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Abstract 

The adoption of Artificial Intelligence (AI) in diverse fields and the proliferation of interconnected devices have 

led to the emergence of highly sophisticated cyberattacks today. This new reality has compelled organisations to 

align their security policies by adopting cybersecurity frameworks. These frameworks provide organisations 

with models and methods for effectively managing digital security risks by promptly detecting and mitigating 

cyberattacks. The Cyber Kill Chain (CKC) decomposes cyberattacks into 7 phases, which cyber defenders can 

rely on when developing threat-informed strategies to mitigate cyberattacks. This paper presents a 

comprehensive overview of the CKC, highlighting the role Artificial Intelligence plays across each phase in 

terms of offensive and defensive cybersecurity operations. A comparative analysis of 3 cybersecurity 

frameworks, with justifications for each, was also examined. Drawing on real-world case studies and recent 

literature, this study further highlights current challenges with the fusion of AI into cybersecurity operations, 

ranging from data privacy, adversarial attacks, and AI explainability. The review concludes by advocating for 

the adaptation of dynamic, AI-driven modelling frameworks that better align with the rapidly evolving cyber 

threat landscape. 

 

Keywords: Cybersecurity; Artificial Intelligence; Cyber Kill Chain; Threat Modelling; AI-Based Threat 
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1.  Introduction 

The digital age has brought about a 

proliferation of interconnected systems, leading 

to the surge of data-driven operations across 

diverse fields. This reality has further led to the 

increased frequency and complexity of 

cyberattacks. Today, adversaries or cyber 

attackers are equipped with more sophisticated 

tools and approaches, including social 

engineering, zero-day, and multi-vector attacks, 

which traditional security tools struggle to 

detect and contain in real-time. The evolving 

threat landscape, therefore, requires that 

smarter and more adaptive defense strategies be 

implemented [1]. The knowledge discovery 

process involves various selection steps which 

help in the efficient extraction of useful data 

from databases.  

 

Organisations and cybersecurity teams are 

leveraging AI and Machine Learning (ML) 

tools to develop adaptive and scalable 

cybersecurity strategies, systems and 

architectures, given that these technologies are 

capable of scaling cybersecurity operations, 

especially in the areas of predictive analytics, 

anomaly detection, and automated threat 

response [2]. 

 

Cybersecurity frameworks provide cyber 

operators with methodologies and models to 

detect and mitigate cyber threats. Lockheed 

Martin developed the Cyber Kill Chain (CKC) 

framework in 2011 to equip organisations with 

a structured framework to understand and 

thwart cyberattacks [3]. The CKC improves 

situational awareness and helps to actively 

facilitate the development of defense strategies 

against future cyberattacks. 
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This paper explores the influence of AI across 

both the offensive and defensive dimensions of 

the CKC framework, explores how the 

framework performs in comparison to 

alternative frameworks like the UKC, MITRE 

ATT&CK, and Diamond Model, evaluates the 

implications of integrating AI into 

cybersecurity operations, and highlights the 

emerging challenges and opportunities it 

presents for future cyber defense endeavours. 

 

2. Literature Review 

The continuous integration of AI into the 

cybersecurity landscape has significantly 

contributed to the growing sophistication of 

cyberattacks targeted at states, organisations, 

and individuals today. Hence, the foundational 

and traditional security mechanisms are 

increasingly being outpaced by attackers who 

are smarter and now better equipped to 

leverage emerging technologies and system 

vulnerabilities. 

 

As digital infrastructures become increasingly 

interconnected and attackers adopt 

sophisticated Tactics, Techniques, and 

Procedures (TTPs) to carry out malicious 

activities, security experts appear to be 

accelerating the integration of AI into 

cybersecurity operations. The role of AI as a 

double-edged sword in cyber operations is now 

a widely discussed topic. While it strengthens 

cyber defenses through anomaly identification, 

intelligent threat detection, and automated 

response, it also serves as an important leverage 

for cyber attackers who utilise AI tools for 

automating cyberattacks, exploiting system 

vulnerabilities at scale, and evading detection 

[1]. 

 

The performance of cybersecurity frameworks 

has been enhanced by the introduction of AI 

during their adoption by organisations. This is 

equally true of the CKC framework, which has 

evolved, resulting in an enhanced level of 

dynamic intelligence, automation, adaptability, 

and responsiveness. However, this integration 

has also equipped cyber attackers with tools to 

carry out malicious activities across the kill 

chain in a more complex way. 

 

Several studies have been conducted to 

examine the effectiveness of the CKC 

framework, given the evolution of threats and 

advancements in technology. According to 

Kazimierczak et al., [4], the integration of AI 

within the CKC plays to the advantage of both 

cyber defenders and attackers as players on 

both sides of the divide can automate and 

optimise tasks at each phase. The findings of 

this study further underscore the continued 

relevance of the CKC framework while 

highlighting its limitations in modelling multi-

vector attacks. 

 

Caltagirone et al., [5] identified the lack of 

relational depth needed for attacker attribution 

as a major challenge with the adoption of the 

CKC. The study suggested that organisations 

should consider integrating the Diamond Model 

within the CKC framework to develop a more 

dynamic and robust threat intelligence system. 

 

Furthermore, the framework performs poorly 

when faced with sophisticated cloud-based 

attacks and insider threats, largely because of 

its linearity and tendency to be biased towards 

external threats [6]. To tackle this issue, it was 

also recommended that the CKC framework be 

augmented with iterative loops and behavioural 

indicators that more closely reflect real-world 

attack patterns. 

 
2.1 Overview of Artificial Intelligence 

Artificial Intelligence, or simply AI, is the 

theory and application of computer systems that 

perform tasks that would normally require 

human intelligence and interference [7]. These 

tasks include learning, reasoning, decision-

making, and problem-solving, and are carried 

out by analysing data to identify patterns. 

According to Sharma et al., [8], ML involves 

making algorithms learn by acquiring 

knowledge from previous experiences and is 

one branch of AI that has advanced greatly over 

the last 30 years. Deep Learning, Computer 

Vision, Natural Language Processing (NLP), 

and Generative AI (GenAI), among other fields, 

have also evolved significantly in recent years.  

 

2.2. Types of Learning 

Depending on the kind of project at hand, the 

following are types of learning one can deploy 

for a Machine Learning project: 

1. Supervised Learning: Involves training 

an algorithm with a labelled dataset. The 

goal here is to predict the labels of 

unseen data – to generalise accurately. 
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2. Unsupervised Learning: It is used when 

the project involves drawing inferences 

from unlabelled datasets. It is best used 

for pattern recognition and predictive 

modelling. 

3. Reinforcement Learning: This type of 

learning is used in robotics, whereby the 

reward and punishment approach is 

adopted in training AI agents. 

2.2 AI in Cybersecurity: A Foundational 

Perspective 

Predictive analytics helps cybersecurity teams 

across multiple organisations to anticipate 

threats using known behavioural patterns of an 

attacker; hence, they get to approach cyber 

threats from a position of strength (Sarker et al., 

[9]). AI has become a critical enabler within the 

cybersecurity landscape, leading to the 

development of improved cybersecurity 

strategies in behavioural analytics and anomaly 

detection irrespective of the size of the datasets 

involved (Buczak and Guven [10]). The ability 

to detect known threats and zero-day threats 

will help organisations drastically reduce threat 

response time and mitigate potential attacks  

[17]. 

 

Artificial Intelligence supports the automation 

of cybersecurity operations through Security 

Orchestration, Automation, and Response 

(SOAR) systems. According to Mohamed [11], 

these systems are known to streamline 

cybersecurity tasks such as alert triaging, log 

analysis, and incident response. These 

advancements greatly ease the burdens on 

human analysts and greatly enhance the 

scalability of defense strategies. In terms of 

identity and access management, AI systems 

are used to power adaptive authentication 

systems, which make use of behavioural 

biometrics to provide a real-time response to 

suspicious login activities across security 

infrastructures [12]. 

 

3. Overview of Cybersecurity Frameworks 

A cybersecurity framework is a model, a 

structured set of documents and methodologies 

that assist an organisation in managing digital 

security risks, identifying breach attempts, and 

mitigating cyber threats promptly. These 

frameworks allow cybersecurity teams to 

integrate policies, technological structures and 

controls into organisational cybersecurity 

strategies that align with operational guidance 

on emerging threat landscapes [13, 14]. In 

addition, cybersecurity frameworks assist in the 

critical task of creating a uniform standard for 

cybersecurity procedures across various sectors 

and industries. As compliance regulations 

become more stringent, cybersecurity 

frameworks support compliance governance, 

threat modelling, incident response and even 

prevention approaches. In a growing number of 

jurisdictions where organisations and states 

increase efforts to secure digital infrastructure, 

these frameworks aid in the organisation of 

defense strategies to support situational 

understanding by providing a systematic, 

consistent, reproducible, and replicable 

approach. 

 

Cybersecurity frameworks can be categorised 

into two: 

1. Threat Modelling and Operational Defense 

Frameworks: These frameworks attempt to 

describe, categorise, and defend an 

adversary activity. Examples are the 

Unified Kill Chain (UKC), MITRE 

ATT&CK, Diamond Model, and CKC. 

2. Governance and Risk Management 

Frameworks: These are focused on system 

principles guiding the creation of an 

Information Security Management System 

(ISMS). They help integrate cybersecurity 

policies with the organisation’s goals. 

Unlike the threat modelling frameworks, 

they focus on policy development, 

enterprise-wide risk management, and asset 

protection. Examples include NIST 

Cybersecurity Framework (CSF), ISO/IEC 

27001, and Control Objectives for 

Information Technologies (COBIT). 

 

Cybersecurity frameworks have continued to 

evolve, becoming more context-sensitive, 

adversary-aware, and dynamic, in response to 

the increasing complexity of cyber threats, 

particularly with the integration of AI. 

 

3.1 The Cyber Kill Chain Framework 

The Cyber Kill Chain is a conceptual 

framework designed to model the sequence of 

steps adversaries typically follow to execute a 

cyberattack successfully [3]. Inspired by 

traditional military kill chains, the CKC 

decomposes the cyberattack lifecycle into 7 

linear stages. One of the most important strong 

points of this framework is its capacity to guide 

cyber defense strategies by promptly 



235  UIJSLICTR Vol. 14  No. 1 June. 2025  ISSN: 2714-3627 

 

identifying opportunities to detect, deny, 

disrupt, degrade, or deceive adversaries or 

attackers at each phase of an attack’s lifecycle. 

The evolution of AI brought about a rapid 

change in cybersecurity operations at each 

stage of the CKC framework. In recent years, 

cybersecurity operations have improved 

significantly, especially in the aspects of threat 

intelligence, threat hunting, and incident 

response. CKC offers a structured lens through 

which defenders can understand attack 

progression and swiftly implement mitigation 

measures before adversaries can achieve the 

objectives of their cyberattack efforts. The 

linear nature of the framework has been heavily 

criticised in recent years as it fails to capture 

non-linear and recursive behaviours of modern 

threat actors, especially within the scope of 

Advanced Persistent Threats (APTs). This has 

prompted calls for more dynamic models such 

as the UKC, MITRE ATT&CK framework, and 

hybridisation of multiple models for 

effectiveness [15, 16]. 

 

Therefore, it is imperative to examine the CKC 

framework from a dynamic cybersecurity 

perspective, where AI serves both as a 

defensive tool and a potential threat vector on 

the cybersecurity spectrum. 

3.1.1 Phases of the Cyber Kill Chain 

 

The following are the stages of the CKC 

framework: 

1. Reconnaissance: Offenders gather 

information to identify vulnerabilities in the 

target system 

2. Weaponization: A tailored payload is 

created to exploit the vulnerabilities 

3. Delivery: Malware is transmitted using 

phishing emails or infected websites 

4. Exploitation: Triggers malicious code to 

exploit the system vulnerability 

5. Installation: Malware is installed to ensure 

persistent access to the target system 

6. Command and Control (C2): 

Communication is established with an 

external server 

7. Actions on Objectives: The attacker 

achieves their end goal, exfiltrating data or 

disrupting operations. 

CKC models a cyberattack as a series of 

sequential phases an adversary progresses 

through to achieve malicious objectives. These 

7 phases present a structured approach for 

identifying, understanding, and mitigating 

threats at each step of an attack lifecycle. 

 

Reconnaissance involves attackers gathering 

intelligence about the target system, network, 

or personnel using techniques such as open-

source intelligence and social engineering. The 

stealthy nature of this stage of the CKC, 

especially when passive methods are adopted, 

represents a huge challenge for cyber defenders, 

as such activities often leave no traceable 

footprint [4]. However, the deployment of 

sophisticated network monitoring tools can 

help organisations detect anomalies such as 

repetitive scanning and/or unusual user 

behaviour. This, therefore, presents the 

organisation with an opportunity to promptly 

disrupt potential attacks at their inception. 

In the Weaponization phase, adversaries create 

a malicious payload, mostly by combining a 

vulnerability exploit with a random, deliverable 

medium such as a script or document. This 

stage of the CKC typically occurs outside the 

defender’s network, thus limiting visibility and 

making it a herculean task for traditional 

intrusion detection systems to respond [4].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Phases of the CKC (Adapted from Dargahi et al., [20]) 
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However, this limitation notwithstanding, an 

understanding of prevalent malware 

construction techniques can help defenders 

anticipate the types of payloads being prepared 

and adjust their defenses promptly with the use 

of proactive threat intelligence. 

 

The transmission of the weaponized payload to 

the target is carried out in the Delivery Phase, 

mostly via methods such as phishing emails, 

removable media or compromised websites. 

The CKC model proves valuable here, as this is 

one of the stages where organizations can exert 

a level of control. Using antivirus software, 

email filters, and network security gateways, 

organizations can intercept and quarantine 

malicious content before it reaches a host or an 

end user. However, the growing use of fileless 

malware and encrypted traffic further 

complicates threat detection efforts by 

organisations and individuals alike, as these 

methods are often known to allow threats to 

bypass traditional signature-based security 

solutions [18]. As illustrated in Figure 1, the 

left-of-boom (Reconnaissance, Weaponisation 

and Delivery phases) presents organisations 

with an opportunity to prevent cyberattacks by 

taking proactive measures instead of being 

reactive once the attacker has gained access to 

their infrastructure. 

 

The Exploitation stage is where the attack is 

executed on the target machine by leveraging 

vulnerabilities in software, user behaviour, or 

system configurations. Attackers often exploit 

gaps when system patches are outdated. While 

it is possible to stop an attack at this stage, 

especially through endpoint protection tools 

and vulnerability management, the increasing 

prevalence of zero-days continues to render 

many conventional defenses ineffective [19]. 

Hence, the extremely narrow window between 

the discovery and exploitation phases requires a 

swift and automated response to thwart attacks 

effectively. 

 

The next phase after a successful exploitation is 

the Installation phase, where the attacker places 

malware or backdoors that will enable 

persistent access to the victim’s environment. 

This can be in the form of rootkits, keyloggers, 

or remote access tools. As a control measure, 

well-configured Endpoint Detection and 

Response (EDR) solutions can identify 

unauthorised changes to registry keys and 

system files. However, sophisticated malware 

is often obfuscated or embedded in legitimate 

processes, thereby allowing it to evade 

detection while maintaining persistence over 

time 19]. 

The Command and Control, known simply as 

the C2 stage, allows an attacker to manipulate 

compromised systems remotely, typically 

through covert channels such as DNS or HTTP 

tunnelling. With the CKC framework, 

cybersecurity officers can identify anomalous 

network behaviours, which often serve as 

Indicators of Compromise. More recently, 

adversaries have adapted by encrypting their 

communications or using trusted cloud services 

for C2. This action helps them blend their 

actions into legitimate network traffic thereby 

evading detection completely [4]. This 

challenge further highlights the limitations of 

static monitoring systems and underscores the 

need for behavioural analysis. 

 

Finally, Actions on Objectives refers to the 

stage where an attacker achieves their 

objective, including data exfiltration, data 

destruction, or further lateral movement within 

the network. Once here, the attacker has 

already bypassed most defenses, hence 

response and containment efforts become more 

difficult and costly. The CKC model 

emphasises earlier stages of attack detection to 

prevent escalation. However, researchers have 

argued that this reactive orientation overlooks 

proactive defense strategies and downplays 

threats such as insider abuse and supply chain 

vulnerabilities that do not conform to the linear 

kill chain model  [21]. 

Table 1 presents a comparative overview of 

each phase of the CKC framework, identifying 

the impact of AI across both offensive and 

defensive cybersecurity operations. 
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Table 1. Impact of AI across the phases of the CKC 

CKC Phase AI Impact Offensive AI 

Techniques 

Defensive AI 

Techniques 

Reconnaissance Automated, large-scale 

info-gathering 

Web crawlers, NLP 

profiling 

AI-based threat 

intelligence, anomaly 

detection 

Weaponization Tailored malware 

generation 

GAN-based malware, 

evasion testing 

Predictive patching, 

AI sandboxes 

Delivery Personalised and covert 

transmission 

Deepfakes, spear-

phishing automation 

NLP email filters, 

AI-based SEG 

Exploitation Adaptive and intelligent 

exploitation 

AI fuzzing, 

reinforcement learning 

EDR, automated 

patching 

Installation Covert, polymorphic 

malware deployment 

Dynamic malware, AI-

coded droppers 

AI HIDS, 

behavioural detection 

Command & Control Sophisticated and 

stealthy communication 

Encrypted AI C2, 

botnet orchestration 

AI network 

monitoring, DPI 

Actions on 

Objectives 

Strategic and prioritised 

attacks 

Smart data exfiltration, 

timed extraction 

AI DLP, UEBA 

systems 

 

3.1.2 Strengths and Weaknesses of the CKC 

As the cybersecurity landscape evolves with the 

introduction of more sophisticated adversarial 

techniques, it is important to understand the 

strengths and weaknesses of the CKC 

framework. 

 

Strengths of the CKC 

1. Early Detection and Prevention: The 

proactive approach of the CKC framework 

aligns greatly with intelligence-driven 

defense strategies [21]. With a strong 

emphasis on left-of-boom phases 

(reconnaissance, weaponisation, and 

delivery), the framework enables security 

teams to stop cyberattacks as they arise, 

long before attackers can carry out their 

malicious objectives. 

2. Sequential and Structured Understanding of 

Attacks: By projecting cyberattacks in a 

linear, sequential manner, the CKC 

framework allows organisations to identify 

and mitigate even the most complex threats 

before they can affect cybersecurity 

infrastructures [3]. 

3. Incident Response and Forensics: The post-

attack analysis offered by the framework 

helps security analysts to reconstruct 

cyberattacks, thereby gaining insights into 

compromised units [6]. 

4. Threat Intelligence: The framework enables 

cybersecurity teams across organisations to 

map cyberattacks to the threat intelligence 

obtained from well-known threat incidents  

 

[22]. This enhances situational awareness 

and the contextual relevance of Indicators 

of Compromise (IOCs). 

5. Foundation for Advanced Defensive 

Models: The CKC framework has inspired 

the development of complementary and 

improved models, including the AIVC 

(Diamond Model), MITRE ATT&CK, and 

UKC frameworks [23]. The much-improved 

frameworks are built upon the foundational 

principles of the CKC by addressing its 

limitations. 

 

Limitations of the CKC 

1. Linear Bias and Lack of Flexibility: A 

major criticism of the CKC framework is its 

assumption of a strictly linear progression 

of attack stages. In real-world scenarios, 

attackers can skip stages, loopback, or 

simultaneously perform multiple phases 

[24]. A typical example of this is when 

malware downloaded via phishing includes 

both delivery and exploitation, thereby 

undermining the model’s granularity. 

2. Ineffectiveness against Insider Threats: The 

CKC is primarily designed to detect 

external threats that require entry into the 

system; hence, it is known to struggle to 

model insider threats where malicious 

activity begins post-authentication and may 

bypass several early stages entirely [25]. 

This has led to calls for supplemental 

frameworks like the Insider Threat Matrix 

of the MITRE ATT&CK. 
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3. Limited Applicability in Cloud and 

Decentralised Environments: The rise of 

cloud-native applications, SaaS platforms 

and microservices has continued to render 

CKC’s perimeter-based assumptions 

outdated. In recent years, attacks have often 

targeted identity and access tokens or 

exploited third-party APIs. These entry 

points are not succinctly represented in the 

original chain [6]. 

4. Overemphasis on Malware-Centric Attacks: 

The CKC framework is suited mainly to 

malware-driven, targeted APT-style 

campaigns, making it less applicable to 

misconfiguration exploitation, social 

engineering, or supply-chain compromises 

that are known not to follow the traditional 

mechanisms of payload delivery [3]. 

5. Limited Support for Real-Time Defense 

Adaptation: In contrast to the increasingly 

dynamic adversary behaviour and AI-driven 

attacks, it lacks the flexibility to 

accommodate evolving tactics. The CKC 

framework does not support real-time threat 

scoring and adaptive feedback, which is 

increasingly vital for modern cybersecurity 

defense strategies [4]. 

3.2 The Course of Action Matrix 

The COA Matrix is tailored to evaluate different 

defensive strategies in terms of risk, operational 

impact, deployment time, feasibility, cost, and 

overall impact on an organisation or state. 

Actions are mapped to specific threat 

behavioural responses or tactics, primarily 

drawn from cybersecurity frameworks, to aid 

decision-making in selecting a countermeasure 

needed to address cyber threats [3, 22]. 

 

The matrix complements the CKC framework by 

assigning targeted defensive strategies against 

adversarial actions at each phase of the sequence. 

It also provides structured response profiles for 

cyberattacks by giving room for justification of 

control allocation. This becomes increasingly 

relevant when working under resource-

constrained and time-sensitive conditions [22, 

29]. 

 

3.2.1 The COA Matrix and the CKC Framework 

Each stage of the CKC provides security 

response teams with the opportunity to detect, 

disrupt, or contain cyber threats; hence, 

integrating the COA Matrix across the 

framework will help in defining and selecting 

the best suitable countermeasures at each phase 

[3]. 

 

The COA Matrix in Table 2 describes 6 

operational responses security teams can take at 

each phase of the CKC framework, alongside 

corresponding defensive measures. For instance, 

since the Host Intrusion Detection System 

(HIDS) can detect exploitation attempts 

passively, they are implemented at the 

exploitation phase. To block adversaries from 

gaining access to a cybersecurity infrastructure, 

the security team must ensure timely system 

patching. The matrix captures the wide range of 

defensive tools available to security teams, 

including Network Intrusion Detection Systems 

(NIDS), firewalls, ACLs, and even system 

hardening techniques like audit logging, which 

are considered traditional. More importantly, it 

also emphasises the critical role of human 

vigilance, acknowledging that alert users can be 

instrumental in identifying and responding to 

suspicious activity. 

 

3.3 Comparative Review of Threat Modelling 

Frameworks 

The evolution of cyber threats, fuelled by the 

interflow of AI and cybersecurity, and the 

limitations of the CKC framework have led to 

the emergence of alternative frameworks. In the 

following subsection, these frameworks are 

reviewed to understand their differences, 

complementary strengths, and applicability in 

AI-enhanced cybersecurity environments. 

 

3.3.1 The MITRE Adversarial Tactics, 

Techniques, and Common Knowledge  

The MITRE ATT&CK organises attack 

behaviours into a matrix of tactics (goals) and 

techniques (methods) in a detailed manner. It is 

continuously updated with observations from the 

real world to ensure its applicability across 

various platforms, including cloud, mobile, 

Linux, and Windows systems [21]. The 

behavioural taxonomy of the framework 

enhances detection systems by mapping AI 

techniques to telemetry data [6]). The constant 

training of AI models with the ATT&CK 

datasets significantly enhances threat correlation 

and detection. 
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Table 2: COA Matrix of Operational Responses Across the CKC Phases 

 

Phase Detect Deny Disrupt Degrade Deceive Destroy 

Reconnaissance Web 

Analytics 

Firewall 

ACL 

    

Weaponization NIDS NIPS     

Delivery Vigilant User Proxy Filter In-line AV Queuing   

Exploitation HIDS Patch DEP    

Installation HIDS “chroot” jail AV    

C2 NIDS Firewall 

ACL 

NIPS Tarpit DNS 

redirect 

 

Actions on  

Objectives 

Audit log   Quality of 

Service 

Honeypot  

 

Strengths of the MITRE ATT&CK 

1. Granular catalogue of adversarial 

behaviours 

2. Threat intelligence can be mapped to red 

teaming and other SOC operations 

3. Improved alignment with detection rules, 

SIEMs, and EDR tools 

 

Limitations of the MITRE ATT&CK 

1. The complexity of the framework can 

overwhelm security teams 

2. Not designed for high-level strategic 

communication or training 
 

3.3.2 The Unified Kill Chain (UKC) 

The UKC, proposed by Hutchins and 

collaborators, expands the CKC framework by 

adding more phases from both real-world 

campaigns and the ATT&CK framework to 

make up 18 unique phases. The framework 

categorises the cyberattack lifecycle into three 

primary stages: initial foothold, network 

propagation, and action on objectives [26, 27]. 
 

The detailed phase structure and expanded scope 

of the framework provide a rich basis for 

training AI models. For instance, Reinforcement 

Learning systems can simulate the behaviours of 

an attacker across the stages of the framework to 

test and optimise defense postures [4]. 
 

Strengths of the UKC 

1. Integrates insights from both ATT&CK 

and the CKC frameworks 

2. Captures privilege escalation and lateral 

movement more accurately 

3. Better suited for modelling persistent and 

multi-phase cyber attacks 
 

Limitations of the UKC 

1. Increased complexity makes 

implementation and interpretation more 

difficult 

 

2. Not widely adopted like CKC or 

ATT&CK 

 

3.3.3 The Diamond Model of Intrusion Analysis 

Introduced in 2013, the framework helps to 

understand cyber intrusions through four 

interrelated features: adversary, capability, 

infrastructure, and victim [5]. Rather than the 

sequence of attack, it focuses on relationships 

and causality. It is well-suited for AI-powered 

threat correlation and clustering by analysing 

datasets to infer relationships between 

adversaries, infrastructure, and techniques [28]. 

 

Strengths of the Diamond Model 

1. The framework supports advanced 

intelligence analysis and threat attribution 

2. Uses observable characteristics to perform 

hypothesis-driven investigations 

3. Emphasises adversary intent and 

infrastructure, and aids campaign tracking 

 

Limitations of the Diamond Model 

1. The framework is less focused on specific 

stages of an attack or technical mitigations 

2. Not ideal for response workflows and 

SOC operations 

 

Table 3 compares the four cybersecurity 

frameworks in terms of their unique strengths, 

weaknesses and relevance with the prevalence of 

AI in cybersecurity today. This further 

underlines the effectiveness of hybridised 

frameworks in mitigating evolving cyber threats. 

While CKC remains valuable for structured 

incident response, MITRE ATT&CK and the 

UKC offer much deeper operational insight, 

especially in dynamic, AI-enhanced threat 

environments
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Table 3: Comparative Overview of the Cybersecurity Frameworks 

 

Framework Focus Strengths Weaknesses AI Relevance 

CKC Linear attack 

progression 

Simplicity; good for 

defense planning 

Outdated for clouds 

and insider threats 

Useful for mapping AI 

to known attack stages 

MITRE 

ATT&CK 

Techniques & 

tactics matrix 

Granularity; updated 

threat behaviour 

Complexity 

Less strategic 

Ideal for training AI 

models in detection & 

analysis 

Unified Kill 

Chain 

Extended attack 

lifecycle 

Full campaign 

coverage; includes 

lateral movement 

Complex 

Less adopted 

Strong AI mapping 

across persistent and 

adaptive threats 

Diamond 

Model 

Adversary-

infrastructure 

mapping 

Adversary profiling 

Intelligence-driven 

Less suited for 

defense tool 

alignment 

Excellent for AI-

driven attribution and 

clustering 

 

The Diamond Model complements these by 

supporting strategic attribution and intelligence 

development. It is expedient for organisations 

seeking to build AI-driven security architectures 

to adopt a hybrid approach by leveraging CKC 

for detection stages, ATT&CK for technical 

defenses, and the Diamond Model for threat 

intelligence enrichment. 

 

4.   Applications Areas of AI in Cybersecurity 

The important role AI plays in cybersecurity 

cannot be overemphasised. Similarly, it has 

contributed greatly to the enhancement of both 

the effectiveness and agility of actions across the 

stages of the CKC. This subsection explores the 

integral role AI plays across the different 

application areas in cybersecurity. 

 

4.1 AI in Offensive Cybersecurity Operations 

The offensive application of AI in cyber 

operations has ushered in new dimensions of the 

threat landscape. Attackers now employ AI 

systems to develop polymorphic malware that 

can change its code to avoid detection, automate 

reconnaissance and vulnerability assessment, 

and conduct highly targeted phishing attacks [4]. 

 

Cyberattacks are much more effective and 

persistent today as adversaries adapt their tactics 

in real-time while making efforts to breach 

security systems. Social engineering has become 

much more sophisticated with Generative AI 

deepfakes making it difficult to distinguish 

between fake and real content [4, 24]. 

 

1. Reconnaissance: The initial phase of the 

CKC can be time-consuming as it involves 

information gathering. AI techniques are  

 

now used to automate Open-Source 

Intelligence (OSINT) collection across 

social media platforms, databases and 

websites [4]. By mining and synthesising 

information such as employee names, 

email addresses, and software stacks, 

among others, attackers can develop 

precise attack vectors to curate believable 

phishing messages [1]. 

2. Exploitation: Through a process known as 

fuzzing, adversaries input malformed data 

into software to uncover unknown 

vulnerabilities. This empowers adversaries 

to optimise test case generation and 

prioritise likely failure points, which 

drastically reduces the time needed to 

exploit weaknesses even in the most 

complex security systems [33]). In reverse 

engineering endeavours, attackers use AI 

models to understand and manipulate 

binary code, firmware, or proprietary 

protocols to find entry points into systems. 

3. Evasion: AI has also become a critical 

enabler of evasion techniques, particularly 

in the use of Adversarial Machine 

Learning. Attackers craft inputs, such as 

modified malware samples or poisoned 

datasets that deliberately deceive AI-based 

security models like Intrusion Detection 

Systems (IDS) or malware classifiers. By 

altering features subtly, adversarial 

attackers can bypass defenses without 

triggering alerts before proceeding to 

exploit the vulnerabilities in the learning 

algorithms directly [34]. 

4. Phishing and Malware Customisation: 

With GPT-based models, adversaries can 

now generate personalised phishing 



    241  UIJSLICTR Vol. 14  No. 1 June. 2025  ISSN: 2714-3627 

 

campaigns that mimic the writing styles of 

victims. Adversaries use deepfakes to 

impersonate people and executives of 

organisations to carry out scams such as 

the Business Email Compromise (BEC). 

Furthermore, AI-enhanced malware 

delivered to a target system can alter the 

system’s configurations such that it delays 

execution to avoid sandbox detection [1]. 

 

4.2 AI in Defensive Cybersecurity Operations 

The offensive application of AI in cyber 

operations has ushered in new dimensions of the 

threat landscape by enabling attackers to develop 

polymorphic malware that can change its code to 

avoid detection, automate reconnaissance and 

vulnerability assessment, and conduct highly 

targeted phishing attacks [4]. 

 

To effectively mitigate evolving cyber threats, 

the following systems have been adopted: 

 

1. Anomaly Detection (IDS/IPS): 

Cybersecurity teams in organisations and 

states are beginning to discard signature-

based Intrusion Detection/Prevention 

Systems for more dynamic and current 

alternatives that do not rely on predefined 

patterns. Supervised Learning and 

Unsupervised Learning ML algorithms are 

now employed to accurately detect 

anomalies in network traffic. Considering 

that there is a continuous flow of traffic 

within the network, Intrusion Detection 

Systems are developed using the Online 

Learning ML paradigm, thereby always 

ensuring adaptability to novel threats [11]. 

2. Malware Detection and Classification: In 

the past, antivirus programs used known 

malware signatures to scan systems, which 

has proven to be ineffective in detecting 

masked cyberattacks. AI-based malware 

detection systems are trained on large 

datasets to generalise accurately by 

constantly training the models with new 

datasets obtained from continuous network 

monitoring, as described in Figure 2. To 

build adaptive systems, security teams can 

develop hybrid models by combining 

static, dynamic, and contextual analysis or 

utilise Deep Learning architectures, such 

as CNN and RNNs that are known to be 

highly effective in detecting masked 

variations and zero-days in cyber threats 

[1]. 

3. User and Entity Behaviour Analytics 

(UEBA): This involves the use of 

statistical analysis and ML techniques to 

detect and analyse anomalies in both user 

and entity behaviour across systems and 

networks. By monitoring the behavioural 

patterns, the ML model learns about the 

network and promptly flags noticeable 

deviations such as compromised accounts, 

lateral movements, or unusual network 

traffic. UEBA drastically reduces false 

positives by constantly improving its 

network traffic classification. To enhance 

the threat visibility of a network, security 

teams are encouraged to deploy UEBA 

with the SIEM tool [35]. 

4. Automating Threat Intelligence and 

Incident Response: This helps security 

teams to obtain more context about cyber 

threats. NLP tools are now used for 

mining, analysing and extracting 

actionable intelligence from unstructured 

data. The intelligence obtained is used to 

correlate disparaging indicators of 

compromise (IOCs), monitor trends to 

predict threats, and prioritise alerts based 

on the context and severity of attacks. 

Furthermore, the automation of incident 

response minimises human interference by 

executing actions such as the isolation of 

compromised systems and IP addresses 

blocking [4]. 

 

 

 

 

 

 

 

 

 

Figure 2: Illustration of the role of AI in cybersecurity defense operation (adapted from Astra [32])
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4.3 Case-Based Incidents 

Real-world cyber incidents highlight the 

growing role of AI across cybersecurity 

operations. This section presents key examples 

of high-profile attacks and the corresponding 

influence of AI techniques. These case studies 

exemplify the dual role of AI in amplifying 

attack effectiveness and in empowering timely 

detection and mitigation. 

 

4.3.1 Stuxnet (2010) 

Stuxnet, although predating the contemporary 

rise of AI, laid foundational strategies that are 

now being enhanced through AI. Its multi-stage 

attack mirrored the CKC, from reconnaissance to 

physical destruction. If executed today, AI 

would augment its evasion techniques using 

behavioural cloaking and optimise payload 

delivery through AI-powered reconnaissance of 

SCADA systems. Defensively, AI-driven 

anomaly detection tools could flag the abnormal 

operation of programmable logic controllers 

(PLCs) far earlier than traditional signature-

based methods. 

 

4.3.2 SolarWinds Attack (2020) 

The SolarWinds supply chain attack 

demonstrated the potential scale of stealthy, 

long-term infiltration. AI could have played a 

role in both improving the attacker’s ability to 

identify low-noise lateral movement and evasion 

tactics and in helping defenders detect anomalies 

in network behaviour and irregular data 

exfiltration. AI-enhanced threat intelligence 

platforms that cross-correlate system behaviours 

and code patterns across multiple clients may 

have reduced the detection time. 

 

4.3.3 Microsoft Exchange Server Exploits (2021) 

This attack campaign exploited zero-day 

vulnerabilities in Microsoft Exchange servers. 

AI-based fuzzing tools may have accelerated the 

exploitation process by identifying 

vulnerabilities faster than traditional methods. 

On the defensive end, AI-enabled Endpoint 

Detection and Response (EDR) platforms have 

been critical in post-exploit detection, helping 

security teams recognise behavioural anomalies 

and isolate affected systems before further 

lateral movement. 

 

4.3.4 Colonial Pipeline Ransomware Attack 

(2021) 

The 2021 Colonial Pipeline incident revealed 

weaknesses in ransomware preparedness. While 

AI may not have been used directly by attackers, 

the use of AI-enabled phishing kits to automate 

the targeting process is a growing trend. In 

contrast, AI-based email filters, UEBA tools, 

and ransomware behaviour classifiers could have 

been used defensively to detect suspicious 

activity in the early phases of the kill chain.   

 

5. Conclusion 
This paper presents an overview of the CKC 

framework, exploring its structure, areas of 

application, and integration with AI by critically 

analysing the double-edged role it plays across 

each stage of the CKC framework. In recent 

literature, the CKC has proven to remain a 

relevant framework in cybersecurity threat 

modelling as its linear, sequential approach 

enables security teams the ability to identify and 

mitigate even the most complex cyber threats. 

However, it is not without its limitations; hence, 

organisations should consider deploying 

frameworks such as the MITRE ATT&CK that 

offer a more granular and flexible taxonomy of 

the tactics and techniques used by cyber 

attackers. 

 

5.1 Future Research Directions 

The fusion of AI and cybersecurity has led to the 

development of much-improved strategies and 

systems to handle the sophisticated cyber threats 

in our world today. However, there exist critical 

gaps that should be explored further in academic 

investigation. Considering the linearity of the 

CKC, more studies should be carried out to 

explore how it performs when deployed in 

tandem with other frameworks. AI models 

perform best when trained when quality data and 

with access to data come issues such as privacy. 

More studies should be conducted on the best 

approach to enhance AI model transparency and 

explainability [30, 31]. The following are other 

areas future research studies should be directed 

at: 

 

1. Legal, Ethical, and Policy Frameworks 

Governing the Use of AI in Cybersecurity: 

AI has equipped both the bad guys and the 

good actors with tools and techniques to 

carry out their objectives across the 

cybersecurity landscape, thereby raising 

ethical and legal questions. Intentional 

efforts should go into the development of 

frameworks for responsible AI in areas of 

discussion such as international norms, 

accountability mechanisms, and ethical 

red lines for the use of AI in cybersecurity 

applications. 
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2. Explainable Artificial Intelligence (XAI): 

The reliance on AI for decision-making 

does not look like slowing down in areas 

such as real-time threat detection or 

automated incident response. Therefore, 

future research must focus on bridging the 

gap between complex AI models and 

human understanding as this increases 

trust across systems such as the 

exploitation and C2 phases of the CKC 

framework. 

3. Design of Resilient AI Systems Against 

Adversarial Attacks: AI models are 

inherently vulnerable to adversarial attacks, 

where small perturbations in input data 

can mislead systems into incorrect 

classifications or predictions. In the 

context of the CKC, such vulnerabilities 

could be exploited to bypass detection 

systems or manipulate automated 

responses. Future research must explore 

the development of robust AI architectures 

and adversarial training techniques that 

can withstand sophisticated evasion 

strategies. 

4. Development of Simulation Environments 

to Evaluate AI Models Across CKC Stages: 

The development of a controlled 

simulation environment will give room for 

security teams to test how their security 

systems respond to threat incidents under 

diverse cyberattack scenarios across the 

phases of the CKC framework. By 

developing open-source, modular 

simulators, cyberattacks can be 

reproduced to fine-tune the architecture to 

withstand actual attacks. 
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