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Abstract  
Case-Based Reasoning (CBR) is a human-inspired problem-solving approach where new problems are solved by 

recalling and adapting solutions from similar past cases. The performance of a CBR system critically depends on 

how cases are represented and how similarity between cases is computed. These two factors determine the 

accuracy, efficiency and applicability of CBR systems across diverse domains. This paper presents a 

comprehensive and comparative review of various case representation techniques and similarity measures. The 

review evaluates these methods based on important measures such as interpretability, scalability, adaptability, 

computational complexity and retrieval effectiveness. It further explores their suitability across domains 

including healthcare, finance, engineering and disaster management. The analysis reveals that no single 

technique is universally optimal; rather, the alignment between representation format and similarity computation, 

often through hybridization or domain-specific adaptation, is critical to achieving optimal system performance. 

Through rich literature insights and practical illustrations, the paper identifies emerging trends such as machine 

learning-driven similarity adaptation, ontology automation and real-time retrieval, offering a roadmap for the 

next generation of intelligent and context-aware CBR systems. 
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1.   Introduction 

Case-Based Reasoning (CBR) is an Artificial 

Intelligence (Al) methodology where problem-

solving and decision-making are based on the 

retrieval and reuse of past experiences or 

“cases.” This operates under the principle that 

similar problems have similar solutions.  This 

approach aligns with human problem-solving 

strategies, where the decision-making process is 

influenced by previous encounters with similar 

situations. CBR systems work by comparing a 

new problem with previously solved problems 

which are stored in a library (called case bases).  

If an exact match is found, the stored solution is 

applied. Otherwise, the system adapts an 

existing case to fit the new situation.  

CBR systems represent problem situations as 

cases. A case serves as a condensed repository 

of knowledge extracted from past experiences. 

It encapsulates not only the “distilled” 

knowledge gained from previous encounters but 

also the contextual framework in which these 

lessons derived their significance. Depending 

on the type of case, a case is composed of two 

integral components:  

 

i Problem Description: a part, which 

represents the attributes of the case 

ii Solution: which gives the corresponding 

outcome or solution of the previous case.  

 

Ever since Schank and Abelson first presented 

CBR in 1977, it has evolved significantly [1]. 

The most widely used abstraction of CBR is the 

Aarnodt and Plaza (1994) cycle [2]. The model, 

presented in figure 1, is commonly known as 

the 4R workflow model. It is expressed as a 

cycle comprising of four phases and include;  

 

Retrieval Phase: cases that have some form of 

similarity to the new problem are retrieved; 

 

Reuse Phase: the identified solutions from the 

retrieved cases are used as solution to the new 

problem; 
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Revise Phase: adapts prospective solutions to 

fit where available solution does not perfectly 

fit and needs more revision; and 

 

Retain Phase: revised case(s) learned by the 

system is finally stored. 

 

One of the several attempts to improve the 

performance and reasoning framework of CBR 

led to the integration of case representation by 

Finnie and Sun (2003). They proposed the "5R" 

model of CBR by incorporating the case 

representation into the “4R” model [3]. 

Although, case representation is not a cyclic 

phase, it plays a crucial role in how CBR 

systems store and retrieve knowledge. It is a 

phase that precedes the case retrieval phase. 

 

 
Figure 1: The 4R CBR Cyclic Structure [2] 

 

The case retrieval phase is considered as being 

crucial in determining a CBR system's 

efficiency. Finding solutions that are most 

similar to a given problem requires the use of 

case representation and similarity measures 

during the retrieval phase of a CBR system [4]. 

The success and/or efficiency of a CBR system 

relies heavily on these two critical components. 

Case representation determines how knowledge 

(comprising problem descriptions, solutions and 

outcomes) is structured and stored. It affects not 

only how well the system can understand and 

organize past experiences but also how 

efficiently it can retrieve and adapt them. 

Similarity Measures compare a new case to a 

target case by using some form of matching 

metric to determine degree of similarity, thus 

influencing which solutions are considered 

relevant. Inaccuracies in either representation or 

similarity evaluation can significantly degrade 

the system’s performance. 

 

Given the importance of these components, this 

review seeks to comparatively analyze the 

various methods of case representation and 

similarity measurement employed in CBR 

systems. While there are numerous studies 

addressing individual aspects of these 

components [5, 6, 7], a consolidated and 

comparative perspective remains 

underrepresented in literature. This paper fills 

that gap by systematically evaluating common 

and advanced techniques across multiple 

criteria such as scalability, interpretability, 

computational complexity and adaptability. 

 

The adopted methodology involves an 

extensive literature survey of peer-reviewed 

publications, technical reports and applied case 

studies in different domains. The review 

categorizes representation techniques (e.g., 

feature vector, frame-based, ontology-based 

etc) and similarity measures (e.g., Euclidean, 

Cosine, Jaccard, Hybrid etc), and provides 

comparative tables summarizing their strengths, 

limitations and suitability across various 

contexts. This will provide researchers and 

practitioners a structured guide to selecting and 

combining appropriate methods for building 

efficient, accurate and context-sensitive CBR 

systems. 

 

1. Case Representation in CBR 

In CBR, the case is foundational and its 

representation is crucial to the system [8]. The 

problem-solving process of the CBR suggest 

that, case representation is not a cyclic phase of 

the abstraction of CBR but then, it is an 

important aspect that needs to be firstly treated 

for other phases to be able to perform 

efficiently. The primary objective of case 

representation is to encode past experiences, 

store and subsequently retrieve for problem-

solving [9]. A well-structured representation 

not only facilitates effective case retrieval but 

also enhances reasoning, adaptation and reuse. 

The richness and accuracy of case 

representation influence both the quality of 

solutions and the system’s computational 

performance. 

 

Case representation includes information that 

directly influences the outcome or solution of 

the problem described. Hence, the concept of 

modelling cases involves representing problem-

solving instances in a structured format.  
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2.1 Types of Case Representation 

Several methods have been developed to 

represent cases, depending on the domain, 

complexity of the data and the reasoning 

required. Common case representation methods 

include feature vector, frame representation, 

object-oriented representation, predicate-based 

representation, semantic networks and rule-

based representation [10]. These approaches 

can be conveniently grouped into two main case 

representation classes: feature-vector 

representation and structure representation. 

 

Feature Vector Representation: This is the 

most common approach, where each case is 

described using fixed-length attribute–value 

pairs. It is suitable for structured and numerical 

data such as medical records or sensor readings. 

This representation allows the use of traditional 

similarity metrics like Euclidean or Manhattan 

distance [10]. 

 

Structure Representation: This form of 

representation captures the relationships and 

dependencies between attributes in a more 

explicit manner. The main types of structure 

representation include: 

 

a) Frame-Based Representation: Cases are 

modelled as frames, which are structured 

collections of slots (attributes) and fillers 

(values) which can inherit properties from 

other frames. This method allows for 

flexible representation of knowledge and 

facilitates inheritance and default reasoning 

[8]. 

b) Object-Oriented Representation: Cases 

are represented as objects encapsulating 

their attributes and behaviour. This 

representation supports hierarchical and 

modular designs, making it ideal for 

complex applications like CAD and 

manufacturing systems [11]. 

c) Predicate-Based Representation: It is 

based on first-order logic. This method uses 

logical predicates to describe the 

relationships between entities in a case. It is 

usually expressive but suitable for domains 

requiring rule-based inference, such as legal 

reasoning [10]. 

d) Semantic Network and Ontology-Based 

Representation: Semantic nets graphically 

model the relationships between concepts, 

while ontologies add structured domain 

knowledge and reasoning capabilities. These 

are especially useful in biomedical and text-

based applications [7]. This method is useful 

for visualizing and analyzing complex 

relationships between cases. 

e) Rule-Based Representation: Some cases 

are encoded as a set of rules or production 

rules (if–then statements). While powerful in 

well-defined domains, they can be rigid and 

hard to scale across heterogeneous data 

types [10]. 

Each representation method balances trade-offs 

in interpretability, expressiveness and 

computational cost. Typically, the appropriate 

representation method is chosen based on the 

specific application field [10]. Feature-vector 

representation is often preferred for simple 

domains with numerical data, while structure 

representation is more suitable for complex 

domains with intricate relationships between 

attributes. 

 

2.2 Components of Case Representation  

In a typical CBR system, a case is represented 

by three main components. These components 

include the problem description (p), solution (s) 

and in some case, the outcome (o). The problem 

description includes the goals, task description, 

constraints, initial data and other relevant 

information that define the problem to be 

solved. While the solution component 

encompasses the actual solution. The case 

outcome indicates whether the solution 

achieved the desired result or not. Optionally, 

steps taken to achieve the solution (trace), 

justification and annotation of the solution, 

alternative solutions are sometimes considered 

and expectations regarding the solution's 

outcomes. Additional, case components, such 

as explanations, with variations for different 

data types like text and image representation 

can be included [12]. 

 

a) Problem Description (p) 

This includes the initial state, constraints, goals, 

and relevant features of the problem. It is 

represented by the problem-feature subsets and 

consists of a number of principal problem 

features. The problem description can be 

conceptualized as a sequence of problem 

features: (f1, f2, f3, ..., fn) [12]. The problem 

features (fi) of the problem description are 

represented as attribute-value pairs:  

fi = (ai, vi) 
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The attribute-value pair is the most commonly 

used representation for problem features in 

CBR. Where ai is the attribute of the problem 

which are defined in the problem features 

vocabulary and vi are the values related to each 

attribute. Each feature describes a specific 

aspect of the problem. 

 

With respect to object representation, features 

can be grouped into objects. This gives a more 

structured and organized representation of 

cases. By representing cases as objects, 

complex cases can be simplified by grouping 

related features [2]. Although, this concept is 

less frequently used than attribute-value pairs. 

For practical purposes, objects representations 

are often reduced to attribute-pair 

representations. Cases are represented in form 

of trees or graphs when relational objects 

representation is used [8]. 

 

The attributes are represented as nodes 

connected by edges. Attributes are identified by 

their paths from the root of the graph, requiring 

attribute names and paths for localization. This 

form of representation is beneficial for complex 

cases with non-homogeneous structures, such 

as cases involving multiple hierarchical levels 

or dependencies. 

 

In more practical instances, CBR can 

incorporate more complex knowledge models, 

including plans, workflows, series, sequences 

and temporal components. These forms of 

models allow the representation of not only 

static attributes but also dynamic processes, 

sequences of actions and temporal aspects of 

problem-solving [13]. 

 

Selecting a knowledge model for problem 

descriptions in CBR depends on problem 

domain complexity, required detail level, 

retrieval and adaptation efficiency. Attribute-

value pairs are often preferred for their 

simplicity, while more complex models like 

relational objects and object representations are 

used for handling intricate and hierarchical 

structures in problem descriptions. 

 

b) Solution Description (s) 

This defines the proposed or actual solution to 

the problem. It may include actions taken, 

decisions made or recommended interventions 

[14]. 

 

In some instances, there may be need for 

additional solution details. The solution 

description can encompass other components 

such as [6]: 

a. How the solution was obtained: 

Information about the methodology or 

process used to arrive at the solution. 

b. Quality of the solution: Metrics or 

assessments indicating the quality or 

reliability of the solution. 

c. Constraints: Any limitations or 

constraints that affect the application of the 

solution. 

d. Alternative solutions: Other possible 

solutions that were considered but not 

chosen as the final solution. 

By including these details in the solution 

description, a CBR system can provide a 

comprehensive understanding of not just the 

predicted outcome but also the context, 

reliability and alternative possibilities related to 

the solution. This richness in solution 

representation enhances the system's ability to 

handle diverse problem-solving tasks across 

different domains and gives room for 

acceptability of the system. 

 

Note that, while the structure of the base case 

consists basically of the problem description 

and the solution among others, the structure of 

the new case only consists of the problem 

description but without solution. Figure 2 

represents a basic structure of a base case. The 

problem description is represented by a subset 

of problem features while each of the problem 

feature is represented by a principal attribute 

and a corresponding value. Hence, depicting an 

attribute-value pair. 

 
Figure 2: Simplified Structure of a Base Case 
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c) Outcome (o) 

The outcome component in CBR refers to the 

result or resolution of a case's solution. This can 

be success or failure, or a numeric performance 

measure. It is critical for case reuse and 

adaptation. It enables the system to learn from 

both successful and failed cases, enhancing its 

reasoning over time [12]. This choice means 

accepting that some cases in the case base may 

contain incorrect or suboptimal solutions. These 

cases can still add value if they help prevent 

repeated mistakes. Failures can be analyzed and 

adjustments can be made to improve future 

problem-solving outcomes. 

 

Keeping the outcome information can be 

beneficial for future reference or analysis, 

especially if they represent rare but significant 

scenarios. The general structure of a case can 

thus be represented as a triplet;  

 

Case = {P, S, O}, where the outcome is 

optional depending on the domain [10]. 

 

2.3 Feature Selection and Weight Assignment 

Feature selection aims to identify the most 

relevant attributes for case retrieval. Choosing 

the most relevant and informative features helps 

CBR systems to reduce computational costs and 

improve retrieval accuracy [15]. Selection can 

be manual (expert-driven), statistical (e.g., 

mutual information, chi-square) or automated 

using machine learning algorithms [15]. 

 

Feature selection methods can become 

computationally expensive and less effective 

when a large number of features are selected, 

this is referred to as curse of dimensionality. 

Also, selection of features based on a specific 

training dataset might not generalize well to 

unseen cases can lead to overfitting. Therefore, 

feature identification may use domain 

knowledge to extract a case description suitable 

for the case base system [12]. 

 

By carefully choosing the most relevant and 

informative features, CBR systems can make 

better decisions, solve problems more 

effectively thereby, gain users' trust. Weights 

are values assigned to attributes according the 

level of their importance, thereby allowing the 

system to prioritize certain attributes over 

others when determining the similarity between 

cases. Assigning weights to attributes will allow 

the CBR system to focus on the most relevant, 

informative and/or important features when 

retrieving cases from the case base [16]. This 

will in turn help to improve the accuracy and 

efficiency of the retrieval process. 

 

Assigning appropriate weights to different 

attributes in the similarity retrieval measure is 

sort of a challenge. Assigning improper weights 

can result in biased similarity calculations 

which will lead to inaccurate case retrieval [17]. 

In many instances, multiple similarity measures 

may be available or required to capture 

different facets of similarity. Combining these 

measures or assigning appropriate weights to 

each measure can be challenging. Determining 

the relative importance of different measures 

and finding an effective combination technique 

is crucial for accurate retrieval and adaptation 

of cases.  

 

The challenge lies in determining how to 

combine or weight different similarity measures 

to obtain a comprehensive and meaningful 

similarity score. The assignment of weights to 

case attributes can be done using different 

methods. The choice of weighting method 

depends on the specific problem domain and 

the availability of data and expert knowledge. 

The major weights assignment methods are [3, 

18]: 

 

a) Expert-Based Weighting: This 

method involves having domain experts 

assign weights to attributes based on their 

experience and knowledge of the problem 

domain. 

b) Data-Driven Weighting: Uses 

statistical techniques to assign significance 

to the features based on analyzed historical 

data [18]. 

c) Hybrid Weighting: Combines expert-

based and empirical or data-driven 

weighting techniques [3, 18]. 

By leveraging expert knowledge, data-driven 

analysis or a combination of both, CBR systems 

can effectively prioritize attributes and improve 

their decision-making capabilities [19]. 

Techniques such as Artificial Neural Networks 

(ANNs), genetic algorithms and inductive 

learning have also been proposed to solve 

feature weighting challenges in CBR [16].  

 

2.4 Challenges in Case Representation  

Despite the importance of case representation, 

the complexity of a domain can significantly 

impact how cases are represented. When 

representing cases with complex, rich, multi-
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dimensional data (such as medical diagnosis) it 

can be difficult to encode such data without 

losing important details. When important 

details are lost during case representation, then 

the efficiency of the CBR system is questioned. 

This is because, the retrieved case(s) may not 

be the required solution. 

 

Also, in domains where available case data are 

incomplete or sparse, it will be difficult to 

construct meaningful case representations. 

Sparse datasets reduce the effectiveness of 

similarity measures and can lead to poor case 

retrieval performance [20].  

 

Also important is the case base cardinality. As 

the number of cases in the case base increases, 

retrieval performance can degrade. Large-scale 

case bases require efficient indexing and 

retrieval mechanisms to maintain fast query 

response times. Traditional methods struggle 

with high-dimensional case spaces, leading to 

slower retrieval speeds and increased memory 

usage [21]. Approaches such as hierarchical 

case organization, clustering-based indexing 

and distributed case storage have been proposed 

to address this challenge [22]. 

 

Furthermore, the computational cost of case 

representation and retrieval can be high, 

particularly when using complex similarity 

measures. Feature selection and dimensionality 

reduction techniques, such as Principal 

Component Analysis (PCA) and feature 

weighting algorithms, help mitigate this issue 

by reducing the number of attributes considered 

in similarity calculations [23]. Additionally, 

hybrid approaches have shown promise in 

optimizing computational efficiency [24]. 

 

These challenges impact the system’s 

performance and efficiency. Addressing these 

challenges is essential for improving the 

accuracy, speed and adaptability of CBR 

systems. Future research must now focus on 

developing more scalable, data-efficient and 

computationally optimized representation 

techniques to enhance CBR applications in 

various domains. 

 

2. Similarity Measures in CBR 

Similarity measures serve as a link between 

case representation and retrieval [2]. They 

determine how well a new (query) case matches 

the existing (base) cases in the case base. A 

well-chosen similarity function directly 

influences the quality and relevance of the 

solutions retrieved, making it a core 

determinant of the system’s overall 

performance [6]. 

 

They are mathematical or computational 

functions that measures the similarity amongst 

pairs of problem descriptions of cases, Sim(pm, 

pq), such that, the solutions of the base cases Cm 

can be used to find the solution of the query 

case Cq where, pm represents the problem 

description of cases in the case base and pq is 

the problem description of the query case. The 

higher the similarity score, the more relevant 

the base case is considered for reuse. 

 

Most case-based reasoning agents select the 

best matching case(s) using heuristic functions 

or distances, which may be domain-specific 

[25]. Choosing the right similarity measures for 

a specific problem domain can be challenging. 

Different problem domains require different 

measures to capture relevant similarities 

between cases.  

 

Retrieving the most similar cases involves 

searching the case base or library. If the case 

base is too small, there may be too few similar 

past cases, whereas a large case base can lower 

retrieval efficiency because the entire library 

must be searched. This is because on so many 

instances, the whole case base needs to be 

searched for the most similar case. Hence, there 

must be a balance in the quantity and quality of 

cases in the case library. 

 

Multiple algorithms and techniques are 

employed in CBR systems for the purpose of 

retrieving cases from the case repository [26]. 

CBR relies on similarity rather than exact 

accuracy. Therefore, specific algorithms should 

be chosen based on case representation, 

attribute types, solution accuracy requirements 

and whether sequential or parallel search is 

needed [27]. 

 

3.1 Classical Measures 

Several classical similarity measures are widely 

used in CBR systems due to their simplicity and 

effectiveness in structured data: 

 

3.1.1 Euclidean Distance 

Euclidean Distance is a widely used method for 

measuring similarity, defined as the straight-

line distance between two points in Euclidean 

space, making it suitable for continuous or 

dense data [28]. It is most effective for 

continuous, normalized numeric features.  
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Dist(Xk, Yk) =  (1) 

 

Where: Dist() is the distance that exist between 

the two compared vectors. 

n is the number of attributes and k refers to the 

index of attributes in each case. 

xk, yk represent the kth attribute in the vector x 

and y respectively.  

When the similarity between the two compared 

vectors increases, Dist() decreases. 

 

3.1.2 Manhattan Distance 

Also known as City Block Distance, it sums the 

absolute differences of the coordinates. Suitable 

for high-dimensional spaces with sparse data. 

Dist(Xk, Yk) =   (2) 

 

3.1.3 Minkowski Distance 

Metrics like Euclidean and Manhattan 

Distances are specific cases within the broader 

Minkowski Distance when defined by varying 

the parameter “p”. The choice of values for "p" 

and the threshold significantly influences 

system accuracy [29]. For two feature vectors X 

and Y in n-dimensional space, the Minkowski's 

Distance is represented by: 

 

Dist(Xk, Yk, p) =  

      

     (3)  

Where n is the number of input attributes. 

Varying the value of p in equation (3): when p 

= 1, the Manhattan Distance is obtained and 

represented by equation (3). When the value of 

p = 2 in equation (1), the Euclidean Distance is 

obtained. 

 

While the Minkowski similarity measure and its 

variants are based on distance between case 

attributes, some other form of similarity 

measures, e.g. the cosine similarity and Pearson 

correlation coefficient are based on the 

correlation of attributes. 

 

3.1.4 Cosine Similarity  

Cosine similarity is suitable for text or high-

dimensional data [28]. It measures the cosine of 

the angle between two vectors in a vector space.  

For two feature vectors X, Y, the formula is 

given as:  

Cos(θ) = Cos(X, Y) =   (4) 

Where: 

X . Y =  

|| X || is length of the vector x and represented 

as || X || =  

While || Y ||is the length of the vector y and 

represented by || Y || =  

θ is the angle between the vectors 

x represents values from base case where x = x1, 

x2, x3, … xn 

y represents values from target case where y = 

y1, y2, y3, … yn 

Thus, || X ||and || Y ||represent the Euclidean 

norms of vector x and y 

 

A cosine similarity of 1 indicates high 

similarity between features A and B, while a 

value of -1 shows dissimilarity [28]. Thus, two 

vectors aligned identically have a cosine 

similarity of 1, perpendicular vectors have a 

similarity of 0 and vectors in opposite 

directions have a similarity of -1. Greater 

alignment between vectors results in a higher 

Cos(θ) value. 

 

3.1.5 Jaccard Similarity 

It is used for binary or categorical attributes. 

The Jaccard index measures similarity between 

two sets based on their intersection, regardless 

of element types [30]. The similarity measure 

for the Jaccard coefficient is represented as: 

 

S(X, Y) =     (5) 

 

where | x| is the number of elements in X, | y | is 

the number of elements in Y and | x y | is the 

number of elements appearing jointly in X and 

Y. The inner product is, in principle, 

unbounded. It calculates the intersection over 

the union of binary feature sets. And suitable 

for comparing text documents based on the 

presence or absence of words or terms. 

 

3.1.6 Pearson Correlation Coefficient 

Pearson’s correlation coefficient measures the 

linear relationship between two continuous 

variables, with values from -1 (perfect negative 

correlation) to +1 (perfect positive correlation) 

and 0 indicating no correlation [31]. And is 

defined as:  
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Pearson(x, y) = 

     

     (6) 

where ux and uy are the means of all features in 

vectors x and y. 

 

Each of these measures is suited for specific 

data types and domain conditions. However, 

their effectiveness may decline in 

heterogeneous or high-dimensional data 

environments. 

 

3.2 Advanced Measures 

To overcome limitations of classical methods, 

several advanced similarity measures have been 

proposed: 

 

3.2.1 Classification Mahalanobis Distance 

This distance measure accounts for correlations 

between features and variances within the data, 

making it suitable for multivariate analysis [32]. 

Mahalanobis distance was introduced by P. C. 

Mahalanobis in 1936.  It is computed using the 

inverse of the variance-covariance matrix of 

data sets. It is useful to determine the similarity 

of an unknown sample set to a known one. 

 

The Mahalanobis distance of a multivariate 

vector x = (x1, x2, x3, …, xN)T from the values 

of a group with mean μ = (μ1, μ2, μ3, …, μN)T 

and covariance matrix S, is defined as [32]: 

 

DistM(x) =  (7) 

 

The key difference between the Mahalanobis 

distance and the Euclidean distance lies in the 

consideration of correlations within the data set. 

While Euclidean distance only considers the 

individual variances of each variable ignoring 

potential relationships between them, 

Mahalanobis distance takes into account both 

the variances and correlations between 

variables and also uses the covariance matrix to 

weight the distances based on the underlying 

relationships within the data.  

 

3.2.2 Fractional Function-Based Similarity 

Another measure, the fractional function-based 

similarity measure is defined in equation (9). It 

offers more flexibility in similarity scaling by 

using fractional functions in distance 

computation [26].  

SIMi0
F = 

     

     (8) 

SIMi0
F = 

     

     (9) 

Both Mahalanobis distance and fractional 

function-based similarity measures can be used 

with interval/ratio data, 0–1 data and ordinal 

data, as long as it is treated as interval data [32]. 

Note that SIMi0
F ≥ SIMi0

A. 

 

The potential of these measures warrants further 

investigation, especially for CBR applications. 

 

3.2.3 Arithmetic Summation Similarity 

It computes similarity using simple summation 

formulas. The formula for calculating the 

similarity between a new case (xoj) and the base 

case (xij) for the j-th attribute as follows: 

 

SIMi0
A = 

     

     (10) 

SIMi0
A = 

     

     (11) 

The similarity is easily computed by using 

equation (11). While less complex, it can be 

adapted with weights for more nuanced 

retrieval [33]. 

 

3.2.4 Fuzzy-Based Similarity 

This measure is useful in cases involving 

uncertainty or imprecise information. This is 

common in domains like medicine or decision 

support [34]. 

 

3.2.5 Semantic Similarity 

Semantic similarity uses ontologies or concept 

hierarchies to compute similarity based on 

conceptual closeness rather than syntactic 

matching. Commonly applied in NLP and 

biomedical applications [7]. 

 

These advanced techniques provide better 

performance in complex environments, 

particularly those with noise, diverse data types, 

or nuanced semantics. 
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3.3 Hybrid Similarity Measurement 

Traditional similarity measures (Euclidean, 

Manhattan, Minkowski, Mahalanobis, 

Hamming, Jaccard, Cosine and Levenshtein 

distances) generally focus on a single data type, 

such as numerical or categorical data. However, 

several real-world problems most times involve 

mixture of different data types, thereby making 

it challenging to accurately measure similarity 

using traditional methods.  

 

This challenge is addressed by hybrid similarity 

measurement by combining multiple similarity 

measures to capture the complex relationships 

between cases with different data types. 

 

For example, a hybrid model may use 

Euclidean distance for numeric attributes, 

Jaccard index for categorical features and 

cosine similarity for textual elements. Such 

hybridization allows for comprehensive 

comparison in heterogeneous domains such as 

healthcare, disaster response and finance [5], 

[13]. Hybrid models are often weighted, 

normalized or learned dynamically using 

optimization techniques. 

 

The hybrid similarity measurement provides a 

powerful tool for improving the accuracy and 

applicability of CBR systems to real-world 

problems. Combining multiple similarity 

measures has helped CBR systems to 

effectively handle heterogeneous data, 

incorporate domain knowledge and improve 

retrieval accuracy in a wide range of domains 

[13]. As CBR continues to evolve, hybrid 

similarity measurement will play an 

increasingly important role in developing more 

effective and versatile CBR systems. 

 

3.4 Adaptation of Similarity Measures 

In many real-world applications, each problem 

domain has unique characteristics that affect 

case retrieval and reasoning accuracy, hence, 

similarity measures in CBR systems must be 

adaptable to different problem domains. A 

static similarity measure may not be suitable for 

all applications, necessitating adaptive 

mechanisms [33]. 

 

One commonly used approach to adaptation is 

dynamic similarity adjustment. This measure 

adjusts the similarity computations based on 

evolving data distributions or contextual factors 

such as attribute importance, domain-specific 

constraints (e.g., patient history in medical 

diagnosis) [35]. 

 

Learning-based adaptation is another approach. 

In this case, machine learning techniques such 

as neural networks or reinforcement learning 

are employed to optimize weights or parameters 

of similarity functions optimized on feedback 

from previous retrievals [36]. Additionally, 

fuzzy logic-based similarity measures can 

adjust dynamically to handle uncertainty and 

imprecise data, particularly useful in diagnostic 

systems domains like medical diagnosis where 

symptoms are often subjective [34].  

 

The use of context-aware similarity measures 

can also enhance adaptability in CBR systems. 

This approach considers situational parameters 

or environmental factors in computing 

similarity. For example, in predictive 

maintenance, similarity measures must change 

based on the aging patterns of industrial 

equipment, as components degrade at different 

rates [37]. 

 

These adaptive mechanisms enhance CBR 

performance by continuously improving the 

relevance of retrieved cases. 

 

3.5 Challenges in Similarity Measures 

Despite the importance of similarity measures 

in CBR systems, they are hindered by some 

challenges. One major challenge is data type 

compatibility. Different domains utilize various 

data types, including numerical, categorical, 

textual, fuzzy, image, multimedia data etc. 

Standard similarity measures, such as Euclidean 

distance, perform well on numerical data but 

may fail to capture relationships in categorical 

or text-based data [38]. Hence, hybrid similarity 

measures that integrate multiple data 

representations are often required to improve 

retrieval accuracy [39]. 

 

Another challenge is data quality. In many real-

world applications, case data may be 

incomplete, noisy or inconsistent which may 

lead to inaccurate similarity computations [6]. 

When there are missing values or incorrect 

attribute weights, similarity assessments can be 

distorted, making case retrieval unreliable. 

These issues can be mitigated by using 

techniques such as data pre-processing, 

imputation strategies and robust feature 

selection. 

 

Many similarity measures, particularly those 

involving high-dimensional feature spaces or 
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complex weighting schemes, can be 

computationally expensive [40]. 

 

Furthermore, domain-specific similarity 

requirements pose challenges as well. The 

effectiveness of a similarity measure depends 

heavily on the specific domain and application. 

There is need to address the choice of similarity 

measure for a specific domain. Some 

applications, such as legal reasoning, require 

semantic or logic-based similarity, which are 

not easily implemented with generic measures 

[41]. 

 

A lot of work has been put into improving 

similarity measures so as to ultimately enhance 

the efficiency and accuracy of CBR systems 

across diverse application areas [6, 26]. 

Addressing these challenges is very important 

to building scalable, adaptable and domain-

relevant CBR systems. 

 

3. Comparative Evaluation of the Interplay 

of Representation and Similarity 

Measures 
The effectiveness of a CBR system depends 

significantly on the interplay between its case 

representation and similarity measurement 

components. To offer a comprehensive 

understanding, Table 1 presents a head-to-head 

comparison across major case representation 

techniques and similarity measures. This 

comparative evaluation is crucial for selecting 

suitable methods in specific application 

domains.  

 

Table 1: Comparative Analysis of Case Representation Techniques in CBR 

 

Representat

ion Type 

Interpretabi

lity 

Scalabil

ity 

Domain 

Adaptabil

ity 

Computatio

nal 

Complexity 

Accuracy/Retri

eval 

Effectiveness 

Use Cases 

Feature 

Vector 

High High Low Low Moderate Recommen

der systems, 

IoT [10], 

[42] 

Frame-

Based 

Medium Medium Medium Medium Moderate Knowledge 

engineering 

[8], [10]  

Object-

Oriented 

Medium Medium High Medium High CAD, 

engineering 

design [11] 

Predicate-

Based 

High Low High High High Legal 

reasoning, 

medical 

diagnosis 

[10] 

Semantic 

Nets / 

Ontology 

High Medium Very High High High Bioinformat

ics, NLP 

[7], [43]  

Rule-Based High Low High Medium–

High 

Moderate Expert 

systems, 

policy 

compliance 

[41] 
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Table 2: Comparative Analysis of Similarity Measures in CBR 

 

Similarity 

Measure 

Interpretabi

lity 

Scalabili

ty 

Domain 

Adaptabil

ity 

Computatio

nal 

Complexity 

Accuracy/Ret

rieval 

Effectiveness 

Use Cases 

Euclidean 

Distance 

High High Low Low Moderate Structured 

data, sensor 

input [28] 

Manhattan 

Distance 

High High Low Low Moderate High-

dimensional

sparse data 

[29] 

Cosine 

Similarity 

Medium High Low Low High (for text) NLP, text 

retrieval 

[28] 

Jaccard 

Index 

High Medium Low Low Moderate Categorical, 

binary data 

[30], [41] 

Pearson 

Correlation 

Medium Medium Medium Medium High (linear 

domains) 

Health 

analytics, 

finance [31] 

Mahalanobis 

Distance 

Low Low Medium High High Anomaly 

detection, 

multivariate 

problems 

[32] 

Fuzzy/Sema

ntic 

High Low High Medium–

High 

High Medicine, 

legal, 

complex 

domain 

matching 

[34], [44] 

Fractional 

Function 

Medium Medium Medium Medium Moderate–

High 

Cost 

estimation, 

discrete 

scoring [26] 

Arithmetic 

Similarity 

Medium Medium Low Low Moderate Simple 

numeric 

comparisons 

[33] 

Hybrid 

Function 

Medium

  

Medium

  

Very High

  

High  High  Heterogeneo

us domains, 

medical, 

design [5], 

[13], [26] 

 

4. Advancements and Applications of 

Similarity Measures in CBR 

CBR has proven to be a versatile methodology 

across a wide range of domains. Over the years, 

the evolution of similarity measures has greatly 

enhanced the efficiency, accuracy and 

adaptability of CBR across various domains, 

including healthcare, finance, disaster 

management and industrial processes [2]. These 

significant advancements have transformed 

similarity measures from basic geometric 

calculations to sophisticated hybrid and 

adaptive models, thereby greatly improving 

accuracy, adaptability and domain-specific 

relevance. 

 

Early CBR systems relied heavily on traditional 

metrics like Euclidean distance and cosine 

similarity. While computationally efficient, 

these methods assume equal feature importance 
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and are prone to diminished performance in 

high-dimensional or heterogeneous datasets. 

They also fall short in capturing nonlinear or 

semantic relationships, which are common in 

real-world data [2]. 

 

To overcome these constraints, researchers 

developed hybrid similarity models that 

combine different computational strategies. For 

instance, [45] introduced a hybrid retrieval 

model using soft likelihood functions, 

significantly improving decision efficiency 

under uncertainty. These models, though more 

powerful, tend to increase computational 

overhead. 

 

Recent advances incorporate machine learning 

(ML) into similarity computation to enhance 

adaptability. In finance, [46] reported improved 

stock prediction performance using Recurrent 

Neural Networks (RNNs) embedded within a 

CBR framework. However, such ML-driven 

similarity measures dependences on large, high-

quality datasets which makes them vulnerable 

in low-resource domains. Overfitting and poor 

generalization may arise when datasets are 

imbalanced or sparse. 

 

In domains requiring deep domain knowledge 

(such as healthcare, crisis response), ontology-

based similarity models have emerged as 

powerful tools. These models incorporate 

structured semantic knowledge to assess 

similarity more contextually. For example, [7] 

developed a crisis response framework 

integrating syntactic and semantic similarity, 

boosting case retrieval in emergencies. While 

effective, ontology-based models demand well-

structured ontologies, which are labour-

intensive to build and maintain. 

 

CBR has been widely used in financial decision 

support. [47] used asymmetrical similarity 

measures for loan assessment, refining credit 

risk modelling. [48] introduced a geometric 

similarity measure for stock forecasting, 

achieving better market trend recognition. Yet, 

these systems struggle under volatile economic 

conditions. Integrating real-time data streams 

and dynamic feature weighting can improve 

responsiveness. 

 

CBR models like [9]’s STGA-CBR 

(Spatiotemporal Trajectory Similarity) improve 

disaster assessment by combining location and 

time-based similarity. Similarly, [49] proposed 

an adaptive model for gas explosion response. 

Industrial applications have seen tailored 

similarity measures to aid design and 

efficiency. [5] applied a hybrid similarity 

function for CNC turret design, boosting 

manufacturing performance.  

 

Evidently, similarity computation continues to 

shape the future of CBR by pushing its 

applications further into intelligent, adaptive 

and domain-specific problem-solving. As 

domains become more dynamic and data-

driven, future systems must evolve toward 

flexible, scalable and context-aware similarity 

models. This evolution, though complex, 

promises to expand CBR’s relevance across 

even more critical and emerging fields. 

 

5. Conclusion 

CBR has proven to be a powerful and effective 

methodology for problem-solving across a wide 

range of domains. The success of a CBR system 

hinges on two critical factors: the representation 

of cases and the ability to accurately measure 

similarity between cases. Hence, this review 

presented a comprehensive analysis of case 

representation formats and similarity measures 

used in CBR systems. 

 

The study categorized case representation 

techniques into feature vector representation 

and structured representation. Each offers 

distinct advantages and trade-offs in terms of 

interpretability, domain adaptability and 

computational cost. Likewise, similarity 

measures were grouped into classical, advanced 

and hybrid methods. Their effectiveness varies 

significantly depending on the data type, 

application domain and retrieval objectives. 

 

Comparative evaluations across multiple 

criteria such as scalability, interpretability, 

computational complexity, applicability and 

adaptability revealed that no single method 

universally outperforms others. Instead, 

domain-specific requirements must guide the 

selection or combination of techniques. For 

example, medical and legal applications benefit 

from semantic and fuzzy similarity measures 

due to the ambiguity and structured knowledge 

involved, whereas recommender systems rely 

on scalable and efficient vector-based models. 

 

The study suggests that hybrid approaches 

which combines multiple representation and 

similarity techniques can offer improved 

adaptability to real-world heterogeneous 

datasets. Also, semantic and ontology-based 
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representations should be prioritized in domains 

requiring deep contextual reasoning, such as 

medicine and legal systems.  

 

While significant progress has been made in the 

development of efficient case representation 

and similarity measures in CBR systems, 

further research should focus on adaptive 

similarity models that learn from system 

feedback and evolve with the domain. 

Additionally, there is a need for the 

development of benchmark datasets and 

standardized evaluation protocols to objectively 

compare CBR systems across domains. 

 

It is important to establish synergy between 

robust representation and context-sensitive 

similarity computation. This is central to 

advancing the next generation of intelligent, 

interpretable and domain-aware CBR systems. 
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