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Abstract

Bayelsa State, Nigeria, faces increasing climate change impacts, including erratic rainfall, flooding, and food
insecurity. Limited access to localized climate data further complicates agricultural decision-making. This study
applies machine learning to predict climate change effects on agricultural productivity, offering strategies for
resilience and sustainable farming. Historical climate and agricultural data from sources like the Nigerian
Meteorological Agency (NIMET) were analyzed. A stacking ensemble machine learning model was developed
to predict crop yields, using a Random Forest Regressor and XGBoost Regressor as base models, with a Linear
Regressor as the meta-learner. The model was optimized using 5-fold cross-validation to enhance predictive
accuracy. Model validation using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
demonstrated high accuracy, with an RMSE of 9,861.6786, an Rz of 0.9866, and an MAE of 3,716.7995 hg/ha.
These results indicate minimal deviation from actual crop yields, demonstrating a significant improvement over
earlier models and confirming its reliability in predicting agricultural productivity. Findings highlight the
potential of machine learning for informed decision-making among policymakers, farmers, and stakeholders. By
leveraging Al-driven solutions, this study promotes agricultural resilience, sustainable development, and long-
term food security in Bayelsa State.
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1. Introduction

Climate change has emerged as one of the most
pressing global challenges, with far-reaching
consequences for agriculture, particularly in
vulnerable regions such as Bayelsa State,
Nigeria. Rising temperatures, erratic rainfall
patterns, and increasing incidences of extreme
weather events threaten agricultural productivity,
food security, and rural livelihoods. The loss of
crops and farmland due to flooding reduces
income and increases poverty among
smallholder farmers, hindering progress towards
Sustainable Development Goals related to
poverty and hunger [11]. As a coastal state in
the Niger Delta region, Bayelsa is uniquely
susceptible to climate-induced disruptions,
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including flooding, soil degradation, and altered
growing seasons, all of which significantly
impact crop yields and livestock production.
Given the region's heavy reliance on agriculture
for economic sustenance, there is a growing
need for predictive models that can assess and
mitigate the effects of climate change on
agricultural productivity.

Recent advancements in artificial intelligence
(Al) and machine learning (ML) present a
promising avenue for addressing these
challenges. Machine learning models can
analyze vast amounts of climate and agricultural
data to detect patterns, predict future impacts,
and provide actionable insights for farmers,
policymakers, and agricultural stakeholders. By
leveraging historical climate data, soil
characteristics, crop yield records, and
meteorological forecasts, ML-based predictive
models can help optimize farming strategies,
improve resilience, and enhance decision-
making processes in the agricultural sector.
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This study aims to develop and apply machine
learning techniques to predict the impacts of
climate change on agricultural productivity in
Bayelsa State. By integrating climate variables,
environmental factors, and agricultural data, the
study seeks to generate reliable forecasts that can
inform adaptive strategies for sustainable
farming. The findings from this research will
contribute to mitigating the adverse effects of
climate change on agriculture and support

evidence-based policymaking and resource
allocation in the region.
1.1 Climate Change and Its Impact on

Agriculture

Climate change has significant impacts on
agriculture, both in terms of crop production and
livestock  management, because  rising
temperatures, changing rainfall patterns, and
extreme weather events such as droughts and
floods can reduce crop yields [3]. It has also
significantly  affected global  agricultural
productivity, with regions like Africa being
particularly vulnerable due to their dependence
on rain-fed farming. Studies have shown that
rising temperatures, erratic rainfall, flooding,
and increased pest infestations negatively impact
crop yields and food security. In Nigeria,
agricultural productivity is highly sensitive to
climate variability, leading to reduced crop
output and economic instability [1]. Bayelsa
State, being a coastal region, faces additional
challenges such as excessive flooding and soil
salinization, which further threaten agricultural
sustainability.

1.2 Applications of Al and ML in Agricultural
Productivity Prediction

Acrtificial Intelligence (Al) and ML are
increasingly being used to assess and enhance
agricultural ~ productivity.  Studies  have

demonstrated that predictive models can analyze
climate variables, soil conditions, and crop
yields to provide insights into potential
productivity fluctuations. In Nigeria, Al-driven
solutions have been applied in precision
agriculture, irrigation management, and crop
disease detection, yet there remains limited
research specifically focused on climate-induced
productivity forecasting in Bayelsa State.
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1.2.1 Using Machine Learning in Climate
Change Prediction

Machine learning (ML) has emerged as a
powerful tool for analyzing large datasets and
making accurate climate predictions. Various
ML algorithms, including decision trees,
artificial neural networks (ANNSs), and support
vector machines (SVMs), have been successfully
applied in climate studies [6]. These models
utilize historical climate and agricultural data to
forecast future trends, enabling better planning
and adaptation strategies. For example, Random
Forest and Long Short-Term Memory (LSTM)
models have been used to predict rainfall and
temperature variations, helping farmers adjust
their planting schedules.

1.2.2 Challenges in Implementing Al-Driven
Climate Solutions in Nigeria

Despite the potential benefits of ML in
agricultural forecasting, several challenges exist.
Data scarcity and poor quality remain major
obstacles, as many developing regions lack
comprehensive climate and agricultural records.
Additionally, the adoption of Al-driven solutions
among farmers is hindered by low digital
literacy, inadequate infrastructure, and financial
constraints. Addressing these challenges requires
targeted policies, investment in data collection,
and training programs to enhance Al adoption in
the agricultural sector.

1.3 Research Gaps and New Approach Used

While existing studies highlight the potential of
ML in climate change adaptation, limited
research focuses on Bayelsa State and its unique
agricultural ~ challenges.  Most  Al-driven
agricultural studies in Nigeria have concentrated
on large-scale farming, with little emphasis on
smallholder farmers who are most affected by
climate variability. This study aims to bridge this
gap by developing an ML-based predictive

model tailored to Bayelsa’s environmental
conditions, providing localized insights for
farmers and policymakers to enhance

agricultural resilience. The literature review
underscores the significance of Al and ML in
climate change prediction and agricultural
productivity assessment. However, the limited
application of these technologies in Bayelsa
State presents an opportunity for research and
innovation. Therefore, this study contributes by
developing a robust ML-based model that offers
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accurate, data-driven insights to mitigate climate
change’s effects on agriculture in the region.

2. Related Works

Adejuwon et al. [1], based on Climate
Variability and Agricultural Productivity in
Nigeria examined the effects of climate
variability on Nigeria’s agricultural sector using
statistical regression models to analyze historical
temperature and rainfall data. The study
advocated for climate adaptation strategies, such
as improved irrigation and resilient crop
varieties. Employing methodologies such as the
chi-square test of independence, standardized
anomaly index, multiple regression, z-
distribution, and descriptive statistics, the
research investigates the socioeconomic and
climate influences on cocoa yield using data
from 1999 to 2019. The findings underscore the
significant effect of climate on cocoa yield,
particularly in 1999 and 2000, with farmers
attributing positive influences on factors like
temperature, humidity, rainfall, sunshine, and
wind speed but the data set was not large enough
for accurate prediction.

Ashiegbu et al. [4] carried out a study that
focused on the intersection of climate variability
and agroforestry. The paper presents valuable
insights into the impacts of climate variability on
agricultural practices, but the study is limited to
six local government areas in Ebonyi State,
Nigeria which did not capture the broader
regional or national trends in climate variability
and agricultural practices, potentially limiting
the generalizability of the findings to other areas.
A larger and more diverse sample could yield
more comprehensive results. The study also
relied on self-reported data from farmers
regarding their perceptions of climate variability
and agricultural practices. This method can
introduce biases, as farmers may overestimate or
underestimate their experiences based on
personal beliefs or external influences

Ologeh and Adesina [14] in their study finds a
positive and significant relationship between the
summed rainfalls of June, July, and August and
annual maize vyields over a thirty-five-year
period. This indicates that specific seasonal
rainfall is critical for maize production, which
can inform agricultural practices and policies.
Although the study emphasizes seasonal rainfall,
it did not adequately address the impact of other
climatic factors, such as temperature fluctuations
and extreme weather events, which can also
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significantly  affect crop  vyields. The
interpretation of the correlation results may also
be subject to bias, as the study primarily focuses
on specific rainfall months. This selective focus
might overlook other important climatic
variables that could provide a more
comprehensive understanding of crop yield
dynamics.

Another research by Garg and Alam [7]
highlights the significance of machine learning
techniques in developing effective crop
recommendation  systems. These systems
leverage various algorithms including Random
Forest, Naive Bayes, Support Vector Machines,
and K-Nearest Neighbors. These methods
analyze diverse data inputs such as soil
properties and weather conditions. They
analyzed soil and climatic conditions, ultimately
guiding farmers in selecting the most suitable
crops for their specific environments. But while
the machine learning approach offers promising
advancements in crop recommendations,
challenges such as data quality and the need for
continuous  updates remain critical for
maintaining system efficacy.

Week and Wizor [19] observed that the impact
of flooding on agriculture in the Niger Delta is
multifaceted, affecting food security, soil quality,
and the livelihoods of smallholder farmers. They
asserted that Flooding in the Niger Delta leads to
acute food insecurity, with 75.3% of respondents
in the study reporting scarcity of basic food post-
flooding. The washing away of farmlands results
in chronic food insecurity, affecting the
livelihood of residents.

Okoro and Ofordu [15] also observed that the
loss of crops and farmland due to climate change
and flooding reduces income and increases
poverty among smallholder farmers, hindering
progress towards Sustainable Development
Goals related to poverty and hunger. Amos and
Okoro [2] reveals the rising temperatures, erratic
rainfall, and frequent oil spills in Ogbia LGA,
Bayelsa State, are reducing crop yields and fish
stocks, threatening food security. It recommends
climate-resilient farming, improved flood and
fishery management, and increased community
awareness to sustain livelihoods.

Awais et al. [5] highlighted the limitations of
conventional statistical methods in providing
timely and accurate soil texture and soil-water
content (SWC) analysis, particularly in the face
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of varying climate and geospatial factors. The
study explores how artificial intelligence (Al),
machine learning (ML), and deep learning (DL)
techniques can offer more robust, accurate, and
real-time soil analysis for improved agricultural
decision-making. The paper discusses the use of
predictive models like random forests, support
vector machines, and neural networks, alongside
geostatistical techniques such as kriging and co-
kriging, to enhance spatial data representation. It
also evaluates challenges like false positives in
SWC detection and promotes the integration of
Al-driven systems for smart irrigation and global
SWC database development. But there was no
model development and training.

Nnodi and Obasi [9] presented a machine
learning-based approach that significantly
improves the detection of insider threats in
corporate networks. By analyzing user behaviors
and access patterns, the system can classify
activities as normal or abnormal, providing early
warnings for potential breaches. But the model
considered only features relating to insider
attacks on corporate networks.

Zidan and Febriyanti [20] developed an ML
model to predict maize and rice yields based on
climate variables. They compared different
algorithms, including XGBoost, Decision Trees,
and ANN, using agricultural datasets. But their
model did not include integration of real-time
weather monitoring data with the machine
learning models to enhance prediction accuracy.

Nnodi et al. [9] addresses the lack of user-centric
systems for web QOE prediction. A predictive
model was developed to measure and monitor
web user experiences. The model aids in
identifying network bottlenecks and supports
real-time user decisions. But the study used only
random forest algorithm for training and
validation.

Obasi and Nlerum [12] developed a model for
the Detection and Prevention of Backdoor
Attacks using CNN with Federated Learning.
The model achieved an accuracy of
99.99% for training and 99.98 for validation.

Timadi and Obasi [16] worked on Integrating
Zero-Trust Architecture with Deep Learning
Algorithm to Prevent Structured Query
Language Injection Attack in Cloud Database.
Their proposed system utilizes a Feed-Forward
Neural Network (FNN) to analyze database
queries and detect potential SQL injection
attacks. The model exhibits a precision score
approximating  100%  accuracy in  the
classification of queries deemed normal, while
achieving a 94% rate of correct classification for
queries indicative of SQL injection attacks.

Obasi and Stow [13] developed a Predictive
Model for Uncertainty Analysis on Big Data
Using Bayesian Convolutional Neural Network
(CNN). The Bayesian CNN model uses a
probability score in predicting uncertainties in
big data. The result of Bayesian model shows a
better result of 99.9% for both training and
testing

3. Methodology

This research employed a supervised machine-
learning predictive modeling approach. It
combined quantitative approach, predictive
design and computational experiment / ensemble
learning to predict crop yield. The research
begins by importing a dataset from a CSV file
(yield_df.csv), which contains various crop yield
and environmental features. Unnecessary
columns were dropped to clean the dataset. New
features were engineered to enhance the
predictive power of the model. Data splitting
was done using an 80/20 train-test split for
model training.

By combining XGBRegressor,
RandomForestRegressor, and a Linear
Regression meta-learner with 5-fold cross-
validation  the  dataset ~was  trained.
GridSearchCV ~ was employed to optimize
model parameters to achieve better performance.
The model was evaluated by assessing the Root
Mean Square Error (RMSE), Coefficient of
Determination (R?), and Mean Absolute Error
(MAE) values, while scatter plots were used to
validate the predictions
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3.1 Model Architecture
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Figure 1: Proposed Model Architecture

Figure 1 shows the different components of the
architecture and how they interact to accurately
predict crop yields. Model architecture is broken
down into distinct modules as follows:

Data Acquisition: Datasets comprising climate
data and agricultural data were obtained from
NiMET and FOA respectively with a total
number of 28242 samples with a total of 113
features before data cleaning.  After data
cleaning, the number of rows was reduced to
24,241 with a total of 7 features.

The dataset consists of the following features:

a. Area: location under study.

b. Item: Type of crop.

c. Year: Year of data collection.

d. hg/ha_yield: Crop yield (target variable).

e. average_rain_fall_mm_per_year: Average
yearly rainfall.

f. pesticides_tonnes: Pesticide usage in tonnes.

g. avg_temp: Average yearly temperature.

The research began by importing the dataset
from a CSV file (yield_df.csv), which contains
various crop yield and environmental features.
An unnecessary columns were dropped to clean
the dataset.

Data Preprocessing: In this module, the data
was cleaned to drop the unnecessary features and
remove outliers that may introduce noise in the
proposed model
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features

Feature Engineering:  New are
engineered to enhance the predictive power of
the model. These features include:

a. Relative Year (Year_diff): The number of
years since the first observation, capturing
temporal trends.

b. Interaction Term (rain_temp): The product of
average rainfall and temperature, reflecting
potential synergistic effects on crop growth.

c. Pesticide-Rainfall Ratio: A ratio of pesticides
applied to the rainfall received, which may
indicate agricultural practices or
environmental stress.

Categorical Encoding: Categorical variables
such as "Area" and "ltem" are transformed using
one-hot encoding to convert them into a
numerical format suitable for machine learning
algorithms.

Train-Test Split: The dataset is partitioned into
training and testing sets using an 80/20 split after
the one-hot encoding technique. This ensures
that the model is trained on the majority of the
data and evaluated on a separate subset to assess
its generalization capability.

Stacking Ensemble Model: Two powerful tree-
based regressors are employed as the base
models, which include the XGBRegressor (A
gradient boosting model known for its strong
predictive performance) and
RandomForestRegressor (An  ensemble of

UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627



decision trees that averages multiple predictions
to reduce variance). A Linear Regression model
is used as the meta-learner, which takes the
predictions from the base models and learns to
combine them optimally. The stacking ensemble
is configured using 5-fold cross-validation to
combine the strengths of the base learners,
enhancing the overall predictive accuracy.

Grid Search Optimization: During this stage,
hyperparameter tuning was performed using
GridSearchCV to optimize key parameters. For
XGBRegressor, the number of estimators and
learning rate were tuned while the number of
estimators and maximum depth were tuned for
RandomForestvanRegressor. This grid search
was conducted using a 5-fold cross-validation
strategy, with the R2 score as the optimization
metric. The best combination of
hyperparameters is selected to improve model
performance and generalization.

Model Evaluation and Visualization: The
optimized stacking model is evaluated on the test
set using standard  regression  metrics
comprising:

a. RMSE (Root Mean Squared Error) which
measures the typical magnitude of prediction
errors.

b. R? (Coefficient of Determination) which
indicates the proportion of variance in crop
yield that is captured by the model and

c. MAE (Mean Absolute Error) which reflects
the average absolute error in predictions.

To visualize the result, a scatter plot of actual
versus predicted crop yields was generated to
visually assess the model’s performance and
ensure that predictions align closely with the
ground truth. This multi-stage methodology
from data preprocessing and feature engineering
to model stacking, hyperparameter tuning, and.
outlier removal

4, Results and Discussion

4.1 Result of Key features’ Distribution before
Outlier Removal

The histograms in figure 2 provide an overview

of key features in the crop yield dataset before

outlier treatment, including "Year,' 'hg/ha_yield'
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(crop vyield), 'average rain_fall_ mm_per_year,
'pesticides_tonnes,’ and ‘avg_temp." The 'Year'
distribution appears multimodal, indicating data
collection was focused on specific periods rather
than being uniform. This temporal grouping has
implications for structuring validation and
testing strategies, particularly in time-series
modeling. The 'hg/ha_yield" histogram is heavily
right skewed, with most values clustering at
lower yields and a long tail extending toward
high yields.

This non-normal distribution suggests that
models robust to skewness or transformations
was necessary, and error metrics like RMSE
should be considered carefully. Rainfall and
pesticides also exhibit right-skewed
distributions. Rainfall shows a main peak at
lower values but extends into higher regions,
indicating diverse climatic conditions in the
dataset. This range is essential for models
aiming to generalize across different agricultural
zones.

Pesticide usage is similarly skewed, with most
instances showing low usage and a few cases of
high application, highlighting potential outliers
that required attention. Temperature, in contrast,
appears closer to multimodal distribution,
suggesting the dataset includes observations
from distinct climatic zones. These patterns
inform feature engineering (e.g., transformations
for skewed variables, interaction terms between
climate features), model selection (favoring
ensemble or deep learning models over linear
models), and data preprocessing (outlier
handling and scaling).

4.1.1 Result of Crop Yield Distribution After
Outlier Treatment

A scatter plot of actual versus predicted crop
yields is generated to visually assess the model’s
performance and ensure that predictions align
closely with the ground truth. This multi-stage
methodology—from data preprocessing and
feature engineering to model stacking,
hyperparameter tuning, and comprehensive
evaluation—forms a robust framework for
accurate crop yield prediction using advanced
machine learning techniques.
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Figure 2: Distribution of Key Features before Outlier Removal
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Distribution of Crop Yield (hg'ha) After Outlier Treatment
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Figure 3: Distribution of Crop Yield after Outlier Treatment

Figure 3 provides a visual summary of the
frequency of crop yield values in the dataset
after addressing outliers. The x-axis represents
crop vyield values (hectograms per hectare),
while the y-axis shows their frequency. The
distribution reveals a concentration of yields in
the lower ranges, likely below 100,000 hg/ha,
suggesting the most common vyield levels. The
spread extends up to 500,000 hg/ha, indicating
variability, with a long right tail pointing to
occasional high yields. This right-skewed nature
is common in real-world agricultural data,
highlighting the need for careful consideration in
model selection. While linear models may
require transformations to handle skewness, tree-
based models like RandomForest and XGBoost
are generally more robust to such distributions.

The explicit mention of "After Outlier
Treatment" suggests that extreme vyield values
have been addressed, leading to a more stable
and representative dataset. Handling outliers
helps improve model robustness by reducing the
influence of extreme values, which in turn
enhances generalization to unseen data. This
histogram plays a crucial role in exploratory data
analysis, guiding the selection of appropriate
models based on vyield distribution
characteristics and setting realistic expectations
regarding prediction performance. Additionally,
it aids model evaluation by providing a
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benchmark for assessing how well predictions
align with the actual data distribution, and
selecting appropriate evaluation metrics, such as
MAE alongside RMSE, ensures models are
assessed to account for skewness and variability
in crop yields.

This scatter plot on figure 4 visually evaluates
the stacking regressor's performance in
predicting crop yield. The x-axis shows actual
yields, while the y-axis displays predicted yields,
with each point representing a test data instance.
The red dashed “Ideal fit” line signifies perfect
predictions. The brown scatter points,
representing the model's “Stacked Predictions,"
cluster closely around this ideal line. This tight
clustering visually demonstrates that the stacking
regressor is effectively forecasting crop yields
with good accuracy, as predicted values are
generally close to the actual observed yields
across the test dataset. In terms of crop yield
prediction research, this plot provides strong
visual evidence of the model's success. It
confirms the effectiveness of the stacking
regressor in capturing complex relationships
within the data and generating reliable yield
forecasts. While the scatter is not perfectly
aligned, indicating some prediction error, the
overall closeness to the ideal fit line suggests a
valuable tool for agricultural applications.
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Stackong Regressor. Actual vs. Pradicted Crop Yield
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Figure 4: Stacking Regressor Prediction Result
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Figure 5: Prediction Result of the Ensembled Model

Figure 5 shows how closely each model’s yield
predictions match the true (actual) yields, with
the ideal y = x line drawn as a reference. This set
of scatter plots compares actual vs. predicted
values for three models: XGBoost, Random
Forest, and a Stacked Model. Each dot
represents a data point, where X-axis = actual
yield values and Y-axis = predicted yield values.
For XGBoost predictions on the left panel, each
blue dot is one field’s actual vs. predicted yield.
The scatter plot clusters tightly around the
diagonal, but with a bit more spread at higher
yields. Coefficient of determination (R?) =
0.962, meaning that about 96.2% of the variance

181

in actual yields is explained by XGBoost’s
predictions. Random Forest Predictions in the
middle panel, orange dots show an even tighter
cloud around the diagonal than XGBoost. Rz =
0.985, indicating very strong agreement (that the
model explains 98.5% of variance), and thus it
has slightly better accuracy than XGBoost. For
the Stacked Model Predictions on the right
panel, green points combine (or “stack) the
strengths of both models. It also achieves R? =
0.985, matching the Random Forest’s
performance in this case. So, the three models
predict yields very accurately (R? > 0.96), with
Random Forest and the ensemble (stacked)
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model performing marginally better than

XGBoost on this dataset.

From figure 6, it can be observed that the model
registers an RMSE of 9771.2884 hg/ha, an R2 of
0.9868, and an MAE of 3691.9446 hg/ha. The
extremely low RMSE reveals that the model’s
prediction error is minimal relative to the
variability in crop yields, meaning that the
average deviation from the actual value is only
about 9771.2884 hectograms per hectare. The
near-perfect R? score of 0.9868 shows that the
model explains nearly 98.68% of the variance in
crop yield, indicating that almost all influential
patterns and relationships in the data have been
captured. Furthermore, the low MAE of
3691.9446 hg/ha reinforces the model's
precision, as the average absolute difference
between predicted and actual yields is very
small, confirming the model’s consistent
performance across the dataset.
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4.2 Model Evaluation Result

Figure 7 compares the performance of three
models RandomForest, GradientBoos and the
stacked in predicting crop yield using four
metrics: R2, MAE, RMSE, and MSE.
GradientBoost performs best overall, with the
highest R2 value of (~0.918) and the lowest error
values across MAE (~44882), RMSE (~70398),
and MSE (~4.95e+09). RandomForest follows
closely behind in performance, while the overall
model  consistently shows the  weakest
performance in all metrics. This suggests that
GradientBoost is the most accurate and efficient
model among the three for the given dataset.

977129 Model Performance Metrics

3691.94

0.9868

RMSE

MAE Rz Score

Figure 6: Model Evaluation Result
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4.3 Model Comparison

Figure 7: Stacked Model Performance Comparison Result

4.4 Model Visualization on World Map

Figure 8: Result Visualization on the World Map

Figure 8 visually represents the results of the
crop yield prediction research overlaid onto a
world map using GeoPandas and Natural Earth
data. Each marker on the map corresponds to a
country for the crop yield data. The pop-up box
specifically highlights Egypt, showcasing both
the "Predicted Yield" (96640.52 tons/ha)
generated by the model and the "Actual Yield"
(96004.89 tons/ha). This direct comparison for
each country allows for a geographical
assessment of the model's performance in crop
yield prediction. In this research, the map serves
as a powerful tool for wvisualizing and
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communicating  the  model's  predictive
capabilities across different  geographical
regions. By spatially displaying both predicted
and actual yields, it allows stakeholders to
quickly grasp how well model performs on a
global scale. This type of visualization is crucial
for understanding the geographical strengths and
weaknesses of the crop yield prediction model
and for communicating findings effectively to a
broader audience, highlighting the spatial
dimension of the research outcomes.
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4.4 Result Visualization with SHAP
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Figure 9: Average Impact of Different Features

The graph on figure 9 visualizes the average
impact of different features on the model’s
predictions using SHAP values. The x-axis
represents the mean absolute SHAP value,
indicating each feature’s contribution to the
model's output. Potatoes, soybeans, wheat and
maize have the highest influence on crop yield
predictions. Other significant factors include the
pesticide-to-rainfall ratio, average temperature,
and specific geographic areas. This analysis
helps identify key variables driving agricultural
productivity forecasts.

Figure 10 is a SHAP summary plot, which
explains the impact of different features on the
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model's crop yield predictions. Each dot
represents a data point, with color indicating
feature values (blue for low, red for high). The
x-axis (SHAP value) shows whether the feature
increased or decreased the prediction. Features
like "Item_Potatoes" and "Item_Soybeans" have
the highest impact, while other factors like
"pesticide _rain_ ratio" and average _ rain _f all
_mm_per_year" also influence the model's
output. This visualization helps interpret how
different  variables contribute to yield
predictions.
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Figure 10: Explainable Al with SHAP

5. Conclusion

The impressive performance can be attributed to
the effective synergy achieved by stacking
XGBoostRegressor with
RandomForestRegressor. XGBoost is efficient in
capturing complex non-linear relationships
through gradient boosting. RandomForest offers
robustness and reduces overfitting by
aggregating multiple decision trees. In addition,
the success of the model is bolstered by feature
engineering: the creation of a rainfall-
temperature interaction term, a pesticide-to-
rainfall ratio, and a relative year feature enrich
the dataset, allowing the model to better
understand the factors influencing crop vyield.
Rigorous hyperparameter tuning also contributed
significantly to the model’s outstanding
performance.
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5.1 Summary of the Implications and Practical
Significance of the Results

The high-accuracy predictions produced by the
stacking regressor have profound practical
implications for agriculture. With reliable crop
yield forecasts, farmers and agricultural planners
can make informed decisions regarding planting
schedules, resource allocation, and supply chain
management. This level of precision helps
optimize the use of fertilizers, pesticides, water,
and labor, while also aiding in the development
of proactive food security strategies. Ultimately,
the model’s ability to minimize prediction error
and capture almost the entire yield variability
enhance decision-making across the agricultural
value chain and reducing operational risks.
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5.2 Conclusion

In summary, the stacking regressor, which
leverages the complementary strengths of
XGBoostRegressor and
RandomForestRegressor, has demonstrated
outstanding crop yield prediction performance.
The combination of advanced ensemble
techniques and strategic feature engineering has
resulted in a robust model that achieves high
accuracy and explains nearly all the variance in
the yield data. These findings underscore the
potential of this approach to revolutionize
agricultural  forecasting, leading to more
efficient planning, resource management, and
decision-making in the field.

5.3 Recommendations

Continuous monitoring and periodic retraining
with updated data will be essential to maintain
accuracy. Future research could explore
integrating additional data sources, refining the
feature engineering process, and experimenting
with alternative ensemble methods such as
incorporating LSTM networks, to further
improve predictions and adapt to dynamic
agricultural environments.

References

[1] Adejuwon, J. O., Tewogbade, K. E., Oguntoke,
0., & Ufoegbune, G. C. (2023). Comparing
farmers’ perception of climate effect on cocoa
yield with climate data in the Humid zone of
Nigeria. Heliyon, 9(12).

[2] Amos, K. G., & Okoro, E. O. (2025). Assessing
the dual threats of oil spills and climate change
on sustainable development in Ogbia, Bayelsa
State, Nigeria. Scientia Africana, 24(1), 125-
136.

[3] Annie , Mangshatabam, Raj kumar Pal, Anjusha
Sanjay Gawai, and Aman Sharma. 2023.
“Assessing the Impact of Climate Change on
Agricultural Production Using Crop Simulation
Model”. International Journal of Environment
and Climate Change 13 (7):538-50.
https://doi.org/10.9734/ijecc/2023/v13i71906.

[4] Ashiegbu, G., Man, N., Sharifuddin, J., Buda, M.,
& Adesope, O. (2024). Impacts of Climate
Variability on Agricultural Activities and
Availability of Agroforestry Practices in
Southeast Nigeria. Journal of Global
Innovations in Agricultural Sciences, 12, 613-
623.

[5]. Awais, M., Naqgvi, S. M. Z. A., Zhang, H., Li, L.,
Zhang, W., Awwad, F. A,, ... & Hu, J. (2023).
Al and machine learning for soil analysis: an

assessment of sustainable agricultural practices.
Bioresources and Bioprocessing, 10(1), 90.

[6] Falana, M. O., Eseyin, J. B., & Akinwande, O. T.
(2024). Transforming Nigerian agriculture:
The rise of smart greenhouse farming.
International Journal of Computer
Applications Technology and Research, 13(5),
Article 1003.
https://doi.org/10.7753/1JCATR1305.1003

[7] Garg, D., & Alam, M. (2023). An effective crop
recommendation method using machine
learning techniques. International journal of
advanced technology and  engineering
exploration, 10(102), 498.

[8] lkehi, M. E., Ifeanyieze, F. O., Onu, F. M.,
Ejiofor, T. E., & Nwankwo, C. U. (2022).
Assessing climate change mitigation and
adaptation  strategies and  agricultural
innovation systems in the Niger Delta.
GeoJournal, 88(1), 209-224.
https://doi.org/10.1007/s10708-022-10596-6

[9] Nnodi, J. T., Asagha, P. O., & Ugwu, c. (2011).
Quality of Experience Predictive Model for
Web Users. Global Scientific Journal, 9(10),
512-525.
https://www.globalscientificjournal.com/resear
chpaper/Quality of Experience_Predictive M
odel_for_Web_Users.pdf

[10] Nnodi, J. T., & Obasi, E. M. (2025). Leveraging
Artificial Intelligence for Detecting Insider
Threats in Corporate Networks. University of
Ibadan Journal of Science and Logics in ICT
Research, 13(1), 144-152.

[11] Nofiu, N. B., & Baharudin, S. A. (2025).
Assessment of Flood Vulnerability among
Smallholder Farmers in Niger State, Nigeria.
Kufa Journal for Agricultural Science, 17(1).

[12] Obasi E. C. M. and Nlerum P. A. "A Model for
the Detection and Prevention of Backdoor
Attacks using CNN with Federated Learning,"
Univ. Ibadan J. Sci. Logics ICT Res., vol. 10,
no. 1, pp. 9-21,.

[13] Obasi E.C.M. and Stow M. T.(2023) "A
Predictive Model for Uncertainty Analysis on
Big Data Using Bayesian CNN," Univ. Ibadan
J. Sci. Logics ICT Res., vol. 9, no. 1, pp. 52—
62,.

[14] Ologeh, I., & Adesina, F. (2022). Evaluation of
climate change as a major determinant of crop
yield improvement in Nigeria. IOP Conf. Ser.:
Earth Environ. Sci., 1077, 012002.

186 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627


https://doi.org/10.9734/ijecc/2023/v13i71906
https://doi.org/10.7753/IJCATR1305.1003
https://www.globalscientificjournal.com/researchpaper/Quality_of_Experience_Predictive_Model_for_Web_Users.pdf
https://www.globalscientificjournal.com/researchpaper/Quality_of_Experience_Predictive_Model_for_Web_Users.pdf
https://www.globalscientificjournal.com/researchpaper/Quality_of_Experience_Predictive_Model_for_Web_Users.pdf

[15] Okoro, E. O., & Ofordu, C. S. (2025). Rainfall

[16]

and Temperature Trends in Ogbia Local
Government Area Bayelsa State, Nigeria from
1993 To 2023. J. Appl. Sci. Environ. Manage.
29 (2) 451-458.

Timadi M. E. and Obasi E. C. M. (2025),
Integrating Zero-Trust Architecture with Deep
Learning Algorithm to Prevent Structured
Query Language Injection Attack in Cloud
Database,” Univ. Ibadan J. Sci. Logics ICT
Res., vol. 13, no. 1, pp. 52-62, 2025.

[17] Van Klompenburg, T., Kassahun, A., & Catal,

C. (2020). Crop vyield prediction using machine
learning: A systematic literature review.
Computers and electronics in agriculture, 177,
105709.

[18] Wakchaure, M., Patle, B. K., & Mahindrakar, A.

K. (2023). Application of Al techniques and
robotics in agriculture: A review. Artificial
Intelligence in the Life Sciences, 3, 100057.

[19] Week, D. A., & Wizor, C. H. (2020). Effects of

flood on food security, livelihood and socio-
economic characteristics in the flood-prone
areas of the core Niger Delta, Nigeria. Asian
Journal of Geographical Research, 3(1), 1-17.

[20] Zidan, F., & Febriyanti, D. E. (2024).

Optimizing agricultural yields with artificial
intelligence-based climate adaptation strategies.
IAIC Transactions on Sustainable Digital
Innovation (ITSDI), 5(2), 136-147.

187 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627



