBR system
relies heavily on these two critical components.
Case representation determines how knowledge
(comprising problem descriptions, solutions and
outcomes) is structured and stored. It affects not
only how well the system can understand and
organize past experiences but also how
efficiently it can retrieve and adapt them.
Similarity Measures compare a new case to a
target case by using some form of matching
metric to determine degree of similarity, thus
influencing which solutions are considered
relevant. Inaccuracies in either representation or
similarity evaluation can significantly degrade
the system’s performance.

Given the importance of these components, this
review seeks to comparatively analyze the
various methods of case representation and
similarity measurement employed in CBR
systems. While there are numerous studies
addressing individual aspects of these
components [5, 6, 7], a consolidated and
comparative perspective remains
underrepresented in literature. This paper fills
that gap by systematically evaluating common
and advanced techniques across multiple
criteria such as scalability, interpretability,
computational complexity and adaptability.

The adopted methodology involves an
extensive literature survey of peer-reviewed
publications, technical reports and applied case
studies in different domains. The review
categorizes representation techniques (e.g.,
feature vector, frame-based, ontology-based
etc) and similarity measures (e.g., Euclidean,
Cosine, Jaccard, Hybrid etc), and provides
comparative tables summarizing their strengths,
limitations and suitability across various
contexts. This will provide researchers and
practitioners a structured guide to selecting and
combining appropriate methods for building
efficient, accurate and context-sensitive CBR
systems.

1. Case Representation in CBR

In CBR, the case is foundational and its
representation is crucial to the system [8]. The
problem-solving process of the CBR suggest
that, case representation is not a cyclic phase of
the abstraction of CBR but then, it is an
important aspect that needs to be firstly treated
for other phases to be able to perform
efficiently. The primary objective of case
representation is to encode past experiences,
store and subsequently retrieve for problem-
solving [9]. A well-structured representation
not only facilitates effective case retrieval but
also enhances reasoning, adaptation and reuse.
The richness and accuracy of case
representation influence both the quality of
solutions and the system’s computational
performance.

Case representation includes information that
directly influences the outcome or solution of
the problem described. Hence, the concept of
modelling cases involves representing problem-
solving instances in a structured format.
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2.1 Types of Case Representation

Several methods have been developed to
represent cases, depending on the domain,
complexity of the data and the reasoning
required. Common case representation methods
include feature vector, frame representation,
object-oriented representation, predicate-based
representation, semantic networks and rule-
based representation [10]. These approaches
can be conveniently grouped into two main case
representation classes: feature-vector
representation and structure representation.

Feature Vector Representation: This is the
most common approach, where each case is
described using fixed-length attribute—value
pairs. It is suitable for structured and numerical
data such as medical records or sensor readings.
This representation allows the use of traditional
similarity metrics like Euclidean or Manhattan
distance [10].

Structure Representation: This form of
representation captures the relationships and
dependencies between attributes in a more
explicit manner. The main types of structure
representation include:

a) Frame-Based Representation: Cases are
modelled as frames, which are structured
collections of slots (attributes) and fillers
(values) which can inherit properties from
other frames. This method allows for
flexible representation of knowledge and
facilitates inheritance and default reasoning

[8].

b) Object-Oriented Representation: Cases
are represented as objects encapsulating
their attributes and behaviour. This
representation supports hierarchical and
modular designs, making it ideal for
complex applications like CAD and
manufacturing systems [11].

c) Predicate-Based Representation: It is
based on first-order logic. This method uses
logical predicates to describe the
relationships between entities in a case. It is
usually expressive but suitable for domains
requiring rule-based inference, such as legal
reasoning [10].

d) Semantic Network and Ontology-Based
Representation: Semantic nets graphically
model the relationships between concepts,
while ontologies add structured domain
knowledge and reasoning capabilities. These

are especially useful in biomedical and text-
based applications [7]. This method is useful
for visualizing and analyzing complex
relationships between cases.

e) Rule-Based Representation: Some cases
are encoded as a set of rules or production
rules (if-then statements). While powerful in
well-defined domains, they can be rigid and
hard to scale across heterogeneous data
types [10].

Each representation method balances trade-offs
in  interpretability,  expressiveness  and
computational cost. Typically, the appropriate
representation method is chosen based on the
specific application field [10]. Feature-vector
representation is often preferred for simple
domains with numerical data, while structure
representation is more suitable for complex
domains with intricate relationships between
attributes.

2.2 Components of Case Representation

In a typical CBR system, a case is represented
by three main components. These components
include the problem description (p), solution (s)
and in some case, the outcome (0). The problem
description includes the goals, task description,
constraints, initial data and other relevant
information that define the problem to be
solved. While the solution component
encompasses the actual solution. The case
outcome indicates whether the solution
achieved the desired result or not. Optionally,
steps taken to achieve the solution (trace),
justification and annotation of the solution,
alternative solutions are sometimes considered
and expectations regarding the solution's
outcomes. Additional, case components, such
as explanations, with variations for different
data types like text and image representation
can be included [12].

a) Problem Description (p)

This includes the initial state, constraints, goals,
and relevant features of the problem. It is
represented by the problem-feature subsets and
consists of a number of principal problem
features. The problem description can be
conceptualized as a sequence of problem
features: (f1, fa, fs, ..., fn) [12]. The problem
features (fi) of the problem description are
represented as attribute-value pairs:

fi:(ai, Vi)
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The attribute-value pair is the most commonly
used representation for problem features in
CBR. Where a; is the attribute of the problem
which are defined in the problem features
vocabulary and v; are the values related to each
attribute. Each feature describes a specific
aspect of the problem.

With respect to object representation, features
can be grouped into objects. This gives a more
structured and organized representation of
cases. By representing cases as objects,
complex cases can be simplified by grouping
related features [2]. Although, this concept is
less frequently used than attribute-value pairs.
For practical purposes, objects representations
are  often reduced to  attribute-pair
representations. Cases are represented in form
of trees or graphs when relational objects
representation is used [8].

The attributes are represented as nodes
connected by edges. Attributes are identified by
their paths from the root of the graph, requiring
attribute names and paths for localization. This
form of representation is beneficial for complex
cases with non-homogeneous structures, such
as cases involving multiple hierarchical levels
or dependencies.

In more practical instances, CBR can
incorporate more complex knowledge models,
including plans, workflows, series, sequences
and temporal components. These forms of
models allow the representation of not only
static attributes but also dynamic processes,
sequences of actions and temporal aspects of
problem-solving [13].

Selecting a knowledge model for problem
descriptions in CBR depends on problem
domain complexity, required detail level,
retrieval and adaptation efficiency. Attribute-
value pairs are often preferred for their
simplicity, while more complex models like
relational objects and object representations are
used for handling intricate and hierarchical
structures in problem descriptions.

b) Solution Description (s)
This defines the proposed or actual solution to
the problem. It may include actions taken,
decisions made or recommended interventions
[14].

In some instances, there may be need for
additional solution details. The solution

description can encompass other components
such as [6]:
a. How the solution was obtained:
Information about the methodology or
process used to arrive at the solution.

b. Quality of the solution: Metrics or
assessments indicating the quality or
reliability of the solution.

c. Constraints: Any limitations or
constraints that affect the application of the
solution.

d. Alternative solutions: Other possible
solutions that were considered but not
chosen as the final solution.

By including these details in the solution
description, a CBR system can provide a
comprehensive understanding of not just the
predicted outcome but also the context,
reliability and alternative possibilities related to
the solution. This richness in solution
representation enhances the system's ability to
handle diverse problem-solving tasks across
different domains and gives room for
acceptability of the system.

Note that, while the structure of the base case
consists basically of the problem description
and the solution among others, the structure of
the new case only consists of the problem
description but without solution. Figure 2
represents a basic structure of a base case. The
problem description is represented by a subset
of problem features while each of the problem
feature is represented by a principal attribute
and a corresponding value. Hence, depicting an
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c) Outcome (0)

The outcome component in CBR refers to the
result or resolution of a case's solution. This can
be success or failure, or a numeric performance
measure. It is critical for case reuse and
adaptation. It enables the system to learn from
both successful and failed cases, enhancing its
reasoning over time [12]. This choice means
accepting that some cases in the case base may
contain incorrect or suboptimal solutions. These
cases can still add value if they help prevent
repeated mistakes. Failures can be analyzed and
adjustments can be made to improve future
problem-solving outcomes.

Keeping the outcome information can be
beneficial for future reference or analysis,
especially if they represent rare but significant
scenarios. The general structure of a case can
thus be represented as a triplet;

Case = {P, S, O}, where the outcome is
optional depending on the domain [10].

2.3 Feature Selection and Weight Assignment
Feature selection aims to identify the most
relevant attributes for case retrieval. Choosing
the most relevant and informative features helps
CBR systems to reduce computational costs and
improve retrieval accuracy [15]. Selection can
be manual (expert-driven), statistical (e.g.,
mutual information, chi-square) or automated
using machine learning algorithms [15].

Feature selection methods can become
computationally expensive and less effective
when a large number of features are selected,
this is referred to as curse of dimensionality.
Also, selection of features based on a specific
training dataset might not generalize well to
unseen cases can lead to overfitting. Therefore,
feature identification may use domain
knowledge to extract a case description suitable
for the case base system [12].

By carefully choosing the most relevant and
informative features, CBR systems can make
better decisions, solve problems more
effectively thereby, gain users' trust. Weights
are values assigned to attributes according the
level of their importance, thereby allowing the
system to prioritize certain attributes over
others when determining the similarity between
cases. Assigning weights to attributes will allow
the CBR system to focus on the most relevant,
informative and/or important features when
retrieving cases from the case base [16]. This

will in turn help to improve the accuracy and
efficiency of the retrieval process.

Assigning appropriate weights to different
attributes in the similarity retrieval measure is
sort of a challenge. Assigning improper weights
can result in biased similarity calculations
which will lead to inaccurate case retrieval [17].
In many instances, multiple similarity measures
may be available or required to capture
different facets of similarity. Combining these
measures or assigning appropriate weights to
each measure can be challenging. Determining
the relative importance of different measures
and finding an effective combination technique
is crucial for accurate retrieval and adaptation
of cases.

The challenge lies in determining how to
combine or weight different similarity measures
to obtain a comprehensive and meaningful
similarity score. The assignment of weights to
case attributes can be done using different
methods. The choice of weighting method
depends on the specific problem domain and
the availability of data and expert knowledge.
The major weights assignment methods are [3,
18]:

a) Expert-Based Weighting: This
method involves having domain experts
assign weights to attributes based on their
experience and knowledge of the problem
domain.

b) Data-Driven Weighting: Uses
statistical techniques to assign significance
to the features based on analyzed historical
data [18].

¢) Hybrid Weighting: Combines expert-
based and empirical or data-driven
weighting techniques [3, 18].

By leveraging expert knowledge, data-driven
analysis or a combination of both, CBR systems
can effectively prioritize attributes and improve
their  decision-making  capabilities  [19].
Techniques such as Artificial Neural Networks
(ANNS), genetic algorithms and inductive
learning have also been proposed to solve
feature weighting challenges in CBR [16].

2.4 Challenges in Case Representation

Despite the importance of case representation,
the complexity of a domain can significantly
impact how cases are represented. When
representing cases with complex, rich, multi-
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dimensional data (such as medical diagnosis) it
can be difficult to encode such data without
losing important details. When important
details are lost during case representation, then
the efficiency of the CBR system is gquestioned.
This is because, the retrieved case(s) may not
be the required solution.

Also, in domains where available case data are
incomplete or sparse, it will be difficult to
construct meaningful case representations.
Sparse datasets reduce the effectiveness of
similarity measures and can lead to poor case
retrieval performance [20].

Also important is the case base cardinality. As
the number of cases in the case base increases,
retrieval performance can degrade. Large-scale
case bases require efficient indexing and
retrieval mechanisms to maintain fast query
response times. Traditional methods struggle
with high-dimensional case spaces, leading to
slower retrieval speeds and increased memory
usage [21]. Approaches such as hierarchical
case organization, clustering-based indexing
and distributed case storage have been proposed
to address this challenge [22].

Furthermore, the computational cost of case
representation and retrieval can be high,
particularly when using complex similarity
measures. Feature selection and dimensionality
reduction techniques, such as Principal
Component  Analysis (PCA) and feature
weighting algorithms, help mitigate this issue
by reducing the number of attributes considered
in similarity calculations [23]. Additionally,
hybrid approaches have shown promise in
optimizing computational efficiency [24].

These challenges impact the system’s
performance and efficiency. Addressing these
challenges is essential for improving the
accuracy, speed and adaptability of CBR
systems. Future research must now focus on
developing more scalable, data-efficient and
computationally ~ optimized  representation
techniques to enhance CBR applications in
various domains.

2. Similarity Measures in CBR
Similarity measures serve as a link between
case representation and retrieval [2]. They
determine how well a new (query) case matches
the existing (base) cases in the case base. A
well-chosen  similarity  function  directly
influences the quality and relevance of the

solutions  retrieved,
determinant  of  the
performance [6].

making it a core
system’s  overall

They are mathematical or computational
functions that measures the similarity amongst
pairs of problem descriptions of cases, Sim(pm,
Pg), such that, the solutions of the base cases C
can be used to find the solution of the query
case Cq where, pm represents the problem
description of cases in the case base and pq is
the problem description of the query case. The
higher the similarity score, the more relevant
the base case is considered for reuse.

Most case-based reasoning agents select the
best matching case(s) using heuristic functions
or distances, which may be domain-specific
[25]. Choosing the right similarity measures for
a specific problem domain can be challenging.
Different problem domains require different
measures to capture relevant similarities
between cases.

Retrieving the most similar cases involves
searching the case base or library. If the case
base is too small, there may be too few similar
past cases, whereas a large case base can lower
retrieval efficiency because the entire library
must be searched. This is because on so many
instances, the whole case base needs to be
searched for the most similar case. Hence, there
must be a balance in the quantity and quality of
cases in the case library.

Multiple algorithms and techniques are
employed in CBR systems for the purpose of
retrieving cases from the case repository [26].
CBR relies on similarity rather than exact
accuracy. Therefore, specific algorithms should
be chosen based on case representation,
attribute types, solution accuracy requirements
and whether sequential or parallel search is
needed [27].

3.1 Classical Measures

Several classical similarity measures are widely
used in CBR systems due to their simplicity and
effectiveness in structured data:

3.1.1 Euclidean Distance

Euclidean Distance is a widely used method for
measuring similarity, defined as the straight-
line distance between two points in Euclidean
space, making it suitable for continuous or
dense data [28]. It is most effective for
continuous, normalized numeric features.
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Dist(Xy, Vi) =V 2k=1Xk — Y1) (1)

Where: Dist() is the distance that exist between
the two compared vectors.

n is the number of attributes and k refers to the
index of attributes in each case.

Xk, Yk represent the kth attribute in the vector x
and y respectively.

When the similarity between the two compared
vectors increases, Dist() decreases.

3.1.2 Manhattan Distance

Also known as City Block Distance, it sums the
absolute differences of the coordinates. Suitable
for high-dimensional spaces with sparse data.

Dist(X, Y1) = 2k=1 Xk = Y )

3.1.3 Minkowski Distance

Metrics like Euclidean and Manhattan
Distances are specific cases within the broader
Minkowski Distance when defined by varying
the parameter “p”. The choice of values for "p"
and the threshold significantly influences
system accuracy [29]. For two feature vectors X
and Y in n-dimensional space, the Minkowski's

Distance is represented by:
. n oy _y. )
Dist(Xi, Yi, p) = Ck=1 Xk — Yi[")

@)
Where n is the number of input attributes.
Varying the value of p in equation (3): when p
= 1, the Manhattan Distance is obtained and
represented by equation (3). When the value of
p = 2 in equation (1), the Euclidean Distance is
obtained.

While the Minkowski similarity measure and its
variants are based on distance between case
attributes, some other form of similarity
measures, e.g. the cosine similarity and Pearson
correlation coefficient are based on the
correlation of attributes.

3.1.4 Cosine Similarity

Cosine similarity is suitable for text or high-
dimensional data [28]. It measures the cosine of
the angle between two vectors in a vector space.
For two feature vectors X, Y, the formula is

given as:
X. Y

Cos(0) = Cos(X, Y) =l X117l (4)
Where:

X .Y =2k=1%XkYk
|| X || is length of the vector x and represented

n 2
k=1%k
as|[ X|I=

While || Y ||is the length of the vector y and

n yz
represented by || Y || =N “*=17F

0 is the angle between the vectors

x represents values from base case where x = x4,
X2, X3, ... Xn

y represents values from target case where y =
Y1, Y2, Y3, ... ¥n

Thus, || X |land || Y |[represent the Euclidean
norms of vector x and y

A cosine similarity of 1 indicates high
similarity between features A and B, while a
value of -1 shows dissimilarity [28]. Thus, two
vectors aligned identically have a cosine
similarity of 1, perpendicular vectors have a
similarity of 0 and wvectors in opposite
directions have a similarity of -1. Greater
alignment between vectors results in a higher
Cos(0) value.

3.1.5 Jaccard Similarity

It is used for binary or categorical attributes.
The Jaccard index measures similarity between
two sets based on their intersection, regardless
of element types [30]. The similarity measure
for the Jaccard coefficient is represented as:

[ xny|

S(X,Y) = I xuyl 5)

where | X| is the number of elements in X, |y | is

the number of elements in Y and | x"y | is the
number of elements appearing jointly in X and
Y. The inner product is, in principle,
unbounded. It calculates the intersection over
the union of binary feature sets. And suitable
for comparing text documents based on the
presence or absence of words or terms.

3.1.6 Pearson Correlation Coefficient
Pearson’s correlation coefficient measures the
linear relationship between two continuous
variables, with values from -1 (perfect negative
correlation) to +1 (perfect positive correlation)
and 0 indicating no correlation [31]. And is
defined as:
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(6)
where uxand uy are the means of all features in
vectors x and y.

Each of these measures is suited for specific
data types and domain conditions. However,
their  effectiveness may  decline in
heterogeneous or high-dimensional data
environments.

3.2 Advanced Measures

To overcome limitations of classical methods,
several advanced similarity measures have been
proposed:

3.2.1 Classification Mahalanobis Distance

This distance measure accounts for correlations
between features and variances within the data,
making it suitable for multivariate analysis [32].
Mahalanobis distance was introduced by P. C.
Mahalanobis in 1936. It is computed using the
inverse of the variance-covariance matrix of
data sets. It is useful to determine the similarity
of an unknown sample set to a known one.

The Mahalanobis distance of a multivariate
vector X = (X1, X2, X3, ..., xn)' from the values
of a group with mean pu = (p1, p2, M3, ..., Un)"
and covariance matrix S, is defined as [32]:

Distw(x) =V & — )T 1(x — 1) (7

The key difference between the Mahalanobis
distance and the Euclidean distance lies in the
consideration of correlations within the data set.
While Euclidean distance only considers the
individual variances of each variable ignoring
potential  relationships  between  them,
Mahalanobis distance takes into account both
the wvariances and correlations between
variables and also uses the covariance matrix to
weight the distances based on the underlying
relationships within the data.

3.2.2 Fractional Function-Based Similarity
Another measure, the fractional function-based
similarity measure is defined in equation (9). It
offers more flexibility in similarity scaling by
using fractional functions in distance
computation [26].

X

w w1+ '—;J'—) X 100

Jmnax amnin
X

S”VlioF = *j ]
o ®
x‘},ﬂl’ll‘_ x‘}'ﬂni
Eo_ }21 wj (x?'nn;r_}x?'nhi_ }x”_ . |) x 100
SIMi~ = i j ij = %oj
©)

Both Mahalanobis distance and fractional
function-based similarity measures can be used
with interval/ratio data, 0-1 data and ordinal
data, as long as it is treated as interval data [32].
Note that SIMio" > SIM ™.

The potential of these measures warrants further
investigation, especially for CBR applications.

3.2.3 Arithmetic Summation Similarity

It computes similarity using simple summation
formulas. The formula for calculating the
similarity between a new case (Xoj) and the base
case (x;) for the j-th attribute as follows:

amnin

"W (1 - xﬁdi)x 100

S”\/lioA = J xj
(10)
W (x}m_?:i"_?;fi_ = |)X 100
SIM® = A |
(11)

The similarity is easily computed by using
equation (11). While less complex, it can be
adapted with weights for more nuanced
retrieval [33].

3.2.4 Fuzzy-Based Similarity

This measure is useful in cases involving
uncertainty or imprecise information. This is
common in domains like medicine or decision
support [34].

3.2.5 Semantic Similarity

Semantic similarity uses ontologies or concept
hierarchies to compute similarity based on
conceptual closeness rather than syntactic
matching. Commonly applied in NLP and
biomedical applications [7].

These advanced techniques provide better
performance in  complex environments,
particularly those with noise, diverse data types,
or nuanced semantics.
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3.3 Hybrid Similarity Measurement

Traditional similarity measures (Euclidean,
Manhattan, Minkowski, Mahalanobis,
Hamming, Jaccard, Cosine and Levenshtein
distances) generally focus on a single data type,
such as numerical or categorical data. However,
several real-world problems most times involve
mixture of different data types, thereby making
it challenging to accurately measure similarity
using traditional methods.

This challenge is addressed by hybrid similarity
measurement by combining multiple similarity
measures to capture the complex relationships
between cases with different data types.

For example, a hybrid model may use
Euclidean distance for numeric attributes,
Jaccard index for categorical features and
cosine similarity for textual elements. Such
hybridization allows for comprehensive
comparison in heterogeneous domains such as
healthcare, disaster response and finance [5],
[13]. Hybrid models are often weighted,
normalized or learned dynamically using
optimization techniques.

The hybrid similarity measurement provides a
powerful tool for improving the accuracy and
applicability of CBR systems to real-world
problems. Combining multiple similarity
measures has helped CBR systems to
effectively  handle  heterogeneous  data,
incorporate domain knowledge and improve
retrieval accuracy in a wide range of domains
[13]. As CBR continues to evolve, hybrid
similarity = measurement  will play an
increasingly important role in developing more
effective and versatile CBR systems.

3.4 Adaptation of Similarity Measures

In many real-world applications, each problem
domain has unique characteristics that affect
case retrieval and reasoning accuracy, hence,
similarity measures in CBR systems must be
adaptable to different problem domains. A
static similarity measure may not be suitable for
all  applications,  necessitating  adaptive
mechanisms [33].

One commonly used approach to adaptation is
dynamic similarity adjustment. This measure
adjusts the similarity computations based on
evolving data distributions or contextual factors
such as attribute importance, domain-specific
constraints (e.g., patient history in medical
diagnosis) [35].

Learning-based adaptation is another approach.
In this case, machine learning techniques such
as neural networks or reinforcement learning
are employed to optimize weights or parameters
of similarity functions optimized on feedback
from previous retrievals [36]. Additionally,
fuzzy logic-based similarity measures can
adjust dynamically to handle uncertainty and
imprecise data, particularly useful in diagnostic
systems domains like medical diagnosis where
symptoms are often subjective [34].

The use of context-aware similarity measures
can also enhance adaptability in CBR systems.
This approach considers situational parameters
or environmental factors in computing
similarity. For example, in predictive
maintenance, similarity measures must change
based on the aging patterns of industrial
equipment, as components degrade at different
rates [37].

These adaptive mechanisms enhance CBR
performance by continuously improving the
relevance of retrieved cases.

3.5 Challenges in Similarity Measures

Despite the importance of similarity measures
in CBR systems, they are hindered by some
challenges. One major challenge is data type
compatibility. Different domains utilize various
data types, including numerical, categorical,
textual, fuzzy, image, multimedia data etc.
Standard similarity measures, such as Euclidean
distance, perform well on numerical data but
may fail to capture relationships in categorical
or text-based data [38]. Hence, hybrid similarity
measures that integrate  multiple data
representations are often required to improve
retrieval accuracy [39].

Another challenge is data quality. In many real-
world applications, case data may be
incomplete, noisy or inconsistent which may
lead to inaccurate similarity computations [6].
When there are missing values or incorrect
attribute weights, similarity assessments can be
distorted, making case retrieval unreliable.
These issues can be mitigated by using
techniques such as data pre-processing,
imputation  strategies and robust feature
selection.

Many similarity measures, particularly those
involving high-dimensional feature spaces or
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complex  weighting schemes, can be
computationally expensive [40].

Furthermore, domain-specific similarity
requirements pose challenges as well. The
effectiveness of a similarity measure depends
heavily on the specific domain and application.
There is need to address the choice of similarity
measure for a specific domain. Some
applications, such as legal reasoning, require
semantic or logic-based similarity, which are
not easily implemented with generic measures
[41].

A lot of work has been put into improving

Addressing these challenges is very important
to building scalable, adaptable and domain-
relevant CBR systems.

3. Comparative Evaluation of the Interplay
of  Representation and  Similarity
Measures

The effectiveness of a CBR system depends

significantly on the interplay between its case

representation and similarity measurement
components. To offer a comprehensive
understanding, Table 1 presents a head-to-head
comparison across major case representation
techniques and similarity measures. This
comparative evaluation is crucial for selecting

similarity measures so as to ultimately enhance suitable methods in specific application

the efficiency and accuracy of CBR systems domains.

across diverse application areas [6, 26].

Table 1: Comparative Analysis of Case Representation Techniques in CBR

Representat | Interpretabi | Scalabil | Domain Computatio | Accuracy/Retri | Use Cases

ion Type lity ity Adaptabil | nal eval

ity Complexity | Effectiveness

Feature High High Low Low Moderate Recommen

Vector der systems,
loT  [10],
[42]

Frame- Medium Medium | Medium Medium Moderate Knowledge

Based engineering
(8], [10]

Object- Medium Medium | High Medium High CAD,

Oriented engineering
design [11]

Predicate- High Low High High High Legal

Based reasoning,
medical
diagnosis
[10]

Semantic High Medium | Very High | High High Bioinformat

Nets / ics, NLP

Ontology [71, [43]

Rule-Based | High Low High Medium-— Moderate Expert

High systems,

policy
compliance
[41]
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Table 2: Comparative Analysis of Similarity Measures in CBR

Similarity Interpretabi | Scalabili | Domain Computatio | Accuracy/Ret | Use Cases
Measure lity ty Adaptabil | nal rieval
ity Complexity | Effectiveness
Euclidean High High Low Low Moderate Structured
Distance data, sensor
input [28]
Manhattan High High Low Low Moderate High-
Distance dimensional
sparse data
[29]
Cosine Medium High Low Low High (for text) | NLP, text
Similarity retrieval
[28]
Jaccard High Medium | Low Low Moderate Categorical,
Index binary data
[30], [41]
Pearson Medium Medium | Medium Medium High (linear | Health
Correlation domains) analytics,
finance [31]
Mahalanobis | Low Low Medium High High Anomaly
Distance detection,
multivariate
problems
[32]
Fuzzy/Sema | High Low High Medium-— High Medicine,
ntic High legal,
complex
domain
matching
[34], [44]
Fractional Medium Medium | Medium Medium Moderate— Cost
Function High estimation,
discrete
scoring [26]
Arithmetic Medium Medium | Low Low Moderate Simple
Similarity numeric
comparisons
[33]
Hybrid Medium Medium | Very High | High High Heterogeneo
Function us domains,
medical,
design [5],
[13], [26]

4. Advancements

and Applications

Similarity Measures in CBR

of

similarity measures from basic geometric

calculations to

sophisticated

hybrid and

CBR has proven to be a versatile methodology
across a wide range of domains. Over the years,
the evolution of similarity measures has greatly

enhanced the efficiency, accuracy and
adaptability of CBR across various domains,
including  healthcare,  finance,  disaster

management and industrial processes [2]. These
significant advancements have transformed

adaptive models, thereby greatly improving
accuracy, adaptability and domain-specific
relevance.

Early CBR systems relied heavily on traditional
metrics like Euclidean distance and cosine
similarity. While computationally efficient,
these methods assume equal feature importance
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and are prone to diminished performance in
high-dimensional or heterogeneous datasets.
They also fall short in capturing nonlinear or
semantic relationships, which are common in
real-world data [2].

To overcome these constraints, researchers
developed hybrid similarity models that
combine different computational strategies. For
instance, [45] introduced a hybrid retrieval
model using soft likelihood functions,
significantly improving decision efficiency
under uncertainty. These models, though more
powerful, tend to increase computational
overhead.

Recent advances incorporate machine learning
(ML) into similarity computation to enhance
adaptability. In finance, [46] reported improved
stock prediction performance using Recurrent
Neural Networks (RNNs) embedded within a
CBR framework. However, such ML-driven
similarity measures dependences on large, high-
quality datasets which makes them vulnerable
in low-resource domains. Overfitting and poor
generalization may arise when datasets are
imbalanced or sparse.

In domains requiring deep domain knowledge
(such as healthcare, crisis response), ontology-
based similarity models have emerged as
powerful tools. These models incorporate
structured semantic knowledge to assess
similarity more contextually. For example, [7]
developed a crisis response framework
integrating syntactic and semantic similarity,
boosting case retrieval in emergencies. While
effective, ontology-based models demand well-
structured ontologies, which are labour-
intensive to build and maintain.

CBR has been widely used in financial decision
support. [47] used asymmetrical similarity
measures for loan assessment, refining credit
risk modelling. [48] introduced a geometric
similarity measure for stock forecasting,
achieving better market trend recognition. Yet,
these systems struggle under volatile economic
conditions. Integrating real-time data streams
and dynamic feature weighting can improve
responsiveness.

CBR models like [9]’s STGA-CBR
(Spatiotemporal Trajectory Similarity) improve
disaster assessment by combining location and
time-based similarity. Similarly, [49] proposed
an adaptive model for gas explosion response.

Industrial applications have seen tailored
similarity measures to aid design and
efficiency. [5] applied a hybrid similarity
function for CNC turret design, boosting
manufacturing performance.

Evidently, similarity computation continues to
shape the future of CBR by pushing its
applications further into intelligent, adaptive
and domain-specific problem-solving. As
domains become more dynamic and data-
driven, future systems must evolve toward
flexible, scalable and context-aware similarity
models. This evolution, though complex,
promises to expand CBR’s relevance across
even more critical and emerging fields.

5. Conclusion

CBR has proven to be a powerful and effective
methodology for problem-solving across a wide
range of domains. The success of a CBR system
hinges on two critical factors: the representation
of cases and the ability to accurately measure
similarity between cases. Hence, this review
presented a comprehensive analysis of case
representation formats and similarity measures
used in CBR systems.

The study categorized case representation
techniques into feature vector representation
and structured representation. Each offers
distinct advantages and trade-offs in terms of
interpretability, domain adaptability and
computational  cost.  Likewise, similarity
measures were grouped into classical, advanced
and hybrid methods. Their effectiveness varies
significantly depending on the data type,
application domain and retrieval objectives.

Comparative evaluations across multiple
criteria such as scalability, interpretability,
computational complexity, applicability and
adaptability revealed that no single method
universally  outperforms  others. Instead,
domain-specific requirements must guide the
selection or combination of techniques. For
example, medical and legal applications benefit
from semantic and fuzzy similarity measures
due to the ambiguity and structured knowledge
involved, whereas recommender systems rely
on scalable and efficient vector-based models.

The study suggests that hybrid approaches
which combines multiple representation and
similarity techniques can offer improved
adaptability to real-world heterogeneous
datasets. Also, semantic and ontology-based
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representations should be prioritized in domains
requiring deep contextual reasoning, such as
medicine and legal systems.

While significant progress has been made in the
development of efficient case representation
and similarity measures in CBR systems,
further research should focus on adaptive
similarity models that learn from system
feedback and evolve with the domain.
Additionally, there is a need for the
development of benchmark datasets and
standardized evaluation protocols to objectively
compare CBR systems across domains.

It is important to establish synergy between
robust representation and context-sensitive
similarity computation. This is central to
advancing the next generation of intelligent,
interpretable and domain-aware CBR systems.
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