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Abstract

Spam detection remains a critical challenge in cybersecurity due to the increasing sophistication of unsolicited
and malicious communications. These messages, often containing phishing links, fraudulent offers, and malware,
pose significant risks to users and information systems. This project addresses the challenge by implementing a
robust spam detection system using ensemble learning techniques to enhance the security of email and SMS
communications. Utilizing diverse datasets such as the UCI ML Corpus, Spam Assassin Dataset, Ling Phishing
Dataset, Nigerian Fraud Dataset, and Enron Phishing Dataset, the study implemented rigorous data
preprocessing and feature extraction, transforming raw text data into numerical vectors using
Term Frequency Inverse Document Frequency (TFIDF) vectorization. Various Machine Learning algorithms in
cluding Support Vector Machine, Logistic Regression, Naive Bayes, Decision Trees, KNN, Extra Trees.

Also, a range of ensemble learning algorithms, including Random Forest, AdaBoost, Gradient Boosting, and X
GBoost, were implemented with their performance recorded. The project focuses on combining the efforts of
some of these algorithms hereby comparing two primary ensemble models; the Stacking and Voting Classifiers,
with the Voting Classifier emerging as the more effective. By aggregating the strengths of multiple models, the
Voting Classifier demonstrated superior accuracy and reliability combining models like SVC, RF, ETC, and NB,
to report accuracy and precision scores of around 98% and 99% for datasets 1 and 2, 97% and 97% for dataset 3
and 99% and 99% for dataset 5 respectively. This project underscores the potential of ensemble methods in
enhancing spam detection systems and sets the stage for future research exploring the integration of deep
learning models and real-time detection systems to secure digital communications further.
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1. Introduction by the low cost of sending messages and the

Spam detection has become an essential aspect
of information security in today's digital age,
where the proliferation of electronic
communication methods such as email and
SMS presents significant challenges. Spam
messages, which are unsolicited and often
malicious communications, pose various
threats, including phishing attacks, the
dissemination of malware, and the invasion of
privacy [1]. As a result, the development and
implementation of effective spam detection
techniques are crucial for safeguarding users
and maintaining the integrity of
communication networks [2].

The term "spam" refers to any unwanted
communication that is sent in bulk, typically
for advertising, phishing, or malicious
purposes. The rise of spam has been facilitated
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availability of automated tools that enable
spammers to target a large number of
recipients simultaneously [36]. Spam can take
various forms, including email spam, SMS
spam, and spam on social media platforms.
The primary objectives of spam detection
systems are to accurately identify and filter out
these unwanted messages while minimizing
false positives, which can lead to the
misclassification of legitimate
communications [28].

Several machine learning algorithms have
been employed in spam detection to enhance
the accuracy and efficiency of identifying
spam messages. Commonly used algorithms
include Support Vector Machine (SVM),
Naive Bayes, Random Forest, Logistic
Regression, and K-Nearest Neighbors (k-NN)
[8],[28]. These algorithms leverage various
features extracted from the messages, such as
word frequency, presence of specific keywords,
and message metadata, to distinguish between
spam and legitimate messages [10].
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One significant challenge in spam detection is
the evolving nature of spam techniques.
Spammers continuously adapt their methods to
bypass existing filters, necessitating ongoing
research and updates to spam detection
systems [11]. For instance, spammers may use
obfuscation techniques, such as misspelling
words or inserting random characters, to evade
keyword-based filters. Advanced machine
learning approaches, including deep learning
and ensemble methods, have shown promise in
addressing these challenges by capturing
complex patterns and relationships within the
data [15].

The effectiveness of spam detection systems is
often measured using various metrics,
including accuracy, precision, recall, F1 score,
and ROC AUC score [30]. These metrics
provide insights into the system's ability to
correctly classify spam and non-spam
messages, as well as its overall performance in
real-world scenarios. Ensemble methods, such
as Voting Classifier and Stacking Classifiers,
have gained popularity due to their ability to
combine the strengths of multiple algorithms,
leading to improved detection rates and
robustness against diverse spam techniques
[29], [30]. The integration of machine learning
in spam detection not only enhances the
accuracy and efficiency of filtering systems
but also provides a scalable solution capable of
handling large volumes of data [25],[35]. As
communication technologies continue to
evolve, ongoing research and development in
spam detection are essential to stay ahead of
spammers and ensure the security and
reliability of digital communication channels.

By leveraging the power of machine learning
and ensemble methods, this study aims to
implement a comprehensive spam detection
system that effectively identifies and filters out
spam messages in both email and SMS
platforms. The implementation of advanced
algorithms and techniques will contribute to
the development of robust and adaptable spam
detection solutions, addressing the ever-
changing landscape of spam and its associated
threats [1].

2. Related Works

Today, spam detection continues to evolve
with the advancement of artificial intelligence
and machine learning. The integration of

natural language processing (NLP) techniques
and the development of real-time detection
capabilities are at the forefront of current
research. The focus is on creating models that
can adapt to new spam tactics quickly and
efficiently, ensuring robust protection against
evolving threats [21]. In addition to technical
advancements, regulatory measures and
industry standards play a crucial role in
combating spam. Legislation such as the
CAN-SPAM Act in the United States and the
General Data Protection Regulation (GDPR)
in Europe set guidelines for email marketing
and data protection, helping to mitigate the
impact of spam [14],[18].

The ubiquitous nature of email communication
has brought with it a persistent challenge:
spam emails. These unsolicited and often
deceptive messages clutter inboxes, disrupt
workflow, and harbor the potential for
phishing attacks and malware distribution [20].
Traditional rule-based spam filters, while
initially effective, struggle to keep pace with
the evolving tactics of spammers [25].
Perpetrators employ increasingly sophisticated
techniques, crafting emails that mimic
legitimate sources and exploiting
vulnerabilities in filtering systems [5].

Machine learning (ML) has emerged as a
powerful tool in the fight against spam [33].
ML algorithms excel at analyzing large
datasets and identifying patterns within them.
By leveraging these capabilities, we can
develop models that can discern legitimate
emails from spam with high accuracy [37].

Several research studies have explored the
efficacy of different ML approaches in spam
detection. [38] proposed a lightweight spam
detection model wusing word frequency
patterns, demonstrating the potential of simple
yet effective ML techniques. Research by [2]
explored SMS spam detection using ML,
highlighting the versatility of these algorithms
across different communication platforms. [3]
conducted a comprehensive review of various
ML methods for enhancing email spam filter
accuracy. Their work underscores the
continuous evolution and improvement in this
domain.

Ensemble methods, which combine multiple
algorithms, have also shown promise in
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improving detection rates [9]. This approach
leverages the strengths of diverse algorithms to
tackle the multifaceted nature of spam. Natural
Language Processing (NLP) techniques, when
combined with ML, can further enhance spam
detection capabilities. [3] integrated NLP and
swarm intelligence to filter spam emails,
showcasing advanced methods to refine the
detection process. Comparative studies, such
as those by [4],[13],[19], have evaluated
multiple ML models to identify the most
effective ones for spam detection. These
studies provide valuable insights into model
selection and optimization.

The practical implementation of these models
involves several critical steps. Data acquisition
and preprocessing are crucial initial phases.
Researchers often utilize publicly available
datasets, such as the UCI Machine Learning
Repository’s SMS Spam Collection [16]. Data
cleaning and preparation involve removing
irrelevant information and handling missing
values to ensure model accuracy [17].

Exploratory Data Analysis (EDA) helps
visualize data distribution and uncover
patterns that can inform feature engineering
[22]. Feature engineering involves extracting
specific attributes, such as word frequency and
key phrases, to enhance model performance
[26].

Developing a robust ML model is central to
the project. Algorithms like Naive Bayes,
Support  Vector Machines (SVM), and
ensemble methods are popular choices for
spam detection [34]. These algorithms are
trained on the prepared data, with
hyperparameter tuning applied to optimize
their accuracy [7]. Model evaluation using
metrics like accuracy, precision, recall, and
Fl-score ensures comprehensive assessment
and fine-tuning [1].

In summary, the historical evolution of spam
and spam detection highlights the ongoing
battle between spammers and the developers
of spam detection systems. From simple
keyword filters to sophisticated machine
learning and deep learning models, the field
has made significant strides. However, the
continuous evolution of spam tactics
necessitates ongoing research and innovation
to stay ahead in this ever-changing landscape.

By leveraging advanced algorithms, this
project aims to provide an effective tool to
combat spam, safeguarding users against
potential cyber threats. Future enhancements
may include capabilities for bulk message
processing and detailed analytics, further
expanding the  system's  utility and
effectiveness in the ongoing battle against
spam.

3. Methodology

The methodology adopted entails four stages:
data collection and labelling, pre-processing,
classification, performance evaluation

3.1 Data collection and labelling

Data preprocessing is a vital step in preparing
the raw datasets for machine learning models.
This process ensures the data is clean,
consistent, and suitable for analysis. Effective
preprocessing enhances model performance by
eliminating noise, correcting inconsistencies,
and transforming data into a format that the
machine learning algorithms can effectively
utilize. In  this study, several data
preprocessing techniques, including dropping
irrelevant  columns, renaming columns,
handling missing values, and concatenating
datasets were employed. These steps help to
standardize the data and make it ready for the
subsequent stages of feature extraction and
model training [12]. It is composed of a broad
ML procedure called Data Cleaning and then
an optional but useful phase called Exploratory
Data Analysis (EDA).

3.2. Selection and Comparison of the Machine
Learning Algorithms

The study ensures that various machine
learning algorithms are utilized and compared
to determine the most effective model for
spam detection. These algorithms include
Logistic Regression, Support Vector Classifier
(SVC), Naive Bayes (with a preference for
Multinomial Naive Bayes), Decision Tree
Classifier, K-Nearest Neighbors (KNN),
Random Forest, AdaBoost, Extra Trees
Classifier, Gradient Boosting Classifier, and
XGBoost Classifier. Each algorithm offers
unique advantages and is well-suited for
different aspects of the spam detection task.
Below is an extensive discussion of each
algorithm.
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Logistic Regression: Logistic Regression is a
linear model used for binary classification
tasks. It estimates the probability that a given
input belongs to a certain class. The model
uses the logistic function to squeeze the output
of a linear equation between 0 and 1,
representing the probability of the positive
class [24].
1

he(x) = =5t 1)
Where:

fis the vector of coefficient (parameters) of the model
# is the input feature vector

#g(x) is the predicted probability that the
instance belongs to class 1 (e.g. spam)

Decision Boundary:
Class 1 (spam) if hg(x) = 0.5
Class 0 (not spam) if hg(x) < 0.5

Support Vector Classifier (SVC): Support
Vector Classifier (SVC) is used for both linear
and non-linear classification tasks. It finds the
optimal hyperplane that best separates the
classes in the feature space. SVC maximizes
the margin between the closest data points of
different classes, known as support vectors,
providing robustness against overfitting
(Cortes and Vapnik, 1995). The decision
function is:

Obijective Function:

Minimize: é lwl|® )
Subject to: yiwTx;+b)=1Y; (3)
Where:

w is the weight vector
x; is the input feature vector for the i
instance
y; is the label for the i instance

b is the bias term

th

Kernel Trick: The kernel trick is used to
transform the data into a higher-dimensional
space to make it linearly separable.

Naive Bayes: Naive Bayes is a probabilistic
classifier based on Bayes' theorem. The
Multinomial variant is particularly effective
for text classification tasks like spam detection.
It calculates the probability of each class given

the input features and selects the class with the
highest probability.

Bayes Theorem:

P P
P(ylx) = 250250 (4)

Where:

P(y|x) is the posterior probability of
class y given the features x

P(x|y) is the likelihood of features x
given class y
P(y) is the prior probability of class y
P(x) is the evidence or the total probability of
features x

Decision Trees Classifier: Decision Tree
Classifier splits data into subsets based on
feature values, forming a tree structure. The
model makes decisions by splitting the data at
each node based on the feature that results in
the best separation of the classes, providing
clear decisions [32].

For Gini Impurity:
Gini=1— Y{ P’ (5)

Where:

C is the total number of classes

P; is the probability of a random
chosen element being classified to class i

Entropy:
Entropy = — Y, P;log,(Py) (6)

Information Gain:
IG(S, A) = Entropy(S) —
8,1
EueValues(A)WEntmpy(Su)
(7
Where S is the set of instances and A is the
attribute

K-Nearest Neighbours (KNN): K-Nearest
Neighbors (KNN) is a non-parametric
algorithm used for classification. It classifies
based on the majority class among the k-
nearest neighbors of a data point. KNN
calculates the distance between the input point
and all other points in the training set. It
typically uses distance metrics like Euclidean
distance.
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Distance Metric:
d(x,y) = Xm0 — y)? (8)

Where:

xandy are two instances in the
feature space

n is the number of features

Prediction: The class label is assigned based
on the majority class among the k nearest
neighbors

y = mode{yiy, yiz, yi, ..., Yix}

Where: yiy, yiz, ¥ia, .., yir} are the labels of
the nearest neighbors

ExtraTrees Classifier: Extra Trees (Extremely
Randomized Trees) is an ensemble learning
method that uses random subsets of features
and splits the nodes randomly to form multiple
decision trees. It is similar to Random Forest
but with more randomness in tree building. It
builds each tree using a random subset of
features and data, with the final prediction

made by averaging the outputs of all trees [19].

Splitting Criterion:

Randomly selects a feature and then selects a
random split point for that feature to split the
node. The prediction is made by averaging the
predictions from all trees or taking the
majority vote in the case of classification.

Like Random Forest, the prediction is given by:

y = =3 he(x) (10)
Where:

T is the number of trees

h(x) is the prediction of the t" tree

3.3. Ensemble Methods

Ensemble methods combine the predictions of
multiple machine learning models to produce a
more accurate and robust model. The
underlying idea is that by aggregating the
strengths of individual models, the ensemble
can outperform any single model. Ensemble
methods are particularly useful in scenarios
where individual models might have different
strengths and weaknesses. In this section, we
will discuss the ensemble methods used in this
project: Voting, Stacking, Boosting, and

Bagging.

1. Boosting

Boosting is an iterative ensemble technique
that focuses on improving the performance of
weak learners by sequentially adding models
that correct the errors of the previous models.
Boosting reduces bias and variance, making it
highly effective for complex classification
tasks. The key algorithms are as follows.
AdaBoost Classsifier: AdaBoost (Adaptive
Boosting) is a boosting technique that
combines multiple weak classifiers to form a
strong classifier by focusing on hard-to-
classify instances. AdaBoost assigns weights
to each training instance, adjusting them after
each round to focus more on misclassified
instances.

Weight Update:
w; (D = w; O xexp(—aryih(x)) (11)

Where:
w; (D is  the weight of the
h instance at iteration ¢
a¢ is the model weight for classifier h;
y; is the true label
he (x;) is the prediction of classifier h;

if

Gradient  Boosting  Classifier:  Gradient
Boosting is an ensemble technique that builds
models sequentially. Each new model
minimizes the loss function of the previous
models, with the final prediction being a
weighted sum of all the models (Friedman,
2001).

Obijective Function:

0bj = YL Ly i) + i1 Q(fi) (12)

Where:
L(y;, v;®) is the loss function (e.g.,
log loss for classification)

Q(f%) is a regularization term to prevent
overfitting
y; (D is the prediction after t iterations

Boosting Process: At each step t , the
algorithm fits a new model f:(x) to the
residual errors from the previous model

» D =y O+ . filx)
Where: 7 is the learning rate

XGBoost Classifier: XGBoost (Extreme
Gradient  Boosting) is an  optimized
implementation of gradient boosting that
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includes regularization to prevent overfitting.
XGBoost uses advanced techniques like
parallelization, tree pruning, and handling
missing values to build efficient and accurate
models [8].

Obijective Function:
Obj = YL 1y yi @) + Xk, Q(fi) (13)
Where:

[(y;, v; D) is the loss function

Q(fy) is a regularization term for tree k

Boosting methods can be particularly effective
in improving the classification performance of
the spam detection system by focusing on
difficult-to-classify instances.

2. Bagging

Bagging (Bootstrap Aggregating) is an
ensemble method that builds multiple models
using different subsets of the training data.
Each model is trained independently, and their
predictions are averaged (or voted) to produce
the final prediction. Bagging helps to reduce
variance and prevent overfitting. The key
algorithm is the Random Forest classifier.
Random Forest: Random Forest is an
ensemble learning method that constructs
multiple decision trees and merges their
outputs to improve accuracy and control over-
fitting. Each tree in the forest is built on a
random subset of the data and features, with
the final prediction made by aggregating the
predictions of all the individual trees [6].

Prediction: The prediction is made by
averaging the predictions from all the trees
(for regression) or by taking the majority vote
(for classification).

y = 230 he(x) 9)
Where:

T is the number of trees

h¢ () is the prediction of the t™" tree

3. Voting

The Voting Classifier is a simple yet powerful
ensemble technique that aggregates the
predictions from multiple models. The two
main types of voting mechanisms are as
follows.

Hard Voting: In this approach, each model in
the ensemble makes a prediction (votes for a
class), and the class with the most votes is

chosen as the final prediction. Mathematically,
if we have mmm classifiers, the hard voting
prediction is given by:

y = mode{y1, y2, 3, e, Ym}

Where: y; is the prediction of the i*" model

Soft Voting: Instead of predicting the final
class directly, soft voting averages the
predicted probabilities of each class and
selects the class with the highest average
probability. This method often provides better
performance as it considers the confidence of
each model's prediction:

y = arg max(iziil P}(E))
Where: PV is the predicted probability of
class j by the i model

The Voting Classifier would be particularly
effective in this project, as it leverages the
diverse strengths of the models included in the
ensemble, leading to improved accuracy and
robustness in spam detection.

4. Stacking

Stacking is a more advanced ensemble method
that involves training a meta-model to
combine the predictions of several base
models. The base models are first trained on
the training data, and then their predictions are
used as input features for the meta-model. The
meta-model learns how to best combine these
predictions to make a final prediction.

Let hy (x), hy(x), ..., hyp(x) be the predictions
from the base models.

The meta-model H(x) is trained on these
predictions:

y = H(hl(x)a hz(x),...,hm (x))

Stacking can outperform other ensemble
methods by learning the optimal way to
integrate the strengths of each model. In this
project, the Stacking Classifier will be tested
and compared with other methods, to provide
valuable insights into the effectiveness of
model combination strategies.

3.4. Hyperparameter Tuning

Hyperparameter tuning is a crucial step in the
ML pipeline that involves selecting the
optimal set of hyperparameters for a model.
Hyperparameters are parameters that are set
before the learning process begins, and they
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can significantly impact the performance of
the model. The goal of hyperparameter tuning
is to improve the model's accuracy, precision,
recall, and overall performance by finding the
best combination of hyperparameters. It
involves systematically searching through a
predefined space of hyperparameter values and
evaluating the model's performance for each
combination. Two common methods for
hyperparameter tuning are Grid Search and
Random Search.

Table 1. Evaluation Metrics

3.5. Evaluation Metrics

Several evaluation metrics are used to
comprehensively assess the performance of
machine learning models. Each metric
provides unique insights into different aspects
of the model's performance. Below is a table
that shows the evaluation metrics to be
considered in this project.

Metric Definition Formular

The ratio of correctly predicted instances to the TP + TN

1 Accuracy total instances. It gives a quick overview of the Accuracy = TP+ TN + FP + FN
model’s overall performance
Measures the proportion of true positive

. predictions among all positive predictions. It . P

2 Precision . . Precision = ——
indicates the accuracy of the positive class TP + FP
predictions
Also known as sensitivity or true positive rate. TP

3 Recall Measures the proportion of true positive Recall = TP L FN
predictions among all actual positives +
The ha.rmonif: Mean of-precision and recall, _ Precision x Recall

4 F1 Score providing a single metric that balances both F1 Score = 2 x

aspects

Precision + Recall

5 ROC_AUC

The ROC curve plots the true positive rate
(recall) against the false positive rate. The AUC
represents the model's ability to distinguish
between classes

Logarithmic
Loss

Measures the performance of a classification
model where the output is a probability value
between 0 and 1. It penalizes false
classifications, with larger penalties for
confident but incorrect predictions.

N
1
Loglas = -~ El s log(ps) + (1 - ) log(1 ~ )]

7 Hamming Loss

The fraction of labels that are incorrectly
predicted. It measures the average
misclassification rate.

N
_ 1 R
Hamming Loss = N El [yi # Gi]

Measures the agreement between two raters (or Po — Pe
Cohen’s . K o e
8 Kappa the model and the true labels) accounting for the 1 D
PP possibility of agreement occurring by chance ‘
A variant of the F1 Score that gives more weight ) Precision x Recall
9 F2 Score to recall than precision. It is useful when the cost | F2 Score = (1+27) x

of false negatives is higher

(22 x Precision) + Recall

10 | Jaccard Index

Measures the similarity between the predicted
and true label sets. It is the size of the
intersection divided by the size of the union of
the label sets.

|[AnB
|AUB

Jaccard Index =
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4. Results and Discussion

In this section, various machine learning
algorithms were implemented and evaluated to
determine their effectiveness in detecting spam

messages. The algorithms tested included
Logistic ~ Regression,  Support  Vector
Classifier, Naive Bayes, Decision Tree
Classifier, K-Neighbors, Random Forest,

AdaBoost, Extra Trees Classifier, Gradient
Boosting Classifier, and XGBoost.

In developing a the spam detection system,
several critical decisions were made to
enhance model performance and ensure
practical applicability. This section reflects on
these choices, offering insights into the
rationale behind each decision.

Hyperparameter tuning was a pivotal step in
refining the performance of the ML models.
By systematically adjusting parameters such as
the 'C' value in Support Vector Machines

(SVM) and the number of estimators in
ensemble methods like Random Forest, the
models were optimized for better accuracy and
generalization.

Feature selection and engineering played a
crucial role in improving model accuracy.
Initially, a broad range of features were
considered, including text length, punctuation
frequency, and keyword  occurrences.
However, a thorough analysis revealed that not
all features contributed equally to the model's
predictive power. Employing the TF-IDF
Vectorizer over the Count Vectorizer yielded
better results. Coupling it with
hyperparameters such as max_features did
much better as only features that significantly
impacted performance were selected. This step
was essential in reducing model complexity
and preventing overfitting.

Table 2: Results obtained by individual base classifier [dataset 1]

Algorithm Accuracy | Precision | Recall F1 ROC_AUC | LogLoss 'Cg;‘ming Kappa | F2 Jaccard
1 | LR 0.9700 0.9972 09342 | 0.9647 | 0.9661 1.0796 0.0300 09387 | 0.9462 | 0.9318
2 | svm 0.9770 0.9972 0.9500 | 0.9730 | 0.9740 0.8305 0.0230 09520 | 09591 | 0.9475
3 | nB 0.9585 0.9479 09578 | 0.9528 | 0.9585 1.4949 0.0415 09158 | 09559 | 0.9100
4 | DT 0.9412 0.9687 0.8947 | 0.9302 | 0.9360 21178 0.0588 0.8796 | 0.9086 | 0.8695
5 | kN 0.5507 0.4935 1.0000 | 0.6609 | 0.6004 16.195 0.4493 01803 | 0.8297 | 0.4935
6 |RF 0.9827 0.9973 09631 | 0.9799 | 0.9806 0.6229 0.0173 09648 | 0.9698 | 0.9606
7 | AdaBoost 0.9505 0.9856 0.9000 | 0.9409 | 0.9449 1.7856 0.0495 0.8984 | 09150 | 0.8883
8 | ETC 0.9735 0.9786 09605 | 0.9695 | 0.9721 0.9551 0.0265 09461 | 0.9641 | 0.9407
9 | GBDT 0.9643 0.9861 09316 | 09581 | 0.9607 1.2872 0.0357 09270 | 09420 | 0.9195
10 | XGBoost 0.9758 0.9864 09579 | 09720 | 0.9738 0.8720 0.0242 09507 | 0.9634 | 0.9454
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Figure 1: Barplot of the Model Evaluation (Dataset 1)
Table 3: Results Obtained by the Individual Models (Dataset 2)
. Log Hamming
Model Accuracy Precision Recall F1 ROC Loss Loss Kappa F2 Jaccard

1 LR 0.9468 0.9882 0.6087 0.7534 0.8038 1.9172 0.0532 0.7254 0.6593 0.6043

2 SVM 0.9758 0.9748 0.8406 0.9027 0.9186 0.8715 0.0242 0.8890 0.8643 0.8227

3 NB 0.9594 1.0000 0.6957 0.8205 0.8478 1.4640 0.0406 0.7984 0.7407 0.6957

4 DT 0.9352 0.8380 0.6377 0.7242 0.8094 2.3355 0.0648 0.6883 0.6697 0.5677

5 KN 0.9023 1.0000 0.2681 0.4228 0.6341 3.5207 0.0976 0.3883 0.3141 0.2681

6 RF 0.9778 1.0000 0.8333 0.9090 0.9167 0.8017 0.0222 0.8965 0.8621 0.8333

7 AdaBoost 0.9246 0.8409 0.5362 0.6549 0.7603 2.7190 0.0754 0.6148 0.5781 0.4868

8 ETC 0.9768 0.9750 0.8478 0.9070 0.9222 0.8366 0.0232 0.8938 0.8705 0.8298

9 GBDT 0.9516 0.8929 0.7246 0.8000 0.8556 1.7429 0.0484 0.7728 0.7530 0.6667

10 XGBoost 0.9700 0.9350 0.8333 0.8812 0.9122 1.0806 0.0300 0.8641 0.8519 0.7877
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Figure 2: Barplot of the Model Evaluation (Dataset 2)
Table 4: Results Obtained by the Individual Models (Dataset 3)
Model Accuracy Precision Recall F1 ROC Log Hamming Kappa F2 Jaccard
Loss Loss
1 LR 0.9628 0.9768 0.8934 0.9335 0.9426 1.3421 0.0372 0.9078 0.9094 0.8753
2 SVM 0.9787 0.9781 0.9485 0.9630 0.9699 0.7669 0.0213 0.9481 0.9543 0.9288
3 NB 0.9583 0.9639 0.8909 0.9260 0.9386 1.5018 0.0417 0.8971 0.9046 0.8621
4 DT 0.8927 0.8667 0.7485 0.8032 0.8504 3.8664 1.1073 0.7301 0.7695 0.6712
5 KN 0.9326 0.8324 0.9636 0.8933 0.9417 2.4285 0.0673 0.8444 0.9342 0.8071
6 RF 0.9583 0.9579 0.8970 0.9264 0.9403 1.5018 0.0417 0.8974 0.9085 0.8629
7 AdaBoost 0.9291 0.9085 0.8424 0.8742 0.9037 2.5563 0.0709 0.8249 0.8549 0.7765
8 ETC 0.9663 0.9771 0.9061 0.9402 0.9486 1.2142 0.0337 0.9168 0.9194 0.8872
9 GBDT 0.9362 0.9510 0.8242 0.8831 0.9033 2.3006 0.0638 0.8395 0.8468 0.7907
10 XGBoost 0.9672 0.9536 0.9333 0.9433 0.9573 1.1823 0.0328 0.9203 0.9373 0.8928
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Figure 3: Barplot of the Model Evaluation (Dataset 3)
Table 5: Results Obtained by the Individual Models (Dataset 4)
Model Accuracy Precision Recall F1 ROC Log Hamming Kappa F2 Jaccard
Loss Loss
1 LR 0.9859 0.9771 0.9945 0.9857 0.9861 0.5073 0.0141 0.9718 0.9910 0.9718
2 SVM 0.9849 0.9784 0.9909 0.9846 0.9850 0.5458 0.0151 0.9697 0.9884 0.9697
3 NB 0.9802 0.9824 0.9770 0.9797 0.9802 0.7128 0.0198 0.9604 0.9809 0.9602
4 DT 0.8455 0.7653 0.9861 0.8618 0.8487 5.5674 0.1545 0.6930 0.9323 0.7572
5 KN 0.7969 0.6259 0.9942 0.7682 0.7134 10.5633 | 0.2931 0.4212 0.8895 0.6237
6 RF 0.9783 0.9764 0.9792 0.9778 0.9783 0.7834 0.0217 0.9565 0.9786 0.9565
7 AdaBoost 0.8958 0.8511 0.9533 0.8994 0.8970 3.7565 0.1042 0.7920 0.9310 0.8171
8 ETC 0.9820 0.9846 0.9784 0.9815 0.9819 0.6486 0.0180 0.9640 0.9797 0.9637
9 GBDT 0.9211 0.8743 0.9792 0.9238 0.9224 2.8447 0.0789 0.8425 0.9563 0.8584
10 XGBoost 0.9674 0.9463 0.9894 0.9674 0.9679 1.1751 0.0326 0.9348 0.9805 0.9368
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Figure 4: Barplot of the Model Evaluation (Dataset 4)
Table 6: Results Obtained by the Individual Models (Dataset 5)
. Log Hamming
Model Accuracy Precision Recall F1 ROC Loss Loss Kappa F2 Jaccard
1 LR 0.9835 0.9947 0.9750 0.9847 0.9844 0.5934 0.0165 0.9669 0.9789 0.9700
2 SVM 0.9864 0.9930 0.9819 0.9874 0.9868 0.4917 0.0136 0.9725 0.9841 0.9751
3 NB 0.9802 0.9938 0. 9698 0.9817 0.9813 0.7121 0.0198 0.9603 0.9745 0.9640
4 DT 0.9069 0.9772 0.8490 0.9086 0.9126 3.3568 0.0931 0.8146 0.8719 0.8325
5 KN 0.746 0.6502 0.9914 0.7853 0.6761 10.6469 0.2954 0.3716 0.8972 0.6466
6 RF 0.9831 1.9836 0.9853 0.9845 0.9828 0.6103 0.0169 0.9658 0.9850 0.9694
7 AdaBoost | 0.9614 0.9761 0.9525 0.9642 0.9623 1.3902 0.0386 0.9224 0.9572 0.9309
8 ETC 0.9873 0.9905 0.9862 0.9883 0.9874 0.4578 0.0127 0.9744 0.9870 0.9769
9 GBDT 0.9671 0.9764 0.9629 0.9696 0.9675 1.1868 0.0329 0.9337 0.9656 0.9410
10 XGBoost 0.9817 0.9819 0.9845 0.9832 0.9814 1.6612 0.0183 0.9630 0.9840 0.9669
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Figure 5: Barplot of the Model Evaluation (Dataset 5)

4.1 Rationale for Ensemble Methods

The decision to implement ensemble methods
was driven by their ability to combine different
models' strengths, thus mitigating the individual
models' weaknesses. This approach effectively
reduced variance and bias, leading to a more
robust spam detection system. The Voting
Classifier’s superior performance aligns with the
literature that supports ensemble methods as
powerful tools in complex classification tasks
like spam detection.

The accuracy and precision of the individual
models ranged between 85% and 95%, with the
ensemble methods, particularly the Voting
Classifier, demonstrating superior performance
across multiple datasets. Precision was highest
for the ensemble models, particularly in reducing
false positives, which is crucial in spam
detection. While individual models like Naive
Bayes and Decision Tree showed good recall,
the ensemble models maintained a balanced
performance, avoiding significant trade-offs
between precision and recall. The F1 score, a
harmonic mean of precision and recall,
highlighted the balanced effectiveness of the
ensemble methods compared to standalone
models. The ROC-AUC scores also favored the
ensemble models, indicating a better overall
classification capability. Lower log loss scores in
ensemble methods pointed to better calibration
of predicted probabilities. Other metrics such as
the Hamming Loss and Kappa further
emphasized the robustness of ensemble models,

showing fewer classification errors and better
agreement between predicted and actual classes.
When comparing the two ensemble methods:
The Stacking Classifier, unlike Voting, uses a m
eta-

earner to learn from the predictions of the base
models.

The meta-learner in stacking could learn which
models performed better on different parts of the
data and adjust its final predictions accordingly.
This approach led to improved accuracy over
individual models and even over the Voting
Classifier in some cases, especially when the
base models had complementary strengths.
Making use of the SVC as the final estimator
because of its strong results as an individual
model, the tables below describe the results
obtained from evaluating variations of the
Stacking classifier.
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Table 7: Results Obtained by the Stacking Ensemble Method (Dataset 1)

Egtsiiwators Accu. Prec. Recall F1 ROC tggs Eggm Kappa F2 Jacc.
)E<TG(;’3| REILR1 | 9703 0.9945 0.9579 0.9759 0.9769 0.7474 | 00207 | 09577 | 09659 | w
s || REILRTT 09703 0.9973 0.9553 0.9758 0.9766 0.7474 | 00207 | 09576 | 09634 | 0.9528
ETC|LR|XGB | 0.9793 0.9945 0. 9698 0.9759 0.9759 07474 | 0.0207 | 09577 | 0.9650 | 0.9529
ETC|RF|XGB | 0.9804 0.9919 0.9632 0.9773 0.9785 07059 | 0.0196 | 0.9601 | 0.9688 | 0.9556

From Table 7, the ETC | LR | XGB combination of base estimators provided the best results for dataset 1 with

accuracy and precision scores of 97.9% and 99.5% respectively.

Table 8: Results Obtained by the Stacking Ensemble Method (Dataset 2)

Base Estimators Accu. Prec. Recall F1 ROC ::Og Hamm Kappa F2 Jacc.
0SS Loss
| REIR T 00797 | 09606 | 08840 | 09208 | 09392 | 07372 | 0.0203 | 09091 | 08984 | 0.8531
s ||NF:3F I'LR 1| 09826 | 0.9615 | 0.9058 | 09328 | 0.9501 | 06275 | 0.0174 | 0.9228 | 0.9164 | 0.8741
ETC|LR | XGB 09797 | 0.9680 | 0.8768 | 0.9201 | 09362 | 0.7320 | 0.0203 | 0.9086 | 0.8936 | 0.8521
ETC | RF | XGB 09797 | 0.9680 | 0.8768 | 0.9202 | 09362 | 0.7320 | 0.0203 | 0.9086 | 0.8936 | 0.8521
Table 9: Results Obtained by the Stacking Ensemble Method (Dataset 3)
Base Estimators Accu. Prec. Recall F1 ROC tggs 'I:'ggm Kappa F2 Jacc.
ETC|RF|LR|XGB | 09778 | 0.9635 | 0.9606 | 0.9621 | 0.9728 | 0.7988 | 0.0222 | 0.9464 | 0.9612 | 0.9269
‘E,Ig IRFILRIXGB | 49761 | 0.9577 | 0.9606 | 09592 | 0.9715 | 0.8627 | 0.0239 | 09422 | 0.9600 | 0.9215
ETC|LR | XGB 09778 | 0.9635 | 0.9606 | 0.9621 | 0.9728 | 0.7988 | 0.0222 | 0.9464 | 0.9612 | 0.9269
ETC | RF | XGB 09734 | 0.9601 | 0.9485 | 0.9543 | 0.9661 | 0.9586 | 0.0266 | 0.9355 | 0.9508 | 0.9125

Table 9 indicates that the ETC | LR | XGB combination was superior for dataset 3 with accuracy and precision
scores of 97.8% and 96.4% respectively.

Table 10: Results Obtained by the Stacking Ensemble Method (Dataset 5)
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Log Hamm

Base Estimators Accu. Prec. Recall F1 ROC
Loss Loss

Kappa F2 Jacc.

ETC | RF | LR |

XGB 0.9878 0.9913 0.9862 0.9888 0.9879 0.4408 0.0122 0.9754 0.9872 0.9778

ETC | RE T LR || 09892 | 09913 | 09888 | 0.9901 | 09892 | 0.3899 | 0.0108 | 0.9782 | 0.9893 | 0.9803

XGB |NB
ETC|LR | XGB 09878 | 09905 | 09871 | 0.9888 | 0.9878 | 0.4408 | 0.0122 | 0.9753 | 0.9877 | 0.9778
ETC | RF | XGB 0.9878 | 09896 | 0.9879 | 0.9888 | 0.9878 | 0.4408 | 0.0122 | 0.9753 | 0.9883 | 0.9778

Tables 9 and 10 report ETC | RF | LR | XGB | NB combination edged out for datasets 2 and 5 with results of
98.9% accuracy and 99.1% precision

The Voting classifier generally edged out against the Stacking classifier with solid indications as presented in the
tables below.

Table 11: Results Obtained by the Voting Ensemble Method (Dataset 1)

Log Hamm

Accu. Prec. Recall F1 ROC
Loss Loss

Kappa F2 Jacc.
Estimators

SVM |RF| ETC [ LR|NB

[XGB 0.9804 0.9946 0.9605 0.9772 0.9782 0.7059 0.0196 0.9601 0.9671 0.9555

SVM | RF | ETC | LR |

XGB 0.9816 0.9973 0.9605 0.9786 0.9792 0.6644 0.0184 0.9624 0.9677 0.9580

SVM |RF|ETC|LR|NB | 0.9793 0.9945 0.9579 0.9759 0.9769 0.7474 0.0207 0.9577 0.9650 0.9529

SVM |RF|ETC |NB 0.9804 0.9946 0.9605 0.9772 0.9782 0.7059 0.0196 0.9601 0.9671 0.9555

SVM |RF |ETC | LR 0.9781 0.9918 0.9579 0.9746 0.9759 0.7890 0.0219 0.9554 0..9645 0.9504

Table 12: Results Obtained by the Voting Ensemble Method (Dataset 2)

Log Hamm

Accu. Prec. Recall F1 ROC
Loss Loss

Kappa F2 Jacc.
Estimators

SVM |RF| ETC [LR[NB

[XGB 0.9797 1.0000 0.8478 0.9176 0.9239 0.7320 0.0203 0.9062 0.8744 0.8478

SVM | RF | ETC | LR |

XGB 0.9797 0.9916 0.8550 0.183 0.9270 0.7320 0.0203 0.9068 0.8793 0.8489

SVM |RF |ETC |LR|NB | 0.9797 1.0000 0.8478 0.9176 0.9239 0.7320 0.0203 0.9062 0.8744 0.8478

SVM |RF|ETC |NB 0.9807 1.0000 0.8550 0.9219 0.9275 0.6972 0.0193 0.9109 0.8806 0.8551

SVM |RF|ETC | LR 0.9807 0.9917 0.8623 0.9225 0.9306 0.6972 0.0193 0.9115 0.8854 0.8561

Table 12 shows that the SVM | RF | ETC | NB combination edged out for dataset 2 with results of 98% accuracy
and 100% precision.

Table 13: Results Obtained by the Voting Ensemble Method (Dataset 3)

Log Hamm

Accu. Prec. Recall F1 ROC
Loss Loss

Kappa F2 Jacc.
Estimators

SVM | RF | ETC |

LR |NB | XGB 0.9743 0.9688 0.9424 0.9555 0.9650 0.9267 0.0257 0.9374 0.9476 0.9147
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ﬁ\éwﬂxlegF IETC 1| 09761 | 09720 | 0.9455 | 0.9585 | 0.9671 | 0.8627 | 0.0239 | 0.9417 | 0.9506 | 0.9204
i‘é"l"NLRF IETC 1| 09725 | 09716 | 09333 | 0.9521 | 0.9613 | 0.9906 | 0.0275 | 0.9328 | 0.9407 | 0.086
E\é'v' IRFIETC I | 09734 | 09717 | 09364 | 09537 | 09625 | 09586 | 0266 | 09351 | 0.9433 | 0.9115
SYMIRFIETCT | 09743 | 09718 | 09304 | 09553 | 09640 | 0.9267 | 00257 | 09373 | 09457 | 09144

From Tables 12 and13, the combination SVM | RF | ETC | LR | XGB produced best results drawing accuracy of

97.6% and precision of 97.6 respectively.

Table 14: Results Obtained by the Voting Ensemble Method (Dataset 5)

Accu. Prec. Recall F1 ROC Log Hamm Kappa F2 Jacc.
. Loss Loss

Estimators

z\é'\flxleF:aF IETCILR | 59901 | 0.9948 | 0.9871 | 0.9909 | 0.9904 | 03560 | 0.0099 | 0.9801 | 0.9886 | 0.9820
f‘(\é"é IRFIETCILR I | gog9p | 0.9913 | 0.9887 | 09901 | 0.9892 | 03809 | 0.0108 | 0.9782 | 0.9893 | 0.803
z\é'v' IRFIETCILR I | 09897 | 0.9930 | 09871 | 0.9905 | 09899 | 03730 | 00203 | 09791 | 0884 | 0.9811
SVM |RF|ETC |NB 00901 | 09939 | 09879 | 09909 | 0.9903 | 0.3560 | 0.0099 | 0.9800 | 0.9891 | 0.9820
SVM |RF [ETC | LR 09878 | 0.9905 | 0.9871 | 0.9888 | 09878 | 0.4408 | 0.0122 | 0.9753 | 09877 | 0.9778

The SVM | RF | ETC | LR | NB | XGB combination achieved best results for dataset 5 as indicated in Table 14,

providing results of 99% and 99.5% precision.

Table 15: Comparison of Ensemble Learning Techniques for Spam Detection in Email

Degree Of .
Author(s) Accuracy ML Technique Method Name
Ensemble with Probability and Rules Email Classifier: An
Chharia & Gupta (2013) | 94.5% Ensemble Using Probability and Rules
Ensemble (Random Forest, Gradient Comparative Results of Spam Email
Cota et al. (2022) 95% Boosting) Detection Using Machine Learning
Algorithms
Naive Bayes, Hidden Markov Model A Comparative Approach to Email
0,
Gomes et al. (2017) 95.2% (Ensemble) Classification Using Naive Bayes and HMM
Spam Email Detection Using XGBoost and
Omotehinwa et al. Random Forest, XGBoost Random Forest
96%
(2020)
(Ensemble)
Oh et al. (2020) 97% Stacking Ensemble of Six Classifiers Improving Spam Email Classmca_tlon
Accuracy Using Ensemble Techniques
Zhao et al. (2022) 98% Heterogeneous Stacking Ensemble A Heterogeneous Ensemble 'Learnmg
Framework for Spam Detection
SVM, Random Forest, ETC, LR, Naive Spam Detection in Email Using Ensemble
0,
Proposed Method 99.01% Bayes, XGBoost (Ensemble) Learning

The comparison table (Table 15) highlights the
effectiveness of various ensemble learning
techniques in spam detection across multiple
studies. Ensemble models, known for their
ability to combine the strengths of individual

classifiers, have consistently outperformed
single models in classification  tasks.
Omotehinwa et al. (2020) leveraged the
complementary strengths of XGBoost and

Random Forest to achieve an accuracy of 96%,
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emphasizing the role of ensemble diversity.
Similarly, Zhao et al. (2022) demonstrated the
utility of heterogeneous stacking, which
reached an impressive 98% accuracy by
introducing cost-sensitive learning. In my
research, the combination of SVM, Random
Forest, Extra Trees, Logistic Regression, Naive
Bayes, and XGBoost achieved an accuracy of
99.01% and a precision of 99.48%. This
superior performance highlights the importance
of using diverse and robust classifiers,
suggesting that integrating base models with
complementary strengths is key to enhancing
spam detection.

The results across these studies reaffirm that
ensemble learning not only improves accuracy
but also addresses common challenges such as
overfitting and data imbalance, particularly in
spam detection tasks where dataset variations
and class distributions can affect outcomes.

In summary, decisions made during this
project's implementation phase were guided by
a combination of empirical evidence, theoretical
considerations, and practical constraints. The
emphasis on ensemble methods, careful feature
selection, and robust evaluation strategies has
laid a solid foundation for an effective spam
detection system. In this project, while both
ensemble methods enhanced spam detection
accuracy, the Voting Classifier, particularly
with soft voting, emerged as the more robust
and practical solution. The Stacking Classifier
offered marginally better performance in certain
scenarios but required more careful tuning and
introduced additional complexity.

5. Conclusion

In conclusion, the integration of machine
learning techniques into spam detection systems
offers a promising solution to enhance email
security. This study has demonstrated the
potential of advanced algorithms to identify and
filter spam, providing an effective tool to
combat the growing threat of unsolicited and
potentially harmful communications. The
methodologies employed, from data acquisition
and preprocessing to model selection and
evaluation, have laid a strong foundation for
building a robust spam detection system.

Looking ahead, several avenues for future work
present themselves. Incorporating deep learning
techniques could further refine the system's
ability to distinguish between legitimate and
spam messages, potentially increasing accuracy

and reducing false positives. Moreover, the
development ~ of  real-time processing
capabilities would allow for immediate
detection and response to spam, enhancing the
system's utility in  fast-paced  digital
environments. A practical next step involves
deploying the trained model within a user-
friendly web application, utilizing frameworks
such as Flask or Django. This application
would provide users with real-time spam
classification, offering immediate feedback and
thus enhancing user experience and trust.
Hosting the application on scalable cloud
platforms like Heroku would ensure that it can
accommodate a wide user base and large
volumes of data, maintaining performance and
reliability.

This study not only addresses the immediate
challenge of spam detection but also opens up
opportunities for further innovation and
improvement. By continually refining the
system and expanding its capabilities, we can
better equip individuals and organizations to
protect themselves against the ever-evolving
landscape of cyber threats. As digital
communication continues to grow, so too must
our efforts to secure these channels, making the
ongoing development of advanced spam
detection systems both necessary and timely.
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APPENDIX

1. http://www.dt.fee.unicamp.br/~tiago/smsspa
mcollection/

2. https://www?2.aueb.gr/users/ion/data/enron-
spam/

3. https://spamassassin.apache.org/old/publiccor
pus/

4, https://plg.uwaterloo.ca/~gvcormac/treccorpu
s07/about.html

5. Code available at:

https://github.com/Kingblackie/spam_detecti
on_ml
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