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Abstract 

Spam detection remains a critical challenge in cybersecurity due to the increasing sophistication of unsolicited 

and malicious communications. These messages, often containing phishing links, fraudulent offers, and malware, 

pose significant risks to users and information systems. This project addresses the challenge by implementing a 

robust spam detection system using ensemble learning techniques to enhance the security of email and SMS 

communications. Utilizing diverse datasets such as the UCI ML Corpus, Spam Assassin Dataset, Ling Phishing 

Dataset, Nigerian Fraud Dataset, and Enron Phishing Dataset, the study implemented rigorous data 

preprocessing and feature extraction, transforming raw text data into numerical vectors using 

Term Frequency Inverse Document Frequency (TFIDF) vectorization. Various Machine Learning algorithms in

cluding Support Vector Machine, Logistic Regression, Naïve Bayes, Decision Trees, KNN, Extra Trees.  

Also, a range of ensemble learning algorithms, including Random Forest, AdaBoost, Gradient Boosting, and X

GBoost, were implemented with their performance recorded. The project focuses on combining the efforts of 

some of these algorithms hereby comparing two primary ensemble models; the Stacking and Voting Classifiers, 

with the Voting Classifier emerging as the more effective. By aggregating the strengths of multiple models, the 

Voting Classifier demonstrated superior accuracy and reliability combining models like SVC, RF, ETC, and NB, 

to report accuracy and precision scores of around 98% and 99% for datasets 1 and 2, 97% and 97% for dataset 3 

and 99% and 99% for dataset 5 respectively. This project underscores the potential of ensemble methods in 

enhancing spam detection systems and sets the stage for future research exploring the integration of deep 

learning models and real-time detection systems to secure digital communications further. 

Keywords: Spam detection models, Cybersecurity, Ensemble techniques 

1.    Introduction 

Spam detection has become an essential aspect 

of information security in today's digital age, 

where the proliferation of electronic 

communication methods such as email and 

SMS presents significant challenges. Spam 

messages, which are unsolicited and often 

malicious communications, pose various 

threats, including phishing attacks, the 

dissemination of malware, and the invasion of 

privacy [1]. As a result, the development and 

implementation of effective spam detection 

techniques are crucial for safeguarding users 

and maintaining the integrity of 

communication networks [2]. 

 

The term "spam" refers to any unwanted 

communication that is sent in bulk, typically 

for advertising, phishing, or malicious 

purposes. The rise of spam has been facilitated 

by the low cost of sending messages and the 

availability of automated tools that enable 

spammers to target a large number of 

recipients simultaneously [36]. Spam can take 

various forms, including email spam, SMS 

spam, and spam on social media platforms. 

The primary objectives of spam detection 

systems are to accurately identify and filter out 

these unwanted messages while minimizing 

false positives, which can lead to the 

misclassification of legitimate 

communications [28]. 

 

Several machine learning algorithms have 

been employed in spam detection to enhance 

the accuracy and efficiency of identifying 

spam messages. Commonly used algorithms 

include Support Vector Machine (SVM), 

Naïve Bayes, Random Forest, Logistic 

Regression, and K-Nearest Neighbors (k-NN) 

[8],[28]. These algorithms leverage various 

features extracted from the messages, such as 

word frequency, presence of specific keywords, 

and message metadata, to distinguish between 

spam and legitimate messages [10]. 
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One significant challenge in spam detection is 

the evolving nature of spam techniques. 

Spammers continuously adapt their methods to 

bypass existing filters, necessitating ongoing 

research and updates to spam detection 

systems [11]. For instance, spammers may use 

obfuscation techniques, such as misspelling 

words or inserting random characters, to evade 

keyword-based filters. Advanced machine 

learning approaches, including deep learning 

and ensemble methods, have shown promise in 

addressing these challenges by capturing 

complex patterns and relationships within the 

data [15]. 

 

The effectiveness of spam detection systems is 

often measured using various metrics, 

including accuracy, precision, recall, F1 score, 

and ROC AUC score [30]. These metrics 

provide insights into the system's ability to 

correctly classify spam and non-spam 

messages, as well as its overall performance in 

real-world scenarios. Ensemble methods, such 

as Voting Classifier and Stacking Classifiers, 

have gained popularity due to their ability to 

combine the strengths of multiple algorithms, 

leading to improved detection rates and 

robustness against diverse spam techniques 

[29], [30]. The integration of machine learning 

in spam detection not only enhances the 

accuracy and efficiency of filtering systems 

but also provides a scalable solution capable of 

handling large volumes of data [25],[35]. As 

communication technologies continue to 

evolve, ongoing research and development in 

spam detection are essential to stay ahead of 

spammers and ensure the security and 

reliability of digital communication channels. 

 

By leveraging the power of machine learning 

and ensemble methods, this study aims to 

implement a comprehensive spam detection 

system that effectively identifies and filters out 

spam messages in both email and SMS 

platforms. The implementation of advanced 

algorithms and techniques will contribute to 

the development of robust and adaptable spam 

detection solutions, addressing the ever-

changing landscape of spam and its associated 

threats [1].  

 

2.    Related Works 

Today, spam detection continues to evolve 

with the advancement of artificial intelligence 

and machine learning. The integration of 

natural language processing (NLP) techniques 

and the development of real-time detection 

capabilities are at the forefront of current 

research. The focus is on creating models that 

can adapt to new spam tactics quickly and 

efficiently, ensuring robust protection against 

evolving threats [21]. In addition to technical 

advancements, regulatory measures and 

industry standards play a crucial role in 

combating spam. Legislation such as the 

CAN-SPAM Act in the United States and the 

General Data Protection Regulation (GDPR) 

in Europe set guidelines for email marketing 

and data protection, helping to mitigate the 

impact of spam [14],[18]. 

 

The ubiquitous nature of email communication 

has brought with it a persistent challenge: 

spam emails. These unsolicited and often 

deceptive messages clutter inboxes, disrupt 

workflow, and harbor the potential for 

phishing attacks and malware distribution [20]. 

Traditional rule-based spam filters, while 

initially effective, struggle to keep pace with 

the evolving tactics of spammers [25]. 

Perpetrators employ increasingly sophisticated 

techniques, crafting emails that mimic 

legitimate sources and exploiting 

vulnerabilities in filtering systems [5]. 

 

Machine learning (ML) has emerged as a 

powerful tool in the fight against spam [33]. 

ML algorithms excel at analyzing large 

datasets and identifying patterns within them. 

By leveraging these capabilities, we can 

develop models that can discern legitimate 

emails from spam with high accuracy [37]. 

 

Several research studies have explored the 

efficacy of different ML approaches in spam 

detection. [38] proposed a lightweight spam 

detection model using word frequency 

patterns, demonstrating the potential of simple 

yet effective ML techniques. Research by [2] 

explored SMS spam detection using ML, 

highlighting the versatility of these algorithms 

across different communication platforms. [3] 

conducted a comprehensive review of various 

ML methods for enhancing email spam filter 

accuracy. Their work underscores the 

continuous evolution and improvement in this 

domain. 

 

Ensemble methods, which combine multiple 

algorithms, have also shown promise in 
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improving detection rates [9]. This approach 

leverages the strengths of diverse algorithms to 

tackle the multifaceted nature of spam. Natural 

Language Processing (NLP) techniques, when 

combined with ML, can further enhance spam 

detection capabilities. [3] integrated NLP and 

swarm intelligence to filter spam emails, 

showcasing advanced methods to refine the 

detection process. Comparative studies, such 

as those by [4],[13],[19], have evaluated 

multiple ML models to identify the most 

effective ones for spam detection. These 

studies provide valuable insights into model 

selection and optimization. 

 

The practical implementation of these models 

involves several critical steps. Data acquisition 

and preprocessing are crucial initial phases. 

Researchers often utilize publicly available 

datasets, such as the UCI Machine Learning 

Repository’s SMS Spam Collection [16]. Data 

cleaning and preparation involve removing 

irrelevant information and handling missing 

values to ensure model accuracy [17]. 

 

Exploratory Data Analysis (EDA) helps 

visualize data distribution and uncover 

patterns that can inform feature engineering 

[22]. Feature engineering involves extracting 

specific attributes, such as word frequency and 

key phrases, to enhance model performance 

[26]. 

 

Developing a robust ML model is central to 

the project. Algorithms like Naive Bayes, 

Support Vector Machines (SVM), and 

ensemble methods are popular choices for 

spam detection [34]. These algorithms are 

trained on the prepared data, with 

hyperparameter tuning applied to optimize 

their accuracy [7]. Model evaluation using 

metrics like accuracy, precision, recall, and 

F1-score ensures comprehensive assessment 

and fine-tuning [1]. 

 

In summary, the historical evolution of spam 

and spam detection highlights the ongoing 

battle between spammers and the developers 

of spam detection systems. From simple 

keyword filters to sophisticated machine 

learning and deep learning models, the field 

has made significant strides. However, the 

continuous evolution of spam tactics 

necessitates ongoing research and innovation 

to stay ahead in this ever-changing landscape. 

By leveraging advanced algorithms, this 

project aims to provide an effective tool to 

combat spam, safeguarding users against 

potential cyber threats. Future enhancements 

may include capabilities for bulk message 

processing and detailed analytics, further 

expanding the system's utility and 

effectiveness in the ongoing battle against 

spam. 

 

3.   Methodology  

  

The methodology adopted entails four stages: 

data collection and labelling, pre-processing, 

classification, performance evaluation 

 

3.1 Data collection and labelling  

Data preprocessing is a vital step in preparing 

the raw datasets for machine learning models. 

This process ensures the data is clean, 

consistent, and suitable for analysis. Effective 

preprocessing enhances model performance by 

eliminating noise, correcting inconsistencies, 

and transforming data into a format that the 

machine learning algorithms can effectively 

utilize. In this study, several data 

preprocessing techniques, including dropping 

irrelevant columns, renaming columns, 

handling missing values, and concatenating 

datasets were employed. These steps help to 

standardize the data and make it ready for the 

subsequent stages of feature extraction and 

model training [12]. It is composed of a broad 

ML procedure called Data Cleaning and then 

an optional but useful phase called Exploratory 

Data Analysis (EDA). 

 

3.2. Selection and Comparison of the Machine 

Learning Algorithms 

The study ensures that various machine 

learning algorithms are utilized and compared 

to determine the most effective model for 

spam detection. These algorithms include 

Logistic Regression, Support Vector Classifier 

(SVC), Naive Bayes (with a preference for 

Multinomial Naive Bayes), Decision Tree 

Classifier, K-Nearest Neighbors (KNN), 

Random Forest, AdaBoost, Extra Trees 

Classifier, Gradient Boosting Classifier, and 

XGBoost Classifier. Each algorithm offers 

unique advantages and is well-suited for 

different aspects of the spam detection task. 

Below is an extensive discussion of each 

algorithm. 
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Logistic Regression: Logistic Regression is a 

linear model used for binary classification 

tasks. It estimates the probability that a given 

input belongs to a certain class. The model 

uses the logistic function to squeeze the output 

of a linear equation between 0 and 1, 

representing the probability of the positive 

class [24]. 

   (1) 

Where: 

  

  
 

 

 
 

Decision Boundary: 

 Class 1 (spam) if   0.5 

Class 0 (not spam) if   0.5 

 

Support Vector Classifier (SVC): Support 

Vector Classifier (SVC) is used for both linear 

and non-linear classification tasks. It finds the 

optimal hyperplane that best separates the 

classes in the feature space. SVC maximizes 

the margin between the closest data points of 

different classes, known as support vectors, 

providing robustness against overfitting 

(Cortes and Vapnik, 1995). The decision 

function is: 

 

Objective Function: 

Minimize:    (2) 

 

Subject to:    (3) 

 

Where: 

  w is the weight vector 

 is the input feature vector for the  

instance 

 is the label for the  instance 

 b is the bias term  

 

Kernel Trick: The kernel trick is used to 

transform the data into a higher-dimensional 

space to make it linearly separable. 

      

Naïve Bayes: Naive Bayes is a probabilistic 

classifier based on Bayes' theorem. The 

Multinomial variant is particularly effective 

for text classification tasks like spam detection. 

It calculates the probability of each class given 

the input features and selects the class with the 

highest probability. 

 

Bayes Theorem: 

   (4) 

 

Where: 

  is the posterior probability of 

class  given the features   

  is the likelihood of features  

given class  

 is the prior probability of class  

 is the evidence or the total probability of 

features  

 

Decision Trees Classifier: Decision Tree 

Classifier splits data into subsets based on 

feature values, forming a tree structure. The 

model makes decisions by splitting the data at 

each node based on the feature that results in 

the best separation of the classes, providing 

clear decisions [32]. 

 

For Gini Impurity:   

      

   (5) 

 

Where: 

  is the total number of classes 

  is the probability of a random 

chosen element being classified to class i 

 

Entropy: 

  (6) 

 

Information Gain: 

     (7) 

Where  is the set of instances and  is the 

attribute 

 

K-Nearest Neighbours (KNN): K-Nearest 

Neighbors (KNN) is a non-parametric 

algorithm used for classification. It classifies 

based on the majority class among the k-

nearest neighbors of a data point. KNN 

calculates the distance between the input point 

and all other points in the training set. It 

typically uses distance metrics like Euclidean 

distance. 
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Distance Metric: 

  (8) 

 

Where: 

  are two instances in the 

feature  space 

  is the number of features 

 

Prediction: The class label is assigned based 

on the majority class among the k nearest 

neighbors 

  

 

Where:  are the labels of 

the nearest neighbors 

 

ExtraTrees Classifier: Extra Trees (Extremely 

Randomized Trees) is an ensemble learning 

method that uses random subsets of features 

and splits the nodes randomly to form multiple 

decision trees. It is similar to Random Forest 

but with more randomness in tree building. It 

builds each tree using a random subset of 

features and data, with the final prediction 

made by averaging the outputs of all trees [19]. 

 

Splitting Criterion: 

Randomly selects a feature and then selects a 

random split point for that feature to split the 

node. The prediction is made by averaging the 

predictions from all trees or taking the 

majority vote in the case of classification. 

Like Random Forest, the prediction is given by:

     

   (10) 

Where: 

  is the number of trees 

  is the prediction of the  tree 

 

3.3. Ensemble Methods 

Ensemble methods combine the predictions of 

multiple machine learning models to produce a 

more accurate and robust model. The 

underlying idea is that by aggregating the 

strengths of individual models, the ensemble 

can outperform any single model. Ensemble 

methods are particularly useful in scenarios 

where individual models might have different 

strengths and weaknesses. In this section, we 

will discuss the ensemble methods used in this 

project: Voting, Stacking, Boosting, and 

Bagging. 

 

 

1. Boosting 

Boosting is an iterative ensemble technique 

that focuses on improving the performance of 

weak learners by sequentially adding models 

that correct the errors of the previous models. 

Boosting reduces bias and variance, making it 

highly effective for complex classification 

tasks. The key algorithms are as follows. 

AdaBoost Classsifier: AdaBoost (Adaptive 

Boosting) is a boosting technique that 

combines multiple weak classifiers to form a 

strong classifier by focusing on hard-to-

classify instances. AdaBoost assigns weights 

to each training instance, adjusting them after 

each round to focus more on misclassified 

instances. 

 

Weight Update: 

  (11) 

 

Where: 

  is the weight of the 

 

  is the model weight for classifier  

  is the true label 

  is the prediction of classifier  

 

Gradient Boosting Classifier: Gradient 

Boosting is an ensemble technique that builds 

models sequentially. Each new model 

minimizes the loss function of the previous 

models, with the final prediction being a 

weighted sum of all the models (Friedman, 

2001). 

Objective Function: 

 (12) 

 

Where:  

  is the loss function (e.g., 

log loss for classification) 

 

 

 
  is the prediction after  iterations 

 

Boosting Process: At each step , the 

algorithm fits a new model   to the 

residual errors from the previous model 

  

Where:  

 

XGBoost Classifier: XGBoost (Extreme 

Gradient Boosting) is an optimized 

implementation of gradient boosting that 
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includes regularization to prevent overfitting. 

XGBoost uses advanced techniques like 

parallelization, tree pruning, and handling 

missing values to build efficient and accurate 

models [8]. 

 

Objective Function: 

 (13) 

Where:  

  is the loss function  

 

 
 

Boosting methods can be particularly effective 

in improving the classification performance of 

the spam detection system by focusing on 

difficult-to-classify instances. 

 

2. Bagging 

Bagging (Bootstrap Aggregating) is an 

ensemble method that builds multiple models 

using different subsets of the training data. 

Each model is trained independently, and their 

predictions are averaged (or voted) to produce 

the final prediction. Bagging helps to reduce 

variance and prevent overfitting. The key 

algorithm is the Random Forest classifier. 

Random Forest: Random Forest is an 

ensemble learning method that constructs 

multiple decision trees and merges their 

outputs to improve accuracy and control over-

fitting. Each tree in the forest is built on a 

random subset of the data and features, with 

the final prediction made by aggregating the 

predictions of all the individual trees [6]. 

 

Prediction: The prediction is made by 

averaging the predictions from all the trees 

(for regression) or by taking the majority vote 

(for classification). 

   (9) 

Where: 

  is the number of trees 

  is the prediction of the  tree 

 

3. Voting 

The Voting Classifier is a simple yet powerful 

ensemble technique that aggregates the 

predictions from multiple models. The two 

main types of voting mechanisms are as 

follows. 

Hard Voting: In this approach, each model in 

the ensemble makes a prediction (votes for a 

class), and the class with the most votes is 

chosen as the final prediction. Mathematically, 

if we have mmm classifiers, the hard voting 

prediction is given by: 

  

 

Where:  is the prediction of the  model 

 

Soft Voting: Instead of predicting the final 

class directly, soft voting averages the 

predicted probabilities of each class and 

selects the class with the highest average 

probability. This method often provides better 

performance as it considers the confidence of 

each model's prediction: 

  

Where:  is the predicted probability of 

class  by the  model 

 

The Voting Classifier would be particularly 

effective in this project, as it leverages the 

diverse strengths of the models included in the 

ensemble, leading to improved accuracy and 

robustness in spam detection. 

 

4. Stacking  

Stacking is a more advanced ensemble method 

that involves training a meta-model to 

combine the predictions of several base 

models. The base models are first trained on 

the training data, and then their predictions are 

used as input features for the meta-model. The 

meta-model learns how to best combine these 

predictions to make a final prediction. 

 

Let  be the predictions 

from the base models.  

The meta-model  is trained on these 

predictions: 

   
 

Stacking can outperform other ensemble 

methods by learning the optimal way to 

integrate the strengths of each model. In this 

project, the Stacking Classifier will be tested 

and compared with other methods, to provide 

valuable insights into the effectiveness of 

model combination strategies. 

 

3.4. Hyperparameter Tuning 

Hyperparameter tuning is a crucial step in the 

ML pipeline that involves selecting the 

optimal set of hyperparameters for a model. 

Hyperparameters are parameters that are set 

before the learning process begins, and they 
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can significantly impact the performance of 

the model. The goal of hyperparameter tuning 

is to improve the model's accuracy, precision, 

recall, and overall performance by finding the 

best combination of hyperparameters. It 

involves systematically searching through a 

predefined space of hyperparameter values and 

evaluating the model's performance for each 

combination. Two common methods for 

hyperparameter tuning are Grid Search and 

Random Search. 

 

3.5. Evaluation Metrics 

Several evaluation metrics are used to 

comprehensively assess the performance of 

machine learning models. Each metric 

provides unique insights into different aspects 

of the model's performance. Below is a table 

that shows the evaluation metrics to be 

considered in this project.

Table 1. Evaluation Metrics 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 Metric Definition Formular 

1 Accuracy 

The ratio of correctly predicted instances to the 

total instances. It gives a quick overview of the 

model's overall performance  

2 Precision 

Measures the proportion of true positive 

predictions among all positive predictions. It 

indicates the accuracy of the positive class 

predictions 
 

3 Recall 

Also known as sensitivity or true positive rate. 

Measures the proportion of true positive 

predictions among all actual positives  

4 F1 Score 

The harmonic Mean of precision and recall, 

providing a single metric that balances both 

aspects  

5 ROC_AUC 

The ROC curve plots the true positive rate 

(recall) against the false positive rate. The AUC 

represents the model's ability to distinguish 

between classes 

 

6 
Logarithmic 

Loss 

Measures the performance of a classification 

model where the output is a probability value 

between 0 and 1. It penalizes false 

classifications, with larger penalties for 

confident but incorrect predictions.  

7 Hamming Loss 

The fraction of labels that are incorrectly 

predicted. It measures the average 

misclassification rate. 
 

8 
Cohen’s 

Kappa 

Measures the agreement between two raters (or 

the model and the true labels) accounting for the 

possibility of agreement occurring by chance  

9 F2 Score 

A variant of the F1 Score that gives more weight 

to recall than precision. It is useful when the cost 

of false negatives is higher  

10 Jaccard Index 

Measures the similarity between the predicted 

and true label sets. It is the size of the 

intersection divided by the size of the union of 

the label sets.  
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4. Results and Discussion 

In this section, various machine learning 

algorithms were implemented and evaluated to 

determine their effectiveness in detecting spam 

messages. The algorithms tested included 

Logistic Regression, Support Vector 

Classifier, Naive Bayes, Decision Tree 

Classifier, K-Neighbors, Random Forest, 

AdaBoost, Extra Trees Classifier, Gradient 

Boosting Classifier, and XGBoost. 

 

In developing a the spam detection system, 

several critical decisions were made to 

enhance model performance and ensure 

practical applicability. This section reflects on 

these choices, offering insights into the 

rationale behind each decision. 

 

Hyperparameter tuning was a pivotal step in 

refining the performance of the ML models. 

By systematically adjusting parameters such as 

the 'C' value in Support Vector Machines 

(SVM) and the number of estimators in 

ensemble methods like Random Forest, the 

models were optimized for better accuracy and 

generalization.  

 

Feature selection and engineering played a 

crucial role in improving model accuracy. 

Initially, a broad range of features were 

considered, including text length, punctuation 

frequency, and keyword occurrences. 

However, a thorough analysis revealed that not 

all features contributed equally to the model's 

predictive power. Employing the TF-IDF 

Vectorizer over the Count Vectorizer yielded 

better results. Coupling it with 

hyperparameters such as max_features did 

much better as only features that significantly 

impacted performance were selected. This step 

was essential in reducing model complexity 

and preventing overfitting. 

 

  
Table 2: Results obtained by individual base classifier [dataset 1] 

 Algorithm Accuracy Precision Recall F1 ROC_AUC Log Loss 
Hamming 

Loss 
Kappa F2 Jaccard 

1 LR 0.9700 0.9972 0.9342 0.9647 0.9661 1.0796 0.0300 0.9387 0.9462 0.9318 

2 SVM 0.9770 0.9972 0.9500 0.9730 0.9740 0.8305 0.0230 0.9529 0.9591 0.9475 

3 NB 0.9585 0.9479 0.9578 0.9528 0.9585 1.4949 0.0415 0.9158 0.9559 0.9100 

4 DT 0.9412 0.9687 0.8947 0.9302 0.9360 2.1178 0.0588 0.8796 0.9086 0.8695 

5 KN 0.5507 0.4935 1.0000 0.6609 0.6004 16.195 0.4493 0.1803 0.8297 0.4935 

6 RF 0.9827 0.9973 0.9631 0.9799 0.9806 0.6229 0.0173 0.9648 0.9698 0.9606 

7 AdaBoost 0.9505 0.9856 0.9000 0.9409 0.9449 1.7856 0.0495 0.8984 0.9159 0.8883 

8 ETC 0.9735 0.9786 0.9605 0.9695 0.9721 0.9551 0.0265 0.9461 0.9641 0.9407 

9 GBDT 0.9643 0.9861 0.9316 0.9581 0.9607 1.2872 0.0357 0.9270 0.9420 0.9195 

10 XGBoost 0.9758 0.9864 0.9579 0.9720 0.9738 0.8720 0.0242 0.9507 0.9634 0.9454 
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Figure 1: Barplot of the Model Evaluation (Dataset 1) 

Table 3: Results Obtained by the Individual Models (Dataset 2) 

 Model Accuracy Precision Recall F1 ROC 
Log 

Loss 

Hamming 

Loss 
Kappa F2 Jaccard 

1 LR 0.9468 0.9882 0.6087 0.7534 0.8038 1.9172 0.0532 0.7254 0.6593 0.6043 

2 SVM 0.9758 0.9748 0.8406 0.9027 0.9186 0.8715 0.0242 0.8890 0.8643 0.8227 

3 NB 0.9594 1.0000 0.6957 0.8205 0.8478 1.4640 0.0406 0.7984 0.7407 0.6957 

4 DT 0.9352 0.8380 0.6377 0.7242 0.8094 2.3355 0.0648 0.6883 0.6697 0.5677 

5 KN 0.9023 1.0000 0.2681 0.4228 0.6341 3.5207 0.0976 0.3883 0.3141 0.2681 

6 RF 0.9778 1.0000 0.8333 0.9090 0.9167 0.8017 0.0222 0.8965 0.8621 0.8333 

7 AdaBoost 0.9246 0.8409 0.5362 0.6549 0.7603 2.7190 0.0754 0.6148 0.5781 0.4868 

8 ETC 0.9768 0.9750 0.8478 0.9070 0.9222 0.8366 0.0232 0.8938 0.8705 0.8298 

9 GBDT 0.9516 0.8929 0.7246 0.8000 0.8556 1.7429 0.0484 0.7728 0.7530 0.6667 

10 XGBoost 0.9700 0.9350 0.8333 0.8812 0.9122 1.0806 0.0300 0.8641 0.8519 0.7877 
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Figure 2: Barplot of the Model Evaluation (Dataset 2) 

 

Table 4: Results Obtained by the Individual Models (Dataset 3) 

 Model Accuracy Precision Recall F1 ROC 
Log 

Loss 

Hamming 

Loss 
Kappa F2 Jaccard 

1 LR 0.9628 0.9768 0.8934 0.9335 0.9426 1.3421 0.0372 0.9078 0.9094 0.8753 

2 SVM 0.9787 0.9781 0.9485 0.9630 0.9699 0.7669 0.0213 0.9481 0.9543 0.9288 

3 NB 0.9583 0.9639 0.8909 0.9260 0.9386 1.5018 0.0417 0.8971 0.9046 0.8621 

4 DT 0.8927 0.8667 0.7485 0.8032 0.8504 3.8664 1.1073 0.7301 0.7695 0.6712 

5 KN 0.9326 0.8324 0.9636 0.8933 0.9417 2.4285 0.0673 0.8444 0.9342 0.8071 

6 RF 0.9583 0.9579 0.8970 0.9264 0.9403 1.5018 0.0417 0.8974 0.9085 0.8629 

7 AdaBoost 0.9291 0.9085 0.8424 0.8742 0.9037 2.5563 0.0709 0.8249 0.8549 0.7765 

8 ETC 0.9663 0.9771 0.9061 0.9402 0.9486 1.2142 0.0337 0.9168 0.9194 0.8872 

9 GBDT 0.9362 0.9510 0.8242 0.8831 0.9033 2.3006 0.0638 0.8395 0.8468 0.7907 

10 XGBoost 0.9672 0.9536 0.9333 0.9433 0.9573 1.1823 0.0328 0.9203 0.9373 0.8928 
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Figure 3: Barplot of the Model Evaluation (Dataset 3) 

 

Table 5: Results Obtained by the Individual Models (Dataset 4) 

 Model Accuracy Precision Recall F1 ROC 
Log 

Loss 

Hamming 

Loss 
Kappa F2 Jaccard 

1 LR 0.9859 0.9771 0.9945 0.9857 0.9861 0.5073 0.0141 0.9718 0.9910 0.9718 

2 SVM 0.9849 0.9784 0.9909 0.9846 0.9850 0.5458 0.0151 0.9697 0.9884 0.9697 

3 NB 0.9802 0.9824 0.9770 0.9797 0.9802 0.7128 0.0198 0.9604 0.9809 0.9602 

4 DT 0.8455 0.7653 0.9861 0.8618 0.8487 5.5674 0.1545 0.6930 0.9323 0.7572 

5 KN 0.7969 0.6259 0.9942 0.7682 0.7134 10.5633 0.2931 0.4212 0.8895 0.6237 

6 RF 0.9783 0.9764 0.9792 0.9778 0.9783 0.7834 0.0217 0.9565 0.9786 0.9565 

7 AdaBoost 0.8958 0.8511 0.9533 0.8994 0.8970 3.7565 0.1042 0.7920 0.9310 0.8171 

8 ETC 0.9820 0.9846 0.9784 0.9815 0.9819 0.6486 0.0180 0.9640 0.9797 0.9637 

9 GBDT 0.9211 0.8743 0.9792 0.9238 0.9224 2.8447 0.0789 0.8425 0.9563 0.8584 

10 XGBoost 0.9674 0.9463 0.9894 0.9674 0.9679 1.1751 0.0326 0.9348 0.9805 0.9368 
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Figure 4: Barplot of the Model Evaluation (Dataset 4) 

 

Table 6: Results Obtained by the Individual Models (Dataset 5) 

 Model Accuracy Precision Recall F1 ROC 
Log 

Loss 

Hamming 

Loss 
Kappa F2 Jaccard 

1 LR 0.9835 0.9947 0.9750 0.9847 0.9844 0.5934 0.0165 0.9669 0.9789 0.9700 

2 SVM 0.9864 0.9930 0.9819 0.9874 0.9868 0.4917 0.0136 0.9725 0.9841 0.9751 

3 NB 0.9802 0.9938 0. 9698 0.9817 0.9813 0.7121 0.0198 0.9603 0.9745 0.9640 

4 DT 0.9069 0.9772 0.8490 0.9086 0.9126 3.3568 0.0931 0.8146 0.8719 0.8325 

5 KN 0.746 0.6502 0.9914 0.7853 0.6761 10.6469 0.2954 0.3716 0.8972 0.6466 

6 RF 0.9831 1.9836 0.9853 0.9845 0.9828 0.6103 0.0169 0.9658 0.9850 0.9694 

7 AdaBoost 0.9614 0.9761 0.9525 0.9642 0.9623 1.3902 0.0386 0.9224 0.9572 0.9309 

8 ETC 0.9873 0.9905 0.9862 0.9883 0.9874 0.4578 0.0127 0.9744 0.9870 0.9769 

9 GBDT 0.9671 0.9764 0.9629 0.9696 0.9675 1.1868 0.0329 0.9337 0.9656 0.9410 

10 XGBoost 0.9817 0.9819 0.9845 0.9832 0.9814 1.6612 0.0183 0.9630 0.9840 0.9669 
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Figure 5: Barplot of the Model Evaluation (Dataset 5) 

 

4.1 Rationale for Ensemble Methods 

The decision to implement ensemble methods 

was driven by their ability to combine different 

models' strengths, thus mitigating the individual 

models' weaknesses. This approach effectively 

reduced variance and bias, leading to a more 

robust spam detection system. The Voting 

Classifier’s superior performance aligns with the 

literature that supports ensemble methods as 

powerful tools in complex classification tasks 

like spam detection. 

 

The accuracy and precision of the individual 

models ranged between 85% and 95%, with the 

ensemble methods, particularly the Voting 

Classifier, demonstrating superior performance 

across multiple datasets. Precision was highest 

for the ensemble models, particularly in reducing 

false positives, which is crucial in spam 

detection. While individual models like Naive 

Bayes and Decision Tree showed good recall, 

the ensemble models maintained a balanced 

performance, avoiding significant trade-offs 

between precision and recall. The F1 score, a 

harmonic mean of precision and recall, 

highlighted the balanced effectiveness of the 

ensemble methods compared to standalone 

models. The ROC-AUC scores also favored the 

ensemble models, indicating a better overall 

classification capability. Lower log loss scores in 

ensemble methods pointed to better calibration 

of predicted probabilities. Other metrics such as 

the Hamming Loss and Kappa further 

emphasized the robustness of ensemble models, 

showing fewer classification errors and better 

agreement between predicted and actual classes. 

When comparing the two ensemble methods: 

The Stacking Classifier, unlike Voting, uses a m

eta- 

earner to learn from the predictions of the base 

models. 

 

The meta-learner in stacking could learn which 

models performed better on different parts of the 

data and adjust its final predictions accordingly. 

This approach led to improved accuracy over 

individual models and even over the Voting 

Classifier in some cases, especially when the 

base models had complementary strengths. 

Making use of the SVC as the final estimator 

because of its strong results as an individual 

model, the tables below describe the results 

obtained from evaluating variations of the 

Stacking classifier. 
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Table 7: Results Obtained by the Stacking Ensemble Method (Dataset 1) 

Base 

Estimators 
Accu. Prec. Recall F1 ROC 

Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

ETC | RF | LR | 

XGB 
0.9793 0.9945 0.9579 0.9759 0.9769 0.7474 0.0207 0.9577 0.9659 w 

ETC | RF | LR | 

XGB | NB 
0.9793 0.9973 0.9553 0.9758 0.9766 0.7474 0.0207 0.9576 0.9634 0.9528 

ETC | LR | XGB  0.9793 0.9945 0. 9698 0.9759 0.9759 0.7474 0.0207 0.9577 0.9650 0.9529 

ETC | RF | XGB 0.9804 0.9919 0.9632 0.9773 0.9785 0.7059 0.0196 0.9601 0.9688 0.9556 

 

From Table 7, the ETC | LR | XGB combination of base estimators provided the best results for dataset 1 with 

accuracy and precision scores of 97.9% and 99.5% respectively. 

 

Table 8: Results Obtained by the Stacking Ensemble Method (Dataset 2) 

Base Estimators Accu. Prec. Recall F1 ROC 
Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

ETC | RF | LR | 

XGB 
0.9797 0.9606 0.8840 0.9208 0.9392 0.7372 0.0203 0.9091 0.8984 0.8531 

ETC | RF | LR | 

XGB | NB 
0.9826 0.9615 0.9058 0.9328 0.9501 0.6275 0.0174 0.9228 0.9164 0.8741 

ETC | LR | XGB  0.9797 0.9680 0.8768 0.9201 0.9362 0.7320 0.0203 0.9086 0.8936 0.8521 

ETC | RF | XGB 0.9797 0.9680 0.8768 0.9202 0.9362 0.7320 0.0203 0.9086 0.8936 0.8521 

 

Table 9: Results Obtained by the Stacking Ensemble Method (Dataset 3) 

Base Estimators Accu. Prec. Recall F1 ROC 
Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

ETC | RF | LR | XGB 0.9778 0.9635 0.9606 0.9621 0.9728 0.7988 0.0222 0.9464 0.9612 0.9269 

ETC | RF | LR | XGB 

| NB 
0.9761 0.9577 0.9606 0.9592 0.9715 0.8627 0.0239 0.9422 0.9600 0.9215 

ETC | LR | XGB  0.9778 0.9635 0.9606 0.9621 0.9728 0.7988 0.0222 0.9464 0.9612 0.9269 

ETC | RF | XGB 0.9734 0.9601 0.9485 0.9543 0.9661 0.9586 0.0266 0.9355 0.9508 0.9125 

 

Table 9 indicates that the ETC | LR | XGB combination was superior for dataset 3 with accuracy and precision 

scores of 97.8% and 96.4% respectively. 

 

Table 10: Results Obtained by the Stacking Ensemble Method (Dataset 5) 
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Base Estimators Accu. Prec. Recall F1 ROC 
Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

ETC | RF | LR | 

XGB 
0.9878 0.9913 0.9862 0.9888 0.9879 0.4408 0.0122 0.9754 0.9872 0.9778 

ETC | RF | LR | 

XGB | NB 
0.9892 0.9913 0.9888 0.9901 0.9892 0.3899 0.0108 0.9782 0.9893 0.9803 

ETC | LR | XGB  0.9878 0.9905 0.9871 0.9888 0.9878 0.4408 0.0122 0.9753 0.9877 0.9778 

ETC | RF | XGB 0. 9878 0.9896 0.9879 0.9888 0.9878 0.4408 0.0122 0.9753 0.9883 0.9778 

 

Tables 9 and 10 report ETC | RF | LR | XGB | NB combination edged out for datasets 2 and 5 with results of 

98.9% accuracy and 99.1% precision 

The Voting classifier generally edged out against the Stacking classifier with solid indications as presented in the 

tables below. 

Table 11: Results Obtained by the Voting Ensemble Method (Dataset 1) 

 

Estimators 

Accu. Prec. Recall F1 ROC 
Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

SVM | RF | ETC | LR | NB 

| XGB 
0.9804 0.9946 0.9605 0.9772 0.9782 0.7059 0.0196 0.9601 0.9671 0.9555 

SVM | RF | ETC | LR | 

XGB  
0.9816 0.9973 0.9605 0.9786 0.9792 0.6644 0.0184 0.9624 0.9677 0.9580 

SVM | RF | ETC | LR | NB 0.9793 0.9945 0.9579 0.9759 0.9769 0.7474 0.0207 0.9577 0.9650 0.9529 

SVM | RF | ETC | NB  0.9804 0.9946 0.9605 0.9772 0.9782 0.7059 0.0196 0.9601 0.9671 0.9555 

SVM | RF | ETC | LR 0.9781 0.9918 0.9579 0.9746 0.9759 0.7890 0.0219 0.9554 0..9645 0.9504 

 

Table 12: Results Obtained by the Voting Ensemble Method (Dataset 2) 

 

Estimators 

Accu. Prec. Recall F1 ROC 
Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

SVM | RF | ETC | LR | NB 

| XGB 
0.9797 1.0000 0.8478 0.9176 0.9239 0.7320 0.0203 0.9062 0.8744 0.8478 

SVM | RF | ETC | LR | 

XGB  
0.9797 0.9916 0.8550 0.183 0.9270 0.7320 0.0203 0.9068 0.8793 0.8489 

SVM | RF | ETC | LR | NB 0.9797 1.0000 0.8478 0.9176 0.9239 0.7320 0.0203 0.9062 0.8744 0.8478 

SVM | RF | ETC | NB  0.9807 1.0000 0.8550 0.9219 0.9275 0.6972 0.0193 0.9109 0.8806 0.8551 

SVM | RF | ETC | LR 0.9807 0.9917 0.8623 0.9225 0.9306 0.6972 0.0193 0.9115 0.8854 0.8561 

 

Table 12 shows that the SVM | RF | ETC | NB combination edged out for dataset 2 with results of 98% accuracy 

and 100% precision. 

Table 13: Results Obtained by the Voting Ensemble Method (Dataset 3) 

 

Estimators 

Accu. Prec. Recall F1 ROC 
Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

SVM | RF | ETC | 

LR | NB | XGB 
0.9743 0.9688 0.9424 0.9555 0.9650 0.9267 0.0257 0.9374 0.9476 0.9147 
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SVM | RF | ETC | 

LR | XGB  
0.9761 0.9720 0.9455 0.9585 0.9671 0.8627 0.0239 0.9417 0.9506 0.9204 

SVM | RF | ETC | 

LR | NB 
0.9725 0.9716 0.9333 0.9521 0.9613 0.9906 0.0275 0.9328 0.9407 0.086 

SVM | RF | ETC | 

NB  
0.9734 0.9717 0.9364 0.9537 0.9625 0.9586 0.266 0.9351 0.9433 0.9115 

SVM | RF | ETC | 

LR 
0.9743 0.9718 0.9394 0.9553 0.9640 0.9267 0.0257 0.9373 0.9457 0.9144 

 

From Tables 12 and13, the combination SVM | RF | ETC | LR | XGB produced best results drawing accuracy of 

97.6% and precision of 97.6 respectively. 

Table 14: Results Obtained by the Voting Ensemble Method (Dataset 5) 

 

Estimators 

Accu. Prec. Recall F1 ROC 
Log 

Loss 

Hamm 

Loss 
Kappa F2 Jacc. 

SVM | RF | ETC | LR | 

NB | XGB 
0.9901 0.9948 0.9871 0.9909 0.9904 0.3560 0.0099 0.9801 0.9886 0.9820 

SVM | RF | ETC | LR | 

XGB  
0.9892 0.9913 0.9887 0.9901 0.9892 0.3899 0.0108 0.9782 0.9893 0.803 

SVM | RF | ETC | LR | 

NB 
0.9897 0.9939 0.9871 0.9905 0.9899 0.3730 0.0103 0.9791 0.884 0.9811 

SVM | RF | ETC | NB  0.9901 0.9939 0.9879 0.9909 0.9903 0.3560 0.0099 0.9800 0.9891 0.9820 

SVM | RF | ETC | LR 0.9878 0.9905 0.9871 0.9888 0.9878 0.4408 0.0122 0.9753 0.9877 0.9778 

 

The SVM | RF | ETC | LR | NB | XGB combination achieved best results for dataset 5 as indicated in Table 14, 

providing results of 99% and 99.5% precision. 

Table 15: Comparison of Ensemble Learning Techniques for Spam Detection in Email 

Author(s) 
Degree Of 

Accuracy 
ML Technique Method Name 

Chharia & Gupta (2013) 94.5% 
Ensemble with Probability and Rules 

 

Email Classifier: An 
Ensemble Using Probability and Rules 

Cota et al. (2022) 95% 

Ensemble (Random Forest, Gradient 

Boosting) 

Comparative Results of Spam Email 

Detection Using Machine Learning 

Algorithms 

Gomes et al. (2017) 95.2% 
Naive Bayes, Hidden Markov Model 

(Ensemble) 

A Comparative Approach to Email 

Classification Using Naïve Bayes and HMM 

Omotehinwa et al. 

(2020) 
96% 

Random Forest, XGBoost 

(Ensemble) 

 

Spam Email Detection Using XGBoost and 

Random Forest 

Oh et al. (2020) 97% 
Stacking Ensemble of Six Classifiers Improving Spam Email Classification 

Accuracy Using Ensemble Techniques 

Zhao et al. (2022) 98% 
Heterogeneous Stacking Ensemble A Heterogeneous Ensemble Learning 

Framework for Spam Detection 

Proposed Method 99.01% 
SVM, Random Forest, ETC, LR, Naive 
Bayes, XGBoost (Ensemble) 

Spam Detection in Email Using Ensemble 
Learning 

 

The comparison table (Table 15) highlights the 

effectiveness of various ensemble learning 

techniques in spam detection across multiple 

studies. Ensemble models, known for their 

ability to combine the strengths of individual 

classifiers, have consistently outperformed 

single models in classification tasks. 

Omotehinwa et al. (2020) leveraged the 

complementary strengths of XGBoost and 

Random Forest to achieve an accuracy of 96%, 
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emphasizing the role of ensemble diversity. 

Similarly, Zhao et al. (2022) demonstrated the 

utility of heterogeneous stacking, which 

reached an impressive 98% accuracy by 

introducing cost-sensitive learning. In my 

research, the combination of SVM, Random 

Forest, Extra Trees, Logistic Regression, Naive 

Bayes, and XGBoost achieved an accuracy of 

99.01% and a precision of 99.48%. This 

superior performance highlights the importance 

of using diverse and robust classifiers, 

suggesting that integrating base models with 

complementary strengths is key to enhancing 

spam detection. 

 

The results across these studies reaffirm that 

ensemble learning not only improves accuracy 

but also addresses common challenges such as 

overfitting and data imbalance, particularly in 

spam detection tasks where dataset variations 

and class distributions can affect outcomes. 

 

In summary, decisions made during this 

project's implementation phase were guided by 

a combination of empirical evidence, theoretical 

considerations, and practical constraints. The 

emphasis on ensemble methods, careful feature 

selection, and robust evaluation strategies has 

laid a solid foundation for an effective spam 

detection system. In this project, while both 

ensemble methods enhanced spam detection 

accuracy, the Voting Classifier, particularly 

with soft voting, emerged as the more robust 

and practical solution. The Stacking Classifier 

offered marginally better performance in certain 

scenarios but required more careful tuning and 

introduced additional complexity.  

 

5. Conclusion 

In conclusion, the integration of machine 

learning techniques into spam detection systems 

offers a promising solution to enhance email 

security. This study has demonstrated the 

potential of advanced algorithms to identify and 

filter spam, providing an effective tool to 

combat the growing threat of unsolicited and 

potentially harmful communications. The 

methodologies employed, from data acquisition 

and preprocessing to model selection and 

evaluation, have laid a strong foundation for 

building a robust spam detection system. 

 

Looking ahead, several avenues for future work 

present themselves. Incorporating deep learning 

techniques could further refine the system's 

ability to distinguish between legitimate and 

spam messages, potentially increasing accuracy 

and reducing false positives. Moreover, the 

development of real-time processing 

capabilities would allow for immediate 

detection and response to spam, enhancing the 

system's utility in fast-paced digital 

environments. A practical next step involves 

deploying the trained model within a user-

friendly web application, utilizing frameworks 

such as Flask or Django. This application 

would provide users with real-time spam 

classification, offering immediate feedback and 

thus enhancing user experience and trust. 

Hosting the application on scalable cloud 

platforms like Heroku would ensure that it can 

accommodate a wide user base and large 

volumes of data, maintaining performance and 

reliability. 

 

This study not only addresses the immediate 

challenge of spam detection but also opens up 

opportunities for further innovation and 

improvement. By continually refining the 

system and expanding its capabilities, we can 

better equip individuals and organizations to 

protect themselves against the ever-evolving 

landscape of cyber threats. As digital 

communication continues to grow, so too must 

our efforts to secure these channels, making the 

ongoing development of advanced spam 

detection systems both necessary and timely. 
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APPENDIX 

1. http://www.dt.fee.unicamp.br/~tiago/smsspa

mcollection/ 

2. https://www2.aueb.gr/users/ion/data/enron-

spam/ 

3. https://spamassassin.apache.org/old/publiccor

pus/ 

4. https://plg.uwaterloo.ca/~gvcormac/treccorpu

s07/about.html 

5. Code available at: 

https://github.com/Kingblackie/spam_detecti

on_ml 
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