
153 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

University of Ibadan Journal of

Science and Logics in ICT

Research (UIJSLICTR)
ISSN: 2714-3627

A Journal of the Department of Computer Science, University of Ibadan, Ibadan, Nigeria

Volume 14 No. 1, June, 2025

journals.ui.edu.ng/uijslictr

http://uijslictr.org.ng/

uijslictr@gmail.com

154 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

Spam Detection In Email Communication Using Ensemble Learning

1 Nureni Ayofe Azeez, 1Alfred Dennis Tonye, 1Chinyere Chioma Isiekwene.

Department of Computer Sciences, Faculty of Science, University of Lagos, Nigeria.

nazeez@unilag.edu.ng; alfreddennis26.adt90@gmail.com; isiekwenechioma@gmail.com

Abstract

Spam detection remains a critical challenge in cybersecurity due to the increasing sophistication of unsolicited

and malicious communications. These messages, often containing phishing links, fraudulent offers, and malware,

pose significant risks to users and information systems. This project addresses the challenge by implementing a

robust spam detection system using ensemble learning techniques to enhance the security of email and SMS

communications. Utilizing diverse datasets such as the UCI ML Corpus, Spam Assassin Dataset, Ling Phishing

Dataset, Nigerian Fraud Dataset, and Enron Phishing Dataset, the study implemented rigorous data

preprocessing and feature extraction, transforming raw text data into numerical vectors using

Term Frequency Inverse Document Frequency (TFIDF) vectorization. Various Machine Learning algorithms in

cluding Support Vector Machine, Logistic Regression, Naïve Bayes, Decision Trees, KNN, Extra Trees.

Also, a range of ensemble learning algorithms, including Random Forest, AdaBoost, Gradient Boosting, and X

GBoost, were implemented with their performance recorded. The project focuses on combining the efforts of

some of these algorithms hereby comparing two primary ensemble models; the Stacking and Voting Classifiers,

with the Voting Classifier emerging as the more effective. By aggregating the strengths of multiple models, the

Voting Classifier demonstrated superior accuracy and reliability combining models like SVC, RF, ETC, and NB,

to report accuracy and precision scores of around 98% and 99% for datasets 1 and 2, 97% and 97% for dataset 3

and 99% and 99% for dataset 5 respectively. This project underscores the potential of ensemble methods in

enhancing spam detection systems and sets the stage for future research exploring the integration of deep

learning models and real-time detection systems to secure digital communications further.

Keywords: Spam detection models, Cybersecurity, Ensemble techniques

1. Introduction

Spam detection has become an essential aspect

of information security in today's digital age,

where the proliferation of electronic

communication methods such as email and

SMS presents significant challenges. Spam

messages, which are unsolicited and often

malicious communications, pose various

threats, including phishing attacks, the

dissemination of malware, and the invasion of

privacy [1]. As a result, the development and

implementation of effective spam detection

techniques are crucial for safeguarding users

and maintaining the integrity of

communication networks [2].

The term "spam" refers to any unwanted

communication that is sent in bulk, typically

for advertising, phishing, or malicious

purposes. The rise of spam has been facilitated

by the low cost of sending messages and the

availability of automated tools that enable

spammers to target a large number of

recipients simultaneously [36]. Spam can take

various forms, including email spam, SMS

spam, and spam on social media platforms.

The primary objectives of spam detection

systems are to accurately identify and filter out

these unwanted messages while minimizing

false positives, which can lead to the

misclassification of legitimate

communications [28].

Several machine learning algorithms have

been employed in spam detection to enhance

the accuracy and efficiency of identifying

spam messages. Commonly used algorithms

include Support Vector Machine (SVM),

Naïve Bayes, Random Forest, Logistic

Regression, and K-Nearest Neighbors (k-NN)

[8],[28]. These algorithms leverage various

features extracted from the messages, such as

word frequency, presence of specific keywords,

and message metadata, to distinguish between

spam and legitimate messages [10].

Azeez N. A., Tonye A. D., Isiekwene C. C. (2025). Spam

Detection In Email Communication Using Ensemble

Learning. University of Ibadan Journal of Science and

Logics in ICT Research (UIJSLICTR), Vol. 14 No. 1, pp.

154 – 172.

©U IJSLICTR Vol. 14, No. 1, June 2025

mailto:nazeez@unilag.edu.ng
mailto:alfreddennis26.adt90@gmail.com
mailto:isiekwenechioma@gmail.com

155 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

One significant challenge in spam detection is

the evolving nature of spam techniques.

Spammers continuously adapt their methods to

bypass existing filters, necessitating ongoing

research and updates to spam detection

systems [11]. For instance, spammers may use

obfuscation techniques, such as misspelling

words or inserting random characters, to evade

keyword-based filters. Advanced machine

learning approaches, including deep learning

and ensemble methods, have shown promise in

addressing these challenges by capturing

complex patterns and relationships within the

data [15].

The effectiveness of spam detection systems is

often measured using various metrics,

including accuracy, precision, recall, F1 score,

and ROC AUC score [30]. These metrics

provide insights into the system's ability to

correctly classify spam and non-spam

messages, as well as its overall performance in

real-world scenarios. Ensemble methods, such

as Voting Classifier and Stacking Classifiers,

have gained popularity due to their ability to

combine the strengths of multiple algorithms,

leading to improved detection rates and

robustness against diverse spam techniques

[29], [30]. The integration of machine learning

in spam detection not only enhances the

accuracy and efficiency of filtering systems

but also provides a scalable solution capable of

handling large volumes of data [25],[35]. As

communication technologies continue to

evolve, ongoing research and development in

spam detection are essential to stay ahead of

spammers and ensure the security and

reliability of digital communication channels.

By leveraging the power of machine learning

and ensemble methods, this study aims to

implement a comprehensive spam detection

system that effectively identifies and filters out

spam messages in both email and SMS

platforms. The implementation of advanced

algorithms and techniques will contribute to

the development of robust and adaptable spam

detection solutions, addressing the ever-

changing landscape of spam and its associated

threats [1].

2. Related Works

Today, spam detection continues to evolve

with the advancement of artificial intelligence

and machine learning. The integration of

natural language processing (NLP) techniques

and the development of real-time detection

capabilities are at the forefront of current

research. The focus is on creating models that

can adapt to new spam tactics quickly and

efficiently, ensuring robust protection against

evolving threats [21]. In addition to technical

advancements, regulatory measures and

industry standards play a crucial role in

combating spam. Legislation such as the

CAN-SPAM Act in the United States and the

General Data Protection Regulation (GDPR)

in Europe set guidelines for email marketing

and data protection, helping to mitigate the

impact of spam [14],[18].

The ubiquitous nature of email communication

has brought with it a persistent challenge:

spam emails. These unsolicited and often

deceptive messages clutter inboxes, disrupt

workflow, and harbor the potential for

phishing attacks and malware distribution [20].

Traditional rule-based spam filters, while

initially effective, struggle to keep pace with

the evolving tactics of spammers [25].

Perpetrators employ increasingly sophisticated

techniques, crafting emails that mimic

legitimate sources and exploiting

vulnerabilities in filtering systems [5].

Machine learning (ML) has emerged as a

powerful tool in the fight against spam [33].

ML algorithms excel at analyzing large

datasets and identifying patterns within them.

By leveraging these capabilities, we can

develop models that can discern legitimate

emails from spam with high accuracy [37].

Several research studies have explored the

efficacy of different ML approaches in spam

detection. [38] proposed a lightweight spam

detection model using word frequency

patterns, demonstrating the potential of simple

yet effective ML techniques. Research by [2]

explored SMS spam detection using ML,

highlighting the versatility of these algorithms

across different communication platforms. [3]

conducted a comprehensive review of various

ML methods for enhancing email spam filter

accuracy. Their work underscores the

continuous evolution and improvement in this

domain.

Ensemble methods, which combine multiple

algorithms, have also shown promise in

156 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

improving detection rates [9]. This approach

leverages the strengths of diverse algorithms to

tackle the multifaceted nature of spam. Natural

Language Processing (NLP) techniques, when

combined with ML, can further enhance spam

detection capabilities. [3] integrated NLP and

swarm intelligence to filter spam emails,

showcasing advanced methods to refine the

detection process. Comparative studies, such

as those by [4],[13],[19], have evaluated

multiple ML models to identify the most

effective ones for spam detection. These

studies provide valuable insights into model

selection and optimization.

The practical implementation of these models

involves several critical steps. Data acquisition

and preprocessing are crucial initial phases.

Researchers often utilize publicly available

datasets, such as the UCI Machine Learning

Repository’s SMS Spam Collection [16]. Data

cleaning and preparation involve removing

irrelevant information and handling missing

values to ensure model accuracy [17].

Exploratory Data Analysis (EDA) helps

visualize data distribution and uncover

patterns that can inform feature engineering

[22]. Feature engineering involves extracting

specific attributes, such as word frequency and

key phrases, to enhance model performance

[26].

Developing a robust ML model is central to

the project. Algorithms like Naive Bayes,

Support Vector Machines (SVM), and

ensemble methods are popular choices for

spam detection [34]. These algorithms are

trained on the prepared data, with

hyperparameter tuning applied to optimize

their accuracy [7]. Model evaluation using

metrics like accuracy, precision, recall, and

F1-score ensures comprehensive assessment

and fine-tuning [1].

In summary, the historical evolution of spam

and spam detection highlights the ongoing

battle between spammers and the developers

of spam detection systems. From simple

keyword filters to sophisticated machine

learning and deep learning models, the field

has made significant strides. However, the

continuous evolution of spam tactics

necessitates ongoing research and innovation

to stay ahead in this ever-changing landscape.

By leveraging advanced algorithms, this

project aims to provide an effective tool to

combat spam, safeguarding users against

potential cyber threats. Future enhancements

may include capabilities for bulk message

processing and detailed analytics, further

expanding the system's utility and

effectiveness in the ongoing battle against

spam.

3. Methodology

The methodology adopted entails four stages:

data collection and labelling, pre-processing,

classification, performance evaluation

3.1 Data collection and labelling

Data preprocessing is a vital step in preparing

the raw datasets for machine learning models.

This process ensures the data is clean,

consistent, and suitable for analysis. Effective

preprocessing enhances model performance by

eliminating noise, correcting inconsistencies,

and transforming data into a format that the

machine learning algorithms can effectively

utilize. In this study, several data

preprocessing techniques, including dropping

irrelevant columns, renaming columns,

handling missing values, and concatenating

datasets were employed. These steps help to

standardize the data and make it ready for the

subsequent stages of feature extraction and

model training [12]. It is composed of a broad

ML procedure called Data Cleaning and then

an optional but useful phase called Exploratory

Data Analysis (EDA).

3.2. Selection and Comparison of the Machine

Learning Algorithms

The study ensures that various machine

learning algorithms are utilized and compared

to determine the most effective model for

spam detection. These algorithms include

Logistic Regression, Support Vector Classifier

(SVC), Naive Bayes (with a preference for

Multinomial Naive Bayes), Decision Tree

Classifier, K-Nearest Neighbors (KNN),

Random Forest, AdaBoost, Extra Trees

Classifier, Gradient Boosting Classifier, and

XGBoost Classifier. Each algorithm offers

unique advantages and is well-suited for

different aspects of the spam detection task.

Below is an extensive discussion of each

algorithm.

157 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Logistic Regression: Logistic Regression is a

linear model used for binary classification

tasks. It estimates the probability that a given

input belongs to a certain class. The model

uses the logistic function to squeeze the output

of a linear equation between 0 and 1,

representing the probability of the positive

class [24].

 (1)

Where:

Decision Boundary:

 Class 1 (spam) if 0.5

Class 0 (not spam) if 0.5

Support Vector Classifier (SVC): Support

Vector Classifier (SVC) is used for both linear

and non-linear classification tasks. It finds the

optimal hyperplane that best separates the

classes in the feature space. SVC maximizes

the margin between the closest data points of

different classes, known as support vectors,

providing robustness against overfitting

(Cortes and Vapnik, 1995). The decision

function is:

Objective Function:

Minimize: (2)

Subject to: (3)

Where:

 w is the weight vector

 is the input feature vector for the

instance

 is the label for the instance

 b is the bias term

Kernel Trick: The kernel trick is used to

transform the data into a higher-dimensional

space to make it linearly separable.

Naïve Bayes: Naive Bayes is a probabilistic

classifier based on Bayes' theorem. The

Multinomial variant is particularly effective

for text classification tasks like spam detection.

It calculates the probability of each class given

the input features and selects the class with the

highest probability.

Bayes Theorem:

 (4)

Where:

 is the posterior probability of

class given the features

 is the likelihood of features

given class

 is the prior probability of class

 is the evidence or the total probability of

features

Decision Trees Classifier: Decision Tree

Classifier splits data into subsets based on

feature values, forming a tree structure. The

model makes decisions by splitting the data at

each node based on the feature that results in

the best separation of the classes, providing

clear decisions [32].

For Gini Impurity:

 (5)

Where:

 is the total number of classes

 is the probability of a random

chosen element being classified to class i

Entropy:

 (6)

Information Gain:

 (7)

Where is the set of instances and is the

attribute

K-Nearest Neighbours (KNN): K-Nearest

Neighbors (KNN) is a non-parametric

algorithm used for classification. It classifies

based on the majority class among the k-

nearest neighbors of a data point. KNN

calculates the distance between the input point

and all other points in the training set. It

typically uses distance metrics like Euclidean

distance.

158 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Distance Metric:

 (8)

Where:

 are two instances in the

feature space

 is the number of features

Prediction: The class label is assigned based

on the majority class among the k nearest

neighbors

Where: are the labels of

the nearest neighbors

ExtraTrees Classifier: Extra Trees (Extremely

Randomized Trees) is an ensemble learning

method that uses random subsets of features

and splits the nodes randomly to form multiple

decision trees. It is similar to Random Forest

but with more randomness in tree building. It

builds each tree using a random subset of

features and data, with the final prediction

made by averaging the outputs of all trees [19].

Splitting Criterion:

Randomly selects a feature and then selects a

random split point for that feature to split the

node. The prediction is made by averaging the

predictions from all trees or taking the

majority vote in the case of classification.

Like Random Forest, the prediction is given by:

 (10)

Where:

 is the number of trees

 is the prediction of the tree

3.3. Ensemble Methods

Ensemble methods combine the predictions of

multiple machine learning models to produce a

more accurate and robust model. The

underlying idea is that by aggregating the

strengths of individual models, the ensemble

can outperform any single model. Ensemble

methods are particularly useful in scenarios

where individual models might have different

strengths and weaknesses. In this section, we

will discuss the ensemble methods used in this

project: Voting, Stacking, Boosting, and

Bagging.

1. Boosting

Boosting is an iterative ensemble technique

that focuses on improving the performance of

weak learners by sequentially adding models

that correct the errors of the previous models.

Boosting reduces bias and variance, making it

highly effective for complex classification

tasks. The key algorithms are as follows.

AdaBoost Classsifier: AdaBoost (Adaptive

Boosting) is a boosting technique that

combines multiple weak classifiers to form a

strong classifier by focusing on hard-to-

classify instances. AdaBoost assigns weights

to each training instance, adjusting them after

each round to focus more on misclassified

instances.

Weight Update:

 (11)

Where:

 is the weight of the

 is the model weight for classifier

 is the true label

 is the prediction of classifier

Gradient Boosting Classifier: Gradient

Boosting is an ensemble technique that builds

models sequentially. Each new model

minimizes the loss function of the previous

models, with the final prediction being a

weighted sum of all the models (Friedman,

2001).

Objective Function:

 (12)

Where:

 is the loss function (e.g.,

log loss for classification)

 is the prediction after iterations

Boosting Process: At each step , the

algorithm fits a new model to the

residual errors from the previous model

Where:

XGBoost Classifier: XGBoost (Extreme

Gradient Boosting) is an optimized

implementation of gradient boosting that

159 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

includes regularization to prevent overfitting.

XGBoost uses advanced techniques like

parallelization, tree pruning, and handling

missing values to build efficient and accurate

models [8].

Objective Function:

 (13)

Where:

 is the loss function

Boosting methods can be particularly effective

in improving the classification performance of

the spam detection system by focusing on

difficult-to-classify instances.

2. Bagging

Bagging (Bootstrap Aggregating) is an

ensemble method that builds multiple models

using different subsets of the training data.

Each model is trained independently, and their

predictions are averaged (or voted) to produce

the final prediction. Bagging helps to reduce

variance and prevent overfitting. The key

algorithm is the Random Forest classifier.

Random Forest: Random Forest is an

ensemble learning method that constructs

multiple decision trees and merges their

outputs to improve accuracy and control over-

fitting. Each tree in the forest is built on a

random subset of the data and features, with

the final prediction made by aggregating the

predictions of all the individual trees [6].

Prediction: The prediction is made by

averaging the predictions from all the trees

(for regression) or by taking the majority vote

(for classification).

 (9)

Where:

 is the number of trees

 is the prediction of the tree

3. Voting

The Voting Classifier is a simple yet powerful

ensemble technique that aggregates the

predictions from multiple models. The two

main types of voting mechanisms are as

follows.

Hard Voting: In this approach, each model in

the ensemble makes a prediction (votes for a

class), and the class with the most votes is

chosen as the final prediction. Mathematically,

if we have mmm classifiers, the hard voting

prediction is given by:

Where: is the prediction of the model

Soft Voting: Instead of predicting the final

class directly, soft voting averages the

predicted probabilities of each class and

selects the class with the highest average

probability. This method often provides better

performance as it considers the confidence of

each model's prediction:

Where: is the predicted probability of

class by the model

The Voting Classifier would be particularly

effective in this project, as it leverages the

diverse strengths of the models included in the

ensemble, leading to improved accuracy and

robustness in spam detection.

4. Stacking

Stacking is a more advanced ensemble method

that involves training a meta-model to

combine the predictions of several base

models. The base models are first trained on

the training data, and then their predictions are

used as input features for the meta-model. The

meta-model learns how to best combine these

predictions to make a final prediction.

Let be the predictions

from the base models.

The meta-model is trained on these

predictions:

Stacking can outperform other ensemble

methods by learning the optimal way to

integrate the strengths of each model. In this

project, the Stacking Classifier will be tested

and compared with other methods, to provide

valuable insights into the effectiveness of

model combination strategies.

3.4. Hyperparameter Tuning

Hyperparameter tuning is a crucial step in the

ML pipeline that involves selecting the

optimal set of hyperparameters for a model.

Hyperparameters are parameters that are set

before the learning process begins, and they

160 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

can significantly impact the performance of

the model. The goal of hyperparameter tuning

is to improve the model's accuracy, precision,

recall, and overall performance by finding the

best combination of hyperparameters. It

involves systematically searching through a

predefined space of hyperparameter values and

evaluating the model's performance for each

combination. Two common methods for

hyperparameter tuning are Grid Search and

Random Search.

3.5. Evaluation Metrics

Several evaluation metrics are used to

comprehensively assess the performance of

machine learning models. Each metric

provides unique insights into different aspects

of the model's performance. Below is a table

that shows the evaluation metrics to be

considered in this project.

Table 1. Evaluation Metrics

 Metric Definition Formular

1 Accuracy

The ratio of correctly predicted instances to the

total instances. It gives a quick overview of the

model's overall performance

2 Precision

Measures the proportion of true positive

predictions among all positive predictions. It

indicates the accuracy of the positive class

predictions

3 Recall

Also known as sensitivity or true positive rate.

Measures the proportion of true positive

predictions among all actual positives

4 F1 Score

The harmonic Mean of precision and recall,

providing a single metric that balances both

aspects

5 ROC_AUC

The ROC curve plots the true positive rate

(recall) against the false positive rate. The AUC

represents the model's ability to distinguish

between classes

6
Logarithmic

Loss

Measures the performance of a classification

model where the output is a probability value

between 0 and 1. It penalizes false

classifications, with larger penalties for

confident but incorrect predictions.

7 Hamming Loss

The fraction of labels that are incorrectly

predicted. It measures the average

misclassification rate.

8
Cohen’s

Kappa

Measures the agreement between two raters (or

the model and the true labels) accounting for the

possibility of agreement occurring by chance

9 F2 Score

A variant of the F1 Score that gives more weight

to recall than precision. It is useful when the cost

of false negatives is higher

10 Jaccard Index

Measures the similarity between the predicted

and true label sets. It is the size of the

intersection divided by the size of the union of

the label sets.

161 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

4. Results and Discussion

In this section, various machine learning

algorithms were implemented and evaluated to

determine their effectiveness in detecting spam

messages. The algorithms tested included

Logistic Regression, Support Vector

Classifier, Naive Bayes, Decision Tree

Classifier, K-Neighbors, Random Forest,

AdaBoost, Extra Trees Classifier, Gradient

Boosting Classifier, and XGBoost.

In developing a the spam detection system,

several critical decisions were made to

enhance model performance and ensure

practical applicability. This section reflects on

these choices, offering insights into the

rationale behind each decision.

Hyperparameter tuning was a pivotal step in

refining the performance of the ML models.

By systematically adjusting parameters such as

the 'C' value in Support Vector Machines

(SVM) and the number of estimators in

ensemble methods like Random Forest, the

models were optimized for better accuracy and

generalization.

Feature selection and engineering played a

crucial role in improving model accuracy.

Initially, a broad range of features were

considered, including text length, punctuation

frequency, and keyword occurrences.

However, a thorough analysis revealed that not

all features contributed equally to the model's

predictive power. Employing the TF-IDF

Vectorizer over the Count Vectorizer yielded

better results. Coupling it with

hyperparameters such as max_features did

much better as only features that significantly

impacted performance were selected. This step

was essential in reducing model complexity

and preventing overfitting.

Table 2: Results obtained by individual base classifier [dataset 1]

 Algorithm Accuracy Precision Recall F1 ROC_AUC Log Loss
Hamming

Loss
Kappa F2 Jaccard

1 LR 0.9700 0.9972 0.9342 0.9647 0.9661 1.0796 0.0300 0.9387 0.9462 0.9318

2 SVM 0.9770 0.9972 0.9500 0.9730 0.9740 0.8305 0.0230 0.9529 0.9591 0.9475

3 NB 0.9585 0.9479 0.9578 0.9528 0.9585 1.4949 0.0415 0.9158 0.9559 0.9100

4 DT 0.9412 0.9687 0.8947 0.9302 0.9360 2.1178 0.0588 0.8796 0.9086 0.8695

5 KN 0.5507 0.4935 1.0000 0.6609 0.6004 16.195 0.4493 0.1803 0.8297 0.4935

6 RF 0.9827 0.9973 0.9631 0.9799 0.9806 0.6229 0.0173 0.9648 0.9698 0.9606

7 AdaBoost 0.9505 0.9856 0.9000 0.9409 0.9449 1.7856 0.0495 0.8984 0.9159 0.8883

8 ETC 0.9735 0.9786 0.9605 0.9695 0.9721 0.9551 0.0265 0.9461 0.9641 0.9407

9 GBDT 0.9643 0.9861 0.9316 0.9581 0.9607 1.2872 0.0357 0.9270 0.9420 0.9195

10 XGBoost 0.9758 0.9864 0.9579 0.9720 0.9738 0.8720 0.0242 0.9507 0.9634 0.9454

162 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 1: Barplot of the Model Evaluation (Dataset 1)

Table 3: Results Obtained by the Individual Models (Dataset 2)

 Model Accuracy Precision Recall F1 ROC
Log

Loss

Hamming

Loss
Kappa F2 Jaccard

1 LR 0.9468 0.9882 0.6087 0.7534 0.8038 1.9172 0.0532 0.7254 0.6593 0.6043

2 SVM 0.9758 0.9748 0.8406 0.9027 0.9186 0.8715 0.0242 0.8890 0.8643 0.8227

3 NB 0.9594 1.0000 0.6957 0.8205 0.8478 1.4640 0.0406 0.7984 0.7407 0.6957

4 DT 0.9352 0.8380 0.6377 0.7242 0.8094 2.3355 0.0648 0.6883 0.6697 0.5677

5 KN 0.9023 1.0000 0.2681 0.4228 0.6341 3.5207 0.0976 0.3883 0.3141 0.2681

6 RF 0.9778 1.0000 0.8333 0.9090 0.9167 0.8017 0.0222 0.8965 0.8621 0.8333

7 AdaBoost 0.9246 0.8409 0.5362 0.6549 0.7603 2.7190 0.0754 0.6148 0.5781 0.4868

8 ETC 0.9768 0.9750 0.8478 0.9070 0.9222 0.8366 0.0232 0.8938 0.8705 0.8298

9 GBDT 0.9516 0.8929 0.7246 0.8000 0.8556 1.7429 0.0484 0.7728 0.7530 0.6667

10 XGBoost 0.9700 0.9350 0.8333 0.8812 0.9122 1.0806 0.0300 0.8641 0.8519 0.7877

163 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 2: Barplot of the Model Evaluation (Dataset 2)

Table 4: Results Obtained by the Individual Models (Dataset 3)

 Model Accuracy Precision Recall F1 ROC
Log

Loss

Hamming

Loss
Kappa F2 Jaccard

1 LR 0.9628 0.9768 0.8934 0.9335 0.9426 1.3421 0.0372 0.9078 0.9094 0.8753

2 SVM 0.9787 0.9781 0.9485 0.9630 0.9699 0.7669 0.0213 0.9481 0.9543 0.9288

3 NB 0.9583 0.9639 0.8909 0.9260 0.9386 1.5018 0.0417 0.8971 0.9046 0.8621

4 DT 0.8927 0.8667 0.7485 0.8032 0.8504 3.8664 1.1073 0.7301 0.7695 0.6712

5 KN 0.9326 0.8324 0.9636 0.8933 0.9417 2.4285 0.0673 0.8444 0.9342 0.8071

6 RF 0.9583 0.9579 0.8970 0.9264 0.9403 1.5018 0.0417 0.8974 0.9085 0.8629

7 AdaBoost 0.9291 0.9085 0.8424 0.8742 0.9037 2.5563 0.0709 0.8249 0.8549 0.7765

8 ETC 0.9663 0.9771 0.9061 0.9402 0.9486 1.2142 0.0337 0.9168 0.9194 0.8872

9 GBDT 0.9362 0.9510 0.8242 0.8831 0.9033 2.3006 0.0638 0.8395 0.8468 0.7907

10 XGBoost 0.9672 0.9536 0.9333 0.9433 0.9573 1.1823 0.0328 0.9203 0.9373 0.8928

164 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 3: Barplot of the Model Evaluation (Dataset 3)

Table 5: Results Obtained by the Individual Models (Dataset 4)

 Model Accuracy Precision Recall F1 ROC
Log

Loss

Hamming

Loss
Kappa F2 Jaccard

1 LR 0.9859 0.9771 0.9945 0.9857 0.9861 0.5073 0.0141 0.9718 0.9910 0.9718

2 SVM 0.9849 0.9784 0.9909 0.9846 0.9850 0.5458 0.0151 0.9697 0.9884 0.9697

3 NB 0.9802 0.9824 0.9770 0.9797 0.9802 0.7128 0.0198 0.9604 0.9809 0.9602

4 DT 0.8455 0.7653 0.9861 0.8618 0.8487 5.5674 0.1545 0.6930 0.9323 0.7572

5 KN 0.7969 0.6259 0.9942 0.7682 0.7134 10.5633 0.2931 0.4212 0.8895 0.6237

6 RF 0.9783 0.9764 0.9792 0.9778 0.9783 0.7834 0.0217 0.9565 0.9786 0.9565

7 AdaBoost 0.8958 0.8511 0.9533 0.8994 0.8970 3.7565 0.1042 0.7920 0.9310 0.8171

8 ETC 0.9820 0.9846 0.9784 0.9815 0.9819 0.6486 0.0180 0.9640 0.9797 0.9637

9 GBDT 0.9211 0.8743 0.9792 0.9238 0.9224 2.8447 0.0789 0.8425 0.9563 0.8584

10 XGBoost 0.9674 0.9463 0.9894 0.9674 0.9679 1.1751 0.0326 0.9348 0.9805 0.9368

165 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 4: Barplot of the Model Evaluation (Dataset 4)

Table 6: Results Obtained by the Individual Models (Dataset 5)

 Model Accuracy Precision Recall F1 ROC
Log

Loss

Hamming

Loss
Kappa F2 Jaccard

1 LR 0.9835 0.9947 0.9750 0.9847 0.9844 0.5934 0.0165 0.9669 0.9789 0.9700

2 SVM 0.9864 0.9930 0.9819 0.9874 0.9868 0.4917 0.0136 0.9725 0.9841 0.9751

3 NB 0.9802 0.9938 0. 9698 0.9817 0.9813 0.7121 0.0198 0.9603 0.9745 0.9640

4 DT 0.9069 0.9772 0.8490 0.9086 0.9126 3.3568 0.0931 0.8146 0.8719 0.8325

5 KN 0.746 0.6502 0.9914 0.7853 0.6761 10.6469 0.2954 0.3716 0.8972 0.6466

6 RF 0.9831 1.9836 0.9853 0.9845 0.9828 0.6103 0.0169 0.9658 0.9850 0.9694

7 AdaBoost 0.9614 0.9761 0.9525 0.9642 0.9623 1.3902 0.0386 0.9224 0.9572 0.9309

8 ETC 0.9873 0.9905 0.9862 0.9883 0.9874 0.4578 0.0127 0.9744 0.9870 0.9769

9 GBDT 0.9671 0.9764 0.9629 0.9696 0.9675 1.1868 0.0329 0.9337 0.9656 0.9410

10 XGBoost 0.9817 0.9819 0.9845 0.9832 0.9814 1.6612 0.0183 0.9630 0.9840 0.9669

166 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Figure 5: Barplot of the Model Evaluation (Dataset 5)

4.1 Rationale for Ensemble Methods

The decision to implement ensemble methods

was driven by their ability to combine different

models' strengths, thus mitigating the individual

models' weaknesses. This approach effectively

reduced variance and bias, leading to a more

robust spam detection system. The Voting

Classifier’s superior performance aligns with the

literature that supports ensemble methods as

powerful tools in complex classification tasks

like spam detection.

The accuracy and precision of the individual

models ranged between 85% and 95%, with the

ensemble methods, particularly the Voting

Classifier, demonstrating superior performance

across multiple datasets. Precision was highest

for the ensemble models, particularly in reducing

false positives, which is crucial in spam

detection. While individual models like Naive

Bayes and Decision Tree showed good recall,

the ensemble models maintained a balanced

performance, avoiding significant trade-offs

between precision and recall. The F1 score, a

harmonic mean of precision and recall,

highlighted the balanced effectiveness of the

ensemble methods compared to standalone

models. The ROC-AUC scores also favored the

ensemble models, indicating a better overall

classification capability. Lower log loss scores in

ensemble methods pointed to better calibration

of predicted probabilities. Other metrics such as

the Hamming Loss and Kappa further

emphasized the robustness of ensemble models,

showing fewer classification errors and better

agreement between predicted and actual classes.

When comparing the two ensemble methods:

The Stacking Classifier, unlike Voting, uses a m

eta-

earner to learn from the predictions of the base

models.

The meta-learner in stacking could learn which

models performed better on different parts of the

data and adjust its final predictions accordingly.

This approach led to improved accuracy over

individual models and even over the Voting

Classifier in some cases, especially when the

base models had complementary strengths.

Making use of the SVC as the final estimator

because of its strong results as an individual

model, the tables below describe the results

obtained from evaluating variations of the

Stacking classifier.

 167 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Table 7: Results Obtained by the Stacking Ensemble Method (Dataset 1)

Base

Estimators
Accu. Prec. Recall F1 ROC

Log

Loss

Hamm

Loss
Kappa F2 Jacc.

ETC | RF | LR |

XGB
0.9793 0.9945 0.9579 0.9759 0.9769 0.7474 0.0207 0.9577 0.9659 w

ETC | RF | LR |

XGB | NB
0.9793 0.9973 0.9553 0.9758 0.9766 0.7474 0.0207 0.9576 0.9634 0.9528

ETC | LR | XGB 0.9793 0.9945 0. 9698 0.9759 0.9759 0.7474 0.0207 0.9577 0.9650 0.9529

ETC | RF | XGB 0.9804 0.9919 0.9632 0.9773 0.9785 0.7059 0.0196 0.9601 0.9688 0.9556

From Table 7, the ETC | LR | XGB combination of base estimators provided the best results for dataset 1 with

accuracy and precision scores of 97.9% and 99.5% respectively.

Table 8: Results Obtained by the Stacking Ensemble Method (Dataset 2)

Base Estimators Accu. Prec. Recall F1 ROC
Log

Loss

Hamm

Loss
Kappa F2 Jacc.

ETC | RF | LR |

XGB
0.9797 0.9606 0.8840 0.9208 0.9392 0.7372 0.0203 0.9091 0.8984 0.8531

ETC | RF | LR |

XGB | NB
0.9826 0.9615 0.9058 0.9328 0.9501 0.6275 0.0174 0.9228 0.9164 0.8741

ETC | LR | XGB 0.9797 0.9680 0.8768 0.9201 0.9362 0.7320 0.0203 0.9086 0.8936 0.8521

ETC | RF | XGB 0.9797 0.9680 0.8768 0.9202 0.9362 0.7320 0.0203 0.9086 0.8936 0.8521

Table 9: Results Obtained by the Stacking Ensemble Method (Dataset 3)

Base Estimators Accu. Prec. Recall F1 ROC
Log

Loss

Hamm

Loss
Kappa F2 Jacc.

ETC | RF | LR | XGB 0.9778 0.9635 0.9606 0.9621 0.9728 0.7988 0.0222 0.9464 0.9612 0.9269

ETC | RF | LR | XGB

| NB
0.9761 0.9577 0.9606 0.9592 0.9715 0.8627 0.0239 0.9422 0.9600 0.9215

ETC | LR | XGB 0.9778 0.9635 0.9606 0.9621 0.9728 0.7988 0.0222 0.9464 0.9612 0.9269

ETC | RF | XGB 0.9734 0.9601 0.9485 0.9543 0.9661 0.9586 0.0266 0.9355 0.9508 0.9125

Table 9 indicates that the ETC | LR | XGB combination was superior for dataset 3 with accuracy and precision

scores of 97.8% and 96.4% respectively.

Table 10: Results Obtained by the Stacking Ensemble Method (Dataset 5)

 168 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

Base Estimators Accu. Prec. Recall F1 ROC
Log

Loss

Hamm

Loss
Kappa F2 Jacc.

ETC | RF | LR |

XGB
0.9878 0.9913 0.9862 0.9888 0.9879 0.4408 0.0122 0.9754 0.9872 0.9778

ETC | RF | LR |

XGB | NB
0.9892 0.9913 0.9888 0.9901 0.9892 0.3899 0.0108 0.9782 0.9893 0.9803

ETC | LR | XGB 0.9878 0.9905 0.9871 0.9888 0.9878 0.4408 0.0122 0.9753 0.9877 0.9778

ETC | RF | XGB 0. 9878 0.9896 0.9879 0.9888 0.9878 0.4408 0.0122 0.9753 0.9883 0.9778

Tables 9 and 10 report ETC | RF | LR | XGB | NB combination edged out for datasets 2 and 5 with results of

98.9% accuracy and 99.1% precision

The Voting classifier generally edged out against the Stacking classifier with solid indications as presented in the

tables below.

Table 11: Results Obtained by the Voting Ensemble Method (Dataset 1)

Estimators

Accu. Prec. Recall F1 ROC
Log

Loss

Hamm

Loss
Kappa F2 Jacc.

SVM | RF | ETC | LR | NB

| XGB
0.9804 0.9946 0.9605 0.9772 0.9782 0.7059 0.0196 0.9601 0.9671 0.9555

SVM | RF | ETC | LR |

XGB
0.9816 0.9973 0.9605 0.9786 0.9792 0.6644 0.0184 0.9624 0.9677 0.9580

SVM | RF | ETC | LR | NB 0.9793 0.9945 0.9579 0.9759 0.9769 0.7474 0.0207 0.9577 0.9650 0.9529

SVM | RF | ETC | NB 0.9804 0.9946 0.9605 0.9772 0.9782 0.7059 0.0196 0.9601 0.9671 0.9555

SVM | RF | ETC | LR 0.9781 0.9918 0.9579 0.9746 0.9759 0.7890 0.0219 0.9554 0..9645 0.9504

Table 12: Results Obtained by the Voting Ensemble Method (Dataset 2)

Estimators

Accu. Prec. Recall F1 ROC
Log

Loss

Hamm

Loss
Kappa F2 Jacc.

SVM | RF | ETC | LR | NB

| XGB
0.9797 1.0000 0.8478 0.9176 0.9239 0.7320 0.0203 0.9062 0.8744 0.8478

SVM | RF | ETC | LR |

XGB
0.9797 0.9916 0.8550 0.183 0.9270 0.7320 0.0203 0.9068 0.8793 0.8489

SVM | RF | ETC | LR | NB 0.9797 1.0000 0.8478 0.9176 0.9239 0.7320 0.0203 0.9062 0.8744 0.8478

SVM | RF | ETC | NB 0.9807 1.0000 0.8550 0.9219 0.9275 0.6972 0.0193 0.9109 0.8806 0.8551

SVM | RF | ETC | LR 0.9807 0.9917 0.8623 0.9225 0.9306 0.6972 0.0193 0.9115 0.8854 0.8561

Table 12 shows that the SVM | RF | ETC | NB combination edged out for dataset 2 with results of 98% accuracy

and 100% precision.

Table 13: Results Obtained by the Voting Ensemble Method (Dataset 3)

Estimators

Accu. Prec. Recall F1 ROC
Log

Loss

Hamm

Loss
Kappa F2 Jacc.

SVM | RF | ETC |

LR | NB | XGB
0.9743 0.9688 0.9424 0.9555 0.9650 0.9267 0.0257 0.9374 0.9476 0.9147

 169 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

SVM | RF | ETC |

LR | XGB
0.9761 0.9720 0.9455 0.9585 0.9671 0.8627 0.0239 0.9417 0.9506 0.9204

SVM | RF | ETC |

LR | NB
0.9725 0.9716 0.9333 0.9521 0.9613 0.9906 0.0275 0.9328 0.9407 0.086

SVM | RF | ETC |

NB
0.9734 0.9717 0.9364 0.9537 0.9625 0.9586 0.266 0.9351 0.9433 0.9115

SVM | RF | ETC |

LR
0.9743 0.9718 0.9394 0.9553 0.9640 0.9267 0.0257 0.9373 0.9457 0.9144

From Tables 12 and13, the combination SVM | RF | ETC | LR | XGB produced best results drawing accuracy of

97.6% and precision of 97.6 respectively.

Table 14: Results Obtained by the Voting Ensemble Method (Dataset 5)

Estimators

Accu. Prec. Recall F1 ROC
Log

Loss

Hamm

Loss
Kappa F2 Jacc.

SVM | RF | ETC | LR |

NB | XGB
0.9901 0.9948 0.9871 0.9909 0.9904 0.3560 0.0099 0.9801 0.9886 0.9820

SVM | RF | ETC | LR |

XGB
0.9892 0.9913 0.9887 0.9901 0.9892 0.3899 0.0108 0.9782 0.9893 0.803

SVM | RF | ETC | LR |

NB
0.9897 0.9939 0.9871 0.9905 0.9899 0.3730 0.0103 0.9791 0.884 0.9811

SVM | RF | ETC | NB 0.9901 0.9939 0.9879 0.9909 0.9903 0.3560 0.0099 0.9800 0.9891 0.9820

SVM | RF | ETC | LR 0.9878 0.9905 0.9871 0.9888 0.9878 0.4408 0.0122 0.9753 0.9877 0.9778

The SVM | RF | ETC | LR | NB | XGB combination achieved best results for dataset 5 as indicated in Table 14,

providing results of 99% and 99.5% precision.

Table 15: Comparison of Ensemble Learning Techniques for Spam Detection in Email

Author(s)
Degree Of

Accuracy
ML Technique Method Name

Chharia & Gupta (2013) 94.5%
Ensemble with Probability and Rules

Email Classifier: An
Ensemble Using Probability and Rules

Cota et al. (2022) 95%

Ensemble (Random Forest, Gradient

Boosting)

Comparative Results of Spam Email

Detection Using Machine Learning

Algorithms

Gomes et al. (2017) 95.2%
Naive Bayes, Hidden Markov Model

(Ensemble)

A Comparative Approach to Email

Classification Using Naïve Bayes and HMM

Omotehinwa et al.

(2020)
96%

Random Forest, XGBoost

(Ensemble)

Spam Email Detection Using XGBoost and

Random Forest

Oh et al. (2020) 97%
Stacking Ensemble of Six Classifiers Improving Spam Email Classification

Accuracy Using Ensemble Techniques

Zhao et al. (2022) 98%
Heterogeneous Stacking Ensemble A Heterogeneous Ensemble Learning

Framework for Spam Detection

Proposed Method 99.01%
SVM, Random Forest, ETC, LR, Naive
Bayes, XGBoost (Ensemble)

Spam Detection in Email Using Ensemble
Learning

The comparison table (Table 15) highlights the

effectiveness of various ensemble learning

techniques in spam detection across multiple

studies. Ensemble models, known for their

ability to combine the strengths of individual

classifiers, have consistently outperformed

single models in classification tasks.

Omotehinwa et al. (2020) leveraged the

complementary strengths of XGBoost and

Random Forest to achieve an accuracy of 96%,

 170 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

emphasizing the role of ensemble diversity.

Similarly, Zhao et al. (2022) demonstrated the

utility of heterogeneous stacking, which

reached an impressive 98% accuracy by

introducing cost-sensitive learning. In my

research, the combination of SVM, Random

Forest, Extra Trees, Logistic Regression, Naive

Bayes, and XGBoost achieved an accuracy of

99.01% and a precision of 99.48%. This

superior performance highlights the importance

of using diverse and robust classifiers,

suggesting that integrating base models with

complementary strengths is key to enhancing

spam detection.

The results across these studies reaffirm that

ensemble learning not only improves accuracy

but also addresses common challenges such as

overfitting and data imbalance, particularly in

spam detection tasks where dataset variations

and class distributions can affect outcomes.

In summary, decisions made during this

project's implementation phase were guided by

a combination of empirical evidence, theoretical

considerations, and practical constraints. The

emphasis on ensemble methods, careful feature

selection, and robust evaluation strategies has

laid a solid foundation for an effective spam

detection system. In this project, while both

ensemble methods enhanced spam detection

accuracy, the Voting Classifier, particularly

with soft voting, emerged as the more robust

and practical solution. The Stacking Classifier

offered marginally better performance in certain

scenarios but required more careful tuning and

introduced additional complexity.

5. Conclusion

In conclusion, the integration of machine

learning techniques into spam detection systems

offers a promising solution to enhance email

security. This study has demonstrated the

potential of advanced algorithms to identify and

filter spam, providing an effective tool to

combat the growing threat of unsolicited and

potentially harmful communications. The

methodologies employed, from data acquisition

and preprocessing to model selection and

evaluation, have laid a strong foundation for

building a robust spam detection system.

Looking ahead, several avenues for future work

present themselves. Incorporating deep learning

techniques could further refine the system's

ability to distinguish between legitimate and

spam messages, potentially increasing accuracy

and reducing false positives. Moreover, the

development of real-time processing

capabilities would allow for immediate

detection and response to spam, enhancing the

system's utility in fast-paced digital

environments. A practical next step involves

deploying the trained model within a user-

friendly web application, utilizing frameworks

such as Flask or Django. This application

would provide users with real-time spam

classification, offering immediate feedback and

thus enhancing user experience and trust.

Hosting the application on scalable cloud

platforms like Heroku would ensure that it can

accommodate a wide user base and large

volumes of data, maintaining performance and

reliability.

This study not only addresses the immediate

challenge of spam detection but also opens up

opportunities for further innovation and

improvement. By continually refining the

system and expanding its capabilities, we can

better equip individuals and organizations to

protect themselves against the ever-evolving

landscape of cyber threats. As digital

communication continues to grow, so too must

our efforts to secure these channels, making the

ongoing development of advanced spam

detection systems both necessary and timely.

References

[1] Agboola, M., et al., 2022. Spam Detection

Using Machine Learning and Deep Learning

Techniques. Journal of Cybersecurity

Research, 15(2), pp.120-135.

[2] Almeida, T. A., Hidalgo, J. M. G. &

Yamakami, A., 2011. Contributions to the

study of SMS spam filtering: new collection

and results. In Proceedings of the 11th ACM

Symposium on Document Engineering

(pp.259-262).

[3] Bacanin, N., Tuba, E., Tuba, M. &

Jovanovic, M., 2022. Integrating Swarm

Intelligence with Natural Language

Processing for Enhanced Spam Email

Filtering. Applied Soft Computing, 109,

p.107595.

[4] Bird, S., Klein, E. & Loper, E., 2009. Natural

Language Processing with Python: Analyzing

Text with the Natural Language Toolkit.

O'Reilly Media, Inc.

[5] Bouke, E., et al., 2022. Lightweight Spam

Detection Model Using Word Frequency

Patterns. International Journal of Information

Management, 62, p.102431.

[6] Breiman, L., 2001. Random Forests. Machine

Learning, 45(1), pp.5-32.

 171 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

[7] Chawla, N. V., Bowyer, K. W., Hall, L. O. &

Kegelmeyer, W. P., 2002. SMOTE: Synthetic

Minority Over-sampling Technique. Journal

of Artificial Intelligence Research, 16,

pp.321-357.

[8] Chen, T. & Guestrin, C., 2016. XGBoost: A

Scalable Tree Boosting System. In

Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining (pp.785-794).

[9] Chharia, A. & Gupta, R.K., 2013. Email

classifier: An ensemble using probability and

rules. In 2013 Sixth International Conference

on Contemporary Computing (IC3) (pp.130-

136). IEEE.

[10] Cortes, C. & Vapnik, V., 1995. Support-

vector networks. Machine Learning, 20(3),

pp.273-297.

[11] Cota, R.P. & Zinca, D., 2022. Comparative

results of spam email detection using

machine learning algorithms. In 14th

International Conference on

Communications, COMM 2022 - Proceedings

(pp.4-8). IEEE.

[12] Devlin, J., Chang, M. W., Lee, K. &

Toutanova, K., 2018. BERT: Pre-training of

Deep Bidirectional Transformers for

Language Understanding. arXiv preprint

arXiv:1810.04805.

[13] Domingos, P., 2012. A few useful things to

know about machine learning.

Communications of the ACM, 55(10), pp.78-

87.

[14] European Parliament, 2016. General Data

Protection Regulation. Official Journal of the

European Union, L119, pp.1-88.

[15] Fatima, N., Rehman, S. & Ahmed, Z., 2022.

Ensemble Methods for Spam Email

Detection. Journal of Information Security

and Applications, 65, p.102896.

[16] Forman, G., 2003. An extensive empirical

study of feature selection metrics for text

classification. Journal of Machine Learning

Research, 3, pp.1289-1305.

[17] Friedman, J. H., 2001. Greedy function

approximation: a gradient boosting machine.

Annals of Statistics, 29(5), pp.1189-1232.

[18] FTC, 2003. CAN-SPAM Act of 2003.

Federal Trade Commission.

[19] Geurts, P., Ernst, D. & Wehenkel, L., 2006.

Extremely randomized trees. Machine

Learning, 63(1), pp.3-42.

[20] Gomes, S.R., et al., 2017. A comparative

approach to email classification using Naive

Bayes classifier and hidden Markov model.

In 2017 4th International Conference on

Advances in Electrical Engineering (ICAEE)

(pp.482-485). IEEE.

[21] Goodfellow, I., Bengio, Y. & Courville, A.,

2016. Deep Learning. MIT Press.

[22] Guyon, I. & Elisseeff, A., 2003. An

introduction to variable and feature selection.

Journal of Machine Learning Research, 3,

pp.1157-1182.

[23] Hochreiter, S. & Schmidhuber, J., 1997.

Long Short-Term Memory. Neural

Computation, 9(8), pp.1735-1780.

[24] Hosmer, D. W., Lemeshow, S. & Sturdivant,

R. X., 2013. Applied Logistic Regression (3rd

ed.). Wiley.

[25] Jeeva, S. C. & Khan, M. M., 2021. A

Comprehensive Review of Machine Learning

Algorithms for Spam Filtering. Journal of

Network and Computer Applications, 168,

p.102761.

[26] Kuhn, M. & Johnson, K., 2019. Feature

Engineering and Selection: A Practical

Approach for Predictive Models. CRC Press.

[27] Manning, C. D., Raghavan, P. & Schütze, H.,

2008. Introduction to Information Retrieval.

Cambridge University Press.

[28] Metsis, V., Androutsopoulos, I. & Paliouras,

G., 2006. Spam filtering with naive bayes-

which naive bayes? CEAS, 17(3), pp.28-69.

[29] Oh, S., Kim, J. & Kwon, O., 2020. Improving

spam email classification accuracy using

ensemble techniques: A stacking approach.

International Journal of Information

Security, 19(2), pp.123-137.

[30] Omotehinwa, T., Soyemi, O. & Adedoyin,

A., 2020. Spam email detection using

XGBoost and Random Forest ensemble

techniques. Journal of Cybersecurity and

Information Systems, 6(2), pp.1-14.

[31] Porter, M. F., 1980. An algorithm for suffix

stripping. Program, 14(3), pp.130-137.

[32] Quinlan, J. R., 1986. Induction of decision

trees. Machine Learning, 1(1), pp.81-106.

[33] Revathi, S. & Malathi, D., 2013. A Study of

Spam Detection Methods. International

Journal of Computer Applications, 76(14),

pp.27-31.

[34] Sahami, M., Dumais, S., Heckerman, D. &

Horvitz, E., 1998. A Bayesian Approach to

Filtering Junk E-mail. In Learning for Text

Categorization: Papers from the 1998

Workshop (pp.55-62).

[35] Saini, D., et al., 2018. Comparative Study of

Machine Learning Algorithms for Spam

Detection. International Journal of

Information Technology, 10, pp.391-396.

[36] Shoba, G., et al., 2023. Advanced Spam

Filtering Techniques. Journal of

Cybersecurity, 11(2), pp.85-102.

[37] Thakur, A. & Jain, S., 2022. Comparative

Study of Multiple ML Models for Spam

Detection. Journal of Machine Learning

Applications, 45(2), pp.120-137.

[38] Zhao, Y., Zhang, J. & Wang, L., 2022. A

heterogeneous ensemble learning framework

for spam detection in social networks.

Applied Sciences, 12(4), p.987.

 172 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627

[39] Wolpert, D. H., 1992. Stacked

Generalization. Neural Networks, 5(2),

pp.241-259.

[40] N.A. Azeez, A.R. Ajetola (2009) "

Exploration of the gap between computer

science curriculum and industrial IT skills

requirements" International Journal of

Computer Science and Information Security,

IJCSIS, Vol. 4, No. 1 & 2, August 2009,

USA.

[41] N.A. Azeez (2011), Isabella M. Venter and

Iyamu Tiko, “Grid Security Loopholes with

proposed countermeasures” , 26th

International Symposium on Computer and

Information Sciences 26-28 September 2011,

Imperial College, London, UK, Springer

Verlag, London.

[42] N.A Azeez and C.V Vyver (2018) "Security

challenges and suggested solutions for e-

health information in modern society"

HealthyIoT 2018 - 5th EAI International

Conference on IoT Technologies for

HealthCare for HealthCare, November 21-23,

2018, Guimarães, Portugal

http://healthyiot.org/accepted-papers/

[43] Azeez, N.A and Anochirionye E.C (2017)

“Detecting malicious and Compromised

URLs in E-Mails Using Association Rule”

Covenant Journal of Informatics and

Communication Technology (CJICT),

Covenant University, Nigeria, volume 5. No.

2 December 2017. pp 36-48.

APPENDIX

1. http://www.dt.fee.unicamp.br/~tiago/smsspa

mcollection/

2. https://www2.aueb.gr/users/ion/data/enron-

spam/

3. https://spamassassin.apache.org/old/publiccor

pus/

4. https://plg.uwaterloo.ca/~gvcormac/treccorpu

s07/about.html

5. Code available at:

https://github.com/Kingblackie/spam_detecti

on_ml

http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
https://www2.aueb.gr/users/ion/data/enron-spam/
https://www2.aueb.gr/users/ion/data/enron-spam/
https://spamassassin.apache.org/old/publiccorpus/
https://spamassassin.apache.org/old/publiccorpus/
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/about.html
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/about.html

