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Abstract 

Bayelsa State, Nigeria, faces increasing climate change impacts, including erratic rainfall, flooding, and food 

insecurity. Limited access to localized climate data further complicates agricultural decision-making. This study 

applies machine learning to predict climate change effects on agricultural productivity, offering strategies for 

resilience and sustainable farming. Historical climate and agricultural data from sources like the Nigerian 

Meteorological Agency (NiMET) were analyzed. A stacking ensemble machine learning model was developed 

to predict crop yields, using a Random Forest Regressor and XGBoost Regressor as base models, with a Linear 

Regressor as the meta-learner. The model was optimized using 5-fold cross-validation to enhance predictive 

accuracy. Model validation using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 

demonstrated high accuracy, with an RMSE of 9,861.6786, an R² of 0.9866, and an MAE of 3,716.7995 hg/ha. 

These results indicate minimal deviation from actual crop yields, demonstrating a significant improvement over 

earlier models and confirming its reliability in predicting agricultural productivity. Findings highlight the 

potential of machine learning for informed decision-making among policymakers, farmers, and stakeholders. By 

leveraging AI-driven solutions, this study promotes agricultural resilience, sustainable development, and long-

term food security in Bayelsa State. 
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1.  Introduction 

Climate change has emerged as one of the most 

pressing global challenges, with far-reaching 

consequences for agriculture, particularly in 

vulnerable regions such as Bayelsa State, 

Nigeria. Rising temperatures, erratic rainfall 

patterns, and increasing incidences of extreme 

weather events threaten agricultural productivity, 

food security, and rural livelihoods. The loss of 

crops and farmland due to flooding reduces 

income and increases poverty among 

smallholder farmers, hindering progress towards 

Sustainable Development Goals related to 

poverty and hunger [11].  As a coastal state in 

the Niger Delta region, Bayelsa is uniquely 

susceptible to climate-induced disruptions, 

including flooding, soil degradation, and altered 

growing seasons, all of which significantly 

impact crop yields and livestock production. 

Given the region's heavy reliance on agriculture 

for economic sustenance, there is a growing 

need for predictive models that can assess and 

mitigate the effects of climate change on 

agricultural productivity. 

 

Recent advancements in artificial intelligence 

(AI) and machine learning (ML) present a 

promising avenue for addressing these 

challenges. Machine learning models can 

analyze vast amounts of climate and agricultural 

data to detect patterns, predict future impacts, 

and provide actionable insights for farmers, 

policymakers, and agricultural stakeholders. By 

leveraging historical climate data, soil 

characteristics, crop yield records, and 

meteorological forecasts, ML-based predictive 

models can help optimize farming strategies, 

improve resilience, and enhance decision-

making processes in the agricultural sector. 
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This study aims to develop and apply machine 

learning techniques to predict the impacts of 

climate change on agricultural productivity in 

Bayelsa State. By integrating climate variables, 

environmental factors, and agricultural data, the 

study seeks to generate reliable forecasts that can 

inform adaptive strategies for sustainable 

farming. The findings from this research will 

contribute to mitigating the adverse effects of 

climate change on agriculture and support 

evidence-based policymaking and resource 

allocation in the region. 

 

1.1 Climate Change and Its Impact on 

Agriculture 

 

Climate change has significant impacts on 

agriculture, both in terms of crop production and 

livestock management, because rising 

temperatures, changing rainfall patterns, and 

extreme weather events such as droughts and 

floods can reduce crop yields [3]. It has also 

significantly affected global agricultural 

productivity, with regions like Africa being 

particularly vulnerable due to their dependence 

on rain-fed farming. Studies have shown that 

rising temperatures, erratic rainfall, flooding, 

and increased pest infestations negatively impact 

crop yields and food security. In Nigeria, 

agricultural productivity is highly sensitive to 

climate variability, leading to reduced crop 

output and economic instability [1]. Bayelsa 

State, being a coastal region, faces additional 

challenges such as excessive flooding and soil 

salinization, which further threaten agricultural 

sustainability. 

 

1.2 Applications of AI and ML in Agricultural 

Productivity Prediction 

 

Artificial Intelligence (AI) and ML are 

increasingly being used to assess and enhance 

agricultural productivity. Studies have 

demonstrated that predictive models can analyze 

climate variables, soil conditions, and crop 

yields to provide insights into potential 

productivity fluctuations. In Nigeria, AI-driven 

solutions have been applied in precision 

agriculture, irrigation management, and crop 

disease detection, yet there remains limited 

research specifically focused on climate-induced 

productivity forecasting in Bayelsa State. 

 

 

 

1.2.1 Using Machine Learning in Climate 

Change Prediction 

 

Machine learning (ML) has emerged as a 

powerful tool for analyzing large datasets and 

making accurate climate predictions. Various 

ML algorithms, including decision trees, 

artificial neural networks (ANNs), and support 

vector machines (SVMs), have been successfully 

applied in climate studies [6]. These models 

utilize historical climate and agricultural data to 

forecast future trends, enabling better planning 

and adaptation strategies. For example, Random 

Forest and Long Short-Term Memory (LSTM) 

models have been used to predict rainfall and 

temperature variations, helping farmers adjust 

their planting schedules. 

 

1.2.2 Challenges in Implementing AI-Driven 

Climate Solutions in Nigeria 

 

Despite the potential benefits of ML in 

agricultural forecasting, several challenges exist. 

Data scarcity and poor quality remain major 

obstacles, as many developing regions lack 

comprehensive climate and agricultural records. 

Additionally, the adoption of AI-driven solutions 

among farmers is hindered by low digital 

literacy, inadequate infrastructure, and financial 

constraints. Addressing these challenges requires 

targeted policies, investment in data collection, 

and training programs to enhance AI adoption in 

the agricultural sector. 

 

1.3 Research Gaps and New Approach Used  

 

While existing studies highlight the potential of 

ML in climate change adaptation, limited 

research focuses on Bayelsa State and its unique 

agricultural challenges. Most AI-driven 

agricultural studies in Nigeria have concentrated 

on large-scale farming, with little emphasis on 

smallholder farmers who are most affected by 

climate variability. This study aims to bridge this 

gap by developing an ML-based predictive 

model tailored to Bayelsa’s environmental 

conditions, providing localized insights for 

farmers and policymakers to enhance 

agricultural resilience. The literature review 

underscores the significance of AI and ML in 

climate change prediction and agricultural 

productivity assessment. However, the limited 

application of these technologies in Bayelsa 

State presents an opportunity for research and 

innovation. Therefore, this study contributes by 

developing a robust ML-based model that offers 



175   UIJSLICTR Vol. 14  No. 1 June. 2025  ISSN: 2714-3627 

 

accurate, data-driven insights to mitigate climate 

change’s effects on agriculture in the region. 

 

2.    Related Works 

Adejuwon et al. [1], based on Climate 

Variability and Agricultural Productivity in 

Nigeria examined the effects of climate 

variability on Nigeria’s agricultural sector using 

statistical regression models to analyze historical 

temperature and rainfall data. The study 

advocated for climate adaptation strategies, such 

as improved irrigation and resilient crop 

varieties. Employing methodologies such as the 

chi-square test of independence, standardized 

anomaly index, multiple regression, z-

distribution, and descriptive statistics, the 

research investigates the socioeconomic and 

climate influences on cocoa yield using data 

from 1999 to 2019. The findings underscore the 

significant effect of climate on cocoa yield, 

particularly in 1999 and 2000, with farmers 

attributing positive influences on factors like 

temperature, humidity, rainfall, sunshine, and 

wind speed but the data set was not large enough 

for accurate prediction.  

 

Ashiegbu et al. [4] carried out a study that 

focused on the intersection of climate variability 

and agroforestry. The paper presents valuable 

insights into the impacts of climate variability on 

agricultural practices, but the study is limited to 

six local government areas in Ebonyi State, 

Nigeria which did not capture the broader 

regional or national trends in climate variability 

and agricultural practices, potentially limiting 

the generalizability of the findings to other areas. 

A larger and more diverse sample could yield 

more comprehensive results. The study also 

relied on self-reported data from farmers 

regarding their perceptions of climate variability 

and agricultural practices. This method can 

introduce biases, as farmers may overestimate or 

underestimate their experiences based on 

personal beliefs or external influences  

 

Ologeh and Adesina [14] in their study finds a 

positive and significant relationship between the 

summed rainfalls of June, July, and August and 

annual maize yields over a thirty-five-year 

period. This indicates that specific seasonal 

rainfall is critical for maize production, which 

can inform agricultural practices and policies.  

Although the study emphasizes seasonal rainfall, 

it did not adequately address the impact of other 

climatic factors, such as temperature fluctuations 

and extreme weather events, which can also 

significantly affect crop yields. The 

interpretation of the correlation results may also 

be subject to bias, as the study primarily focuses 

on specific rainfall months. This selective focus 

might overlook other important climatic 

variables that could provide a more 

comprehensive understanding of crop yield 

dynamics. 

 

Another research by Garg and Alam [7] 

highlights the significance of machine learning 

techniques in developing effective crop 

recommendation systems. These systems 

leverage various algorithms including Random 

Forest, Naïve Bayes, Support Vector Machines, 

and K-Nearest Neighbors. These methods 

analyze diverse data inputs such as soil 

properties and weather conditions. They 

analyzed soil and climatic conditions, ultimately 

guiding farmers in selecting the most suitable 

crops for their specific environments. But while 

the machine learning approach offers promising 

advancements in crop recommendations, 

challenges such as data quality and the need for 

continuous updates remain critical for 

maintaining system efficacy. 

 

Week and Wizor [19] observed that the impact 

of flooding on agriculture in the Niger Delta is 

multifaceted, affecting food security, soil quality, 

and the livelihoods of smallholder farmers. They 

asserted that Flooding in the Niger Delta leads to 

acute food insecurity, with 75.3% of respondents 

in the study reporting scarcity of basic food post-

flooding. The washing away of farmlands results 

in chronic food insecurity, affecting the 

livelihood of residents.  

 

Okoro and Ofordu [15] also observed that the 

loss of crops and farmland due to climate change 

and flooding reduces income and increases 

poverty among smallholder farmers, hindering 

progress towards Sustainable Development 

Goals related to poverty and hunger. Amos and 

Okoro [2] reveals the rising temperatures, erratic 

rainfall, and frequent oil spills in Ogbia LGA, 

Bayelsa State, are reducing crop yields and fish 

stocks, threatening food security. It recommends 

climate-resilient farming, improved flood and 

fishery management, and increased community 

awareness to sustain livelihoods. 

 

Awais et al. [5] highlighted the limitations of 

conventional statistical methods in providing 

timely and accurate soil texture and soil–water 

content (SWC) analysis, particularly in the face 
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of varying climate and geospatial factors. The 

study explores how artificial intelligence (AI), 

machine learning (ML), and deep learning (DL) 

techniques can offer more robust, accurate, and 

real-time soil analysis for improved agricultural 

decision-making. The paper discusses the use of 

predictive models like random forests, support 

vector machines, and neural networks, alongside 

geostatistical techniques such as kriging and co-

kriging, to enhance spatial data representation. It 

also evaluates challenges like false positives in 

SWC detection and promotes the integration of 

AI-driven systems for smart irrigation and global 

SWC database development. But there was no 

model development and training. 

 

Nnodi and Obasi [9] presented a machine 

learning-based approach that significantly 

improves the detection of insider threats in 

corporate networks. By analyzing user behaviors 

and access patterns, the system can classify 

activities as normal or abnormal, providing early 

warnings for potential breaches. But the model 

considered only features relating to insider 

attacks on corporate networks. 

 

Zidan and Febriyanti [20] developed an ML 

model to predict maize and rice yields based on 

climate variables. They compared different 

algorithms, including XGBoost, Decision Trees, 

and ANN, using agricultural datasets. But their 

model did not include integration of real-time 

weather monitoring data with the machine 

learning models to enhance prediction accuracy. 

 

Nnodi et al. [9] addresses the lack of user-centric 

systems for web QoE prediction. A predictive 

model was developed to measure and monitor 

web user experiences. The model aids in 

identifying network bottlenecks and supports 

real-time user decisions. But the study used only 

random forest algorithm for training and 

validation. 

 

Obasi and Nlerum [12] developed a model for 

the Detection and Prevention of Backdoor 

Attacks using CNN with Federated Learning. 

The   model   achieved   an   accuracy   of 

99.99% for training and 99.98 for validation. 

 

 

 

 

 

 

Timadi and Obasi [16] worked on Integrating 

Zero-Trust Architecture with Deep Learning 

Algorithm to Prevent Structured Query 

Language Injection Attack in Cloud Database. 

Their proposed system utilizes a Feed-Forward 

Neural Network (FNN) to analyze database 

queries and detect potential SQL injection 

attacks. The model exhibits a precision score 

approximating 100% accuracy in the 

classification of queries deemed normal, while 

achieving a 94% rate of correct classification for 

queries indicative of SQL injection attacks.  

 

Obasi and Stow [13] developed a Predictive 

Model for Uncertainty Analysis on Big Data 

Using Bayesian Convolutional Neural Network 

(CNN). The Bayesian CNN model uses a 

probability score in predicting uncertainties in 

big data. The result of Bayesian model shows a 

better result of 99.9% for both training and 

testing 

 

3. Methodology 

This research employed a supervised machine-

learning predictive modeling approach.  It 

combined quantitative approach, predictive 

design and computational experiment / ensemble 

learning to predict crop yield. The research 

begins by importing a dataset from a CSV file 

(yield_df.csv), which contains various crop yield 

and environmental features. Unnecessary 

columns were dropped to clean the dataset. New 

features were engineered to enhance the 

predictive power of the model. Data splitting 

was done using an 80/20 train-test split for 

model training.  

 

By combining XGBRegressor, 

RandomForestRegressor, and a Linear 

Regression meta-learner with 5-fold cross-

validation the dataset was trained.  

GridSearchCV  was employed to optimize 

model parameters to achieve better performance. 

The model was evaluated by assessing the Root 

Mean Square Error (RMSE), Coefficient of 

Determination (R2), and Mean Absolute Error 

(MAE) values, while scatter plots were used to 

validate the predictions  
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3.1 Model Architecture 

  

  

Figure 1: Proposed Model Architecture 

 

Figure 1 shows the different components of the 

architecture and how they interact to accurately 

predict crop yields. Model architecture is broken 

down into distinct modules as follows: 

 

Data Acquisition: Datasets comprising climate 

data and agricultural data were obtained from 

NiMET and FOA respectively with a total 

number of 28242 samples with a total of 113 

features before data cleaning.  After data 

cleaning, the number of rows was reduced to 

24,241 with a total of 7 features.    

                                                               

The dataset consists of the following features: 

a. Area: location under study. 

b. Item: Type of crop. 

c. Year: Year of data collection. 

d. hg/ha_yield: Crop yield (target variable). 

e. average_rain_fall_mm_per_year: Average 

yearly rainfall. 

f. pesticides_tonnes: Pesticide usage in tonnes. 

g. avg_temp: Average yearly temperature. 

 

The research began by importing the dataset 

from a CSV file (yield_df.csv), which contains 

various crop yield and environmental features. 

An unnecessary columns were dropped to clean 

the dataset. 

 

Data Preprocessing: In this module, the data 

was cleaned to drop the unnecessary features and 

remove outliers that may introduce noise in the 

proposed model 

Feature Engineering: New features are 

engineered to enhance the predictive power of 

the model. These features include: 

a. Relative Year (Year_diff): The number of 

years since the first observation, capturing 

temporal trends. 

b. Interaction Term (rain_temp): The product of 

average rainfall and temperature, reflecting 

potential synergistic effects on crop growth. 

c. Pesticide-Rainfall Ratio: A ratio of pesticides 

applied to the rainfall received, which may 

indicate agricultural practices or 

environmental stress. 

 

Categorical Encoding: Categorical variables 

such as "Area" and "Item" are transformed using 

one-hot encoding to convert them into a 

numerical format suitable for machine learning 

algorithms. 

 

Train-Test Split: The dataset is partitioned into 

training and testing sets using an 80/20 split after 

the one-hot encoding technique. This ensures 

that the model is trained on the majority of the 

data and evaluated on a separate subset to assess 

its generalization capability. 

 

Stacking Ensemble Model: Two powerful tree-

based regressors are employed as the base 

models, which include the XGBRegressor (A 

gradient boosting model known for its strong 

predictive performance) and 

RandomForestRegressor (An ensemble of 
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decision trees that averages multiple predictions 

to reduce variance). A Linear Regression model 

is used as the meta-learner, which takes the 

predictions from the base models and learns to 

combine them optimally. The stacking ensemble 

is configured using 5-fold cross-validation to 

combine the strengths of the base learners, 

enhancing the overall predictive accuracy. 

 

Grid Search Optimization: During this stage, 

hyperparameter tuning was performed using 

GridSearchCV to optimize key parameters. For 

XGBRegressor, the number of estimators and 

learning rate were tuned while the number of 

estimators and maximum depth were tuned for 

RandomForestvanRegressor. This grid search 

was conducted using a 5-fold cross-validation 

strategy, with the R² score as the optimization 

metric. The best combination of 

hyperparameters is selected to improve model 

performance and generalization. 

 

Model Evaluation and Visualization: The 

optimized stacking model is evaluated on the test 

set using standard regression metrics 

comprising: 

a. RMSE (Root Mean Squared Error) which 

measures the typical magnitude of prediction 

errors. 

b. R² (Coefficient of Determination) which 

indicates the proportion of variance in crop 

yield that is captured by the model and  

c. MAE (Mean Absolute Error) which reflects 

the average absolute error in predictions. 

 

To visualize the result, a scatter plot of actual 

versus predicted crop yields was generated to 

visually assess the model’s performance and 

ensure that predictions align closely with the 

ground truth. This multi-stage methodology 

from data preprocessing and feature engineering 

to model stacking, hyperparameter tuning, and. 

outlier removal 

 

4. Results and Discussion 

  

4.1 Result of Key features’ Distribution before 

Outlier Removal 

The histograms in figure 2 provide an overview 

of key features in the crop yield dataset before 

outlier treatment, including 'Year,' 'hg/ha_yield' 

(crop yield), 'average_rain_fall_mm_per_year,' 

'pesticides_tonnes,' and 'avg_temp.' The 'Year' 

distribution appears multimodal, indicating data 

collection was focused on specific periods rather 

than being uniform. This temporal grouping has 

implications for structuring validation and 

testing strategies, particularly in time-series 

modeling. The 'hg/ha_yield' histogram is heavily 

right skewed, with most values clustering at 

lower yields and a long tail extending toward 

high yields.  

 

This non-normal distribution suggests that 

models robust to skewness or transformations 

was necessary, and error metrics like RMSE 

should be considered carefully. Rainfall and 

pesticides also exhibit right-skewed 

distributions. Rainfall shows a main peak at 

lower values but extends into higher regions, 

indicating diverse climatic conditions in the 

dataset. This range is essential for models 

aiming to generalize across different agricultural 

zones.  

 

Pesticide usage is similarly skewed, with most 

instances showing low usage and a few cases of 

high application, highlighting potential outliers 

that required attention. Temperature, in contrast, 

appears closer to multimodal distribution, 

suggesting the dataset includes observations 

from distinct climatic zones. These patterns 

inform feature engineering (e.g., transformations 

for skewed variables, interaction terms between 

climate features), model selection (favoring 

ensemble or deep learning models over linear 

models), and data preprocessing (outlier 

handling and scaling). 

 

4.1.1 Result of Crop Yield Distribution After 

Outlier Treatment 

 

A scatter plot of actual versus predicted crop 

yields is generated to visually assess the model’s 

performance and ensure that predictions align 

closely with the ground truth. This multi-stage 

methodology—from data preprocessing and 

feature engineering to model stacking, 

hyperparameter tuning, and comprehensive 

evaluation—forms a robust framework for 

accurate crop yield prediction using advanced 

machine learning techniques. 

 

 

 

. 
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Figure 2: Distribution of Key Features before Outlier Removal 
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Figure 3: Distribution of Crop Yield after Outlier Treatment 

 

Figure 3 provides a visual summary of the 

frequency of crop yield values in the dataset 

after addressing outliers. The x-axis represents 

crop yield values (hectograms per hectare), 

while the y-axis shows their frequency. The 

distribution reveals a concentration of yields in 

the lower ranges, likely below 100,000 hg/ha, 

suggesting the most common yield levels. The 

spread extends up to 500,000 hg/ha, indicating 

variability, with a long right tail pointing to 

occasional high yields. This right-skewed nature 

is common in real-world agricultural data, 

highlighting the need for careful consideration in 

model selection. While linear models may 

require transformations to handle skewness, tree-

based models like RandomForest and XGBoost 

are generally more robust to such distributions. 

 

The explicit mention of "After Outlier 

Treatment" suggests that extreme yield values 

have been addressed, leading to a more stable 

and representative dataset. Handling outliers 

helps improve model robustness by reducing the 

influence of extreme values, which in turn 

enhances generalization to unseen data. This 

histogram plays a crucial role in exploratory data 

analysis, guiding the selection of appropriate 

models based on yield distribution 

characteristics and setting realistic expectations 

regarding prediction performance. Additionally, 

it aids model evaluation by providing a 

benchmark for assessing how well predictions 

align with the actual data distribution, and 

selecting appropriate evaluation metrics, such as 

MAE alongside RMSE, ensures models are 

assessed to account for skewness and variability 

in crop yields. 

 

This scatter plot on figure 4 visually evaluates 

the stacking regressor's performance in 

predicting crop yield. The x-axis shows actual 

yields, while the y-axis displays predicted yields, 

with each point representing a test data instance. 

The red dashed “Ideal fit” line signifies perfect 

predictions. The brown scatter points, 

representing the model's “Stacked Predictions," 

cluster closely around this ideal line. This tight 

clustering visually demonstrates that the stacking 

regressor is effectively forecasting crop yields 

with good accuracy, as predicted values are 

generally close to the actual observed yields 

across the test dataset. In terms of crop yield 

prediction research, this plot provides strong 

visual evidence of the model's success. It 

confirms the effectiveness of the stacking 

regressor in capturing complex relationships 

within the data and generating reliable yield 

forecasts. While the scatter is not perfectly 

aligned, indicating some prediction error, the 

overall closeness to the ideal fit line suggests a 

valuable tool for agricultural applications. 
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Figure 4: Stacking Regressor Prediction Result 

 

 

                                                                                                

Figure 5: Prediction Result of the Ensembled Model 

 

Figure 5 shows how closely each model’s yield 

predictions match the true (actual) yields, with 

the ideal y = x line drawn as a reference. This set 

of scatter plots compares actual vs. predicted 

values for three models: XGBoost, Random 

Forest, and a Stacked Model. Each dot 

represents a data point, where X-axis = actual 

yield values and Y-axis = predicted yield values. 

For XGBoost predictions on the left panel, each 

blue dot is one field’s actual vs. predicted yield. 

The scatter plot clusters tightly around the 

diagonal, but with a bit more spread at higher 

yields. Coefficient of determination (R²) = 

0.962, meaning that about 96.2% of the variance 

in actual yields is explained by XGBoost’s 

predictions. Random Forest Predictions in the 

middle panel, orange dots show an even tighter 

cloud around the diagonal than XGBoost. R² = 

0.985, indicating very strong agreement (that the 

model explains 98.5% of variance), and thus it 

has slightly better accuracy than XGBoost. For 

the Stacked Model Predictions on the right 

panel, green points combine (or “stack”) the 

strengths of both models. It also achieves R² = 

0.985, matching the Random Forest’s 

performance in this case. So, the three models 

predict yields very accurately (R² > 0.96), with 

Random Forest and the ensemble (stacked) 
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model performing marginally better than 

XGBoost on this dataset. 

 

From figure 6, it can be observed that the model 

registers an RMSE of 9771.2884 hg/ha, an R² of 

0.9868, and an MAE of 3691.9446 hg/ha. The 

extremely low RMSE reveals that the model’s 

prediction error is minimal relative to the 

variability in crop yields, meaning that the 

average deviation from the actual value is only 

about 9771.2884 hectograms per hectare.  The 

near-perfect R² score of 0.9868 shows that the 

model explains nearly 98.68% of the variance in 

crop yield, indicating that almost all influential 

patterns and relationships in the data have been 

captured. Furthermore, the low MAE of 

3691.9446 hg/ha reinforces the model's 

precision, as the average absolute difference 

between predicted and actual yields is very 

small, confirming the model’s consistent 

performance across the dataset. 

 

 

4.2 Model Evaluation Result 

Figure 7 compares the performance of three 

models RandomForest, GradientBoos and the 

stacked in predicting crop yield using four 

metrics: R², MAE, RMSE, and MSE. 

GradientBoost performs best overall, with the 

highest R² value of (~0.918) and the lowest error 

values across MAE (~44882), RMSE (~70398), 

and MSE (~4.95e+09). RandomForest follows 

closely behind in performance, while the overall 

model consistently shows the weakest 

performance in all metrics. This suggests that 

GradientBoost is the most accurate and efficient 

model among the three for the given dataset. 

 

 

 

 

 

 

 

 

 

  

Figure 6: Model Evaluation Result 
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 4.3 Model Comparison 

  

Figure 7: Stacked Model Performance Comparison Result 

  

4.4 Model Visualization on World Map 

 

  

Figure 8: Result Visualization on the World Map 

 

Figure 8 visually represents the results of the 

crop yield prediction research overlaid onto a 

world map using GeoPandas and Natural Earth 

data. Each marker on the map corresponds to a 

country for the crop yield data. The pop-up box 

specifically highlights Egypt, showcasing both 

the "Predicted Yield" (96640.52 tons/ha) 

generated by the model and the "Actual Yield" 

(96004.89 tons/ha). This direct comparison for 

each country allows for a geographical 

assessment of the model's performance in crop 

yield prediction. In this research, the map serves 

as a powerful tool for visualizing and 

communicating the model's predictive 

capabilities across different geographical 

regions. By spatially displaying both predicted 

and actual yields, it allows stakeholders to 

quickly grasp how well model performs on a 

global scale. This type of visualization is crucial 

for understanding the geographical strengths and 

weaknesses of the crop yield prediction model 

and for communicating findings effectively to a 

broader audience, highlighting the spatial 

dimension of the research outcomes. 
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4.4 Result Visualization with SHAP 

 

 

 

  

Figure 9: Average Impact of Different Features 

 

The graph on figure 9 visualizes the average 

impact of different features on the model’s 

predictions using SHAP values. The x-axis 

represents the mean absolute SHAP value, 

indicating each feature’s contribution to the 

model's output. Potatoes, soybeans, wheat and 

maize have the highest influence on crop yield 

predictions. Other significant factors include the 

pesticide-to-rainfall ratio, average temperature, 

and specific geographic areas. This analysis 

helps identify key variables driving agricultural 

productivity forecasts.   

 

Figure 10 is a SHAP summary plot, which 

explains the impact of different features on the 

model's crop yield predictions. Each dot 

represents a data point, with color indicating 

feature values (blue for low, red for high). The 

x-axis (SHAP value) shows whether the feature 

increased or decreased the prediction. Features 

like "Item_Potatoes" and "Item_Soybeans" have 

the highest impact, while other factors like 

"pesticide _rain_ ratio" and average _ rain _f all 

_mm_per_year" also influence the model's 

output. This visualization helps interpret how 

different variables contribute to yield 

predictions. 
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Figure 10: Explainable AI with SHAP 

 

5. Conclusion 

The impressive performance can be attributed to 

the effective synergy achieved by stacking 

XGBoostRegressor with 

RandomForestRegressor. XGBoost is efficient in 

capturing complex non-linear relationships 

through gradient boosting. RandomForest offers 

robustness and reduces overfitting by 

aggregating multiple decision trees. In addition, 

the success of the model is bolstered by feature 

engineering: the creation of a rainfall-

temperature interaction term, a pesticide-to-

rainfall ratio, and a relative year feature enrich 

the dataset, allowing the model to better 

understand the factors influencing crop yield. 

Rigorous hyperparameter tuning also contributed 

significantly to the model’s outstanding 

performance. 

 

5.1 Summary of the Implications and Practical 

Significance of the Results 

 

The high-accuracy predictions produced by the 

stacking regressor have profound practical 

implications for agriculture. With reliable crop 

yield forecasts, farmers and agricultural planners 

can make informed decisions regarding planting 

schedules, resource allocation, and supply chain 

management. This level of precision helps 

optimize the use of fertilizers, pesticides, water, 

and labor, while also aiding in the development 

of proactive food security strategies. Ultimately, 

the model’s ability to minimize prediction error 

and capture almost the entire yield variability 

enhance decision-making across the agricultural 

value chain and reducing operational risks. 
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5.2 Conclusion 

In summary, the stacking regressor, which 

leverages the complementary strengths of 

XGBoostRegressor and 

RandomForestRegressor, has demonstrated 

outstanding crop yield prediction performance. 

The combination of advanced ensemble 

techniques and strategic feature engineering has 

resulted in a robust model that achieves high 

accuracy and explains nearly all the variance in 

the yield data. These findings underscore the 

potential of this approach to revolutionize 

agricultural forecasting, leading to more 

efficient planning, resource management, and 

decision-making in the field. 

 

5.3 Recommendations 

Continuous monitoring and periodic retraining 

with updated data will be essential to maintain 

accuracy. Future research could explore 

integrating additional data sources, refining the 

feature engineering process, and experimenting 

with alternative ensemble methods such as 

incorporating LSTM networks, to further 

improve predictions and adapt to dynamic 

agricultural environments. 
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