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Abstract

The adoption of Artificial Intelligence (Al) in diverse fields and the proliferation of interconnected devices have
led to the emergence of highly sophisticated cyberattacks today. This new reality has compelled organisations to
align their security policies by adopting cybersecurity frameworks. These frameworks provide organisations
with models and methods for effectively managing digital security risks by promptly detecting and mitigating
cyberattacks. The Cyber Kill Chain (CKC) decomposes cyberattacks into 7 phases, which cyber defenders can
rely on when developing threat-informed strategies to mitigate cyberattacks. This paper presents a
comprehensive overview of the CKC, highlighting the role Artificial Intelligence plays across each phase in
terms of offensive and defensive cybersecurity operations. A comparative analysis of 3 cybersecurity
frameworks, with justifications for each, was also examined. Drawing on real-world case studies and recent
literature, this study further highlights current challenges with the fusion of Al into cybersecurity operations,
ranging from data privacy, adversarial attacks, and Al explainability. The review concludes by advocating for
the adaptation of dynamic, Al-driven modelling frameworks that better align with the rapidly evolving cyber
threat landscape.

Keywords: Cybersecurity; Artificial Intelligence; Cyber Kill Chain; Threat Modelling; Al-Based Threat
Detection; Cyber Threat Intelligence

1. Introduction

The digital age has brought about a Organisations and cybersecurity teams are

proliferation of interconnected systems, leading
to the surge of data-driven operations across
diverse fields. This reality has further led to the
increased frequency and complexity of
cyberattacks. Today, adversaries or cyber
attackers are equipped with more sophisticated
tools and approaches, including social
engineering, zero-day, and multi-vector attacks,
which traditional security tools struggle to
detect and contain in real-time. The evolving
threat landscape, therefore, requires that
smarter and more adaptive defense strategies be
implemented [1]. The knowledge discovery
process involves various selection steps which
help in the efficient extraction of useful data
from databases.
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leveraging Al and Machine Learning (ML)
tools to develop adaptive and scalable
cybersecurity  strategies,  systems  and
architectures, given that these technologies are
capable of scaling cybersecurity operations,
especially in the areas of predictive analytics,
anomaly detection, and automated threat
response [2].

Cybersecurity frameworks provide cyber
operators with methodologies and models to
detect and mitigate cyber threats. Lockheed
Martin developed the Cyber Kill Chain (CKC)
framework in 2011 to equip organisations with
a structured framework to understand and
thwart cyberattacks [3]. The CKC improves
situational awareness and helps to actively
facilitate the development of defense strategies
against future cyberattacks.
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This paper explores the influence of Al across
both the offensive and defensive dimensions of
the CKC framework, explores how the
framework performs in comparison to
alternative frameworks like the UKC, MITRE
ATT&CK, and Diamond Model, evaluates the
implications  of  integrating Al into
cybersecurity operations, and highlights the
emerging challenges and opportunities it
presents for future cyber defense endeavours.

2. Literature Review

The continuous integration of Al into the
cybersecurity landscape has significantly
contributed to the growing sophistication of
cyberattacks targeted at states, organisations,
and individuals today. Hence, the foundational
and traditional security mechanisms are
increasingly being outpaced by attackers who
are smarter and now better equipped to
leverage emerging technologies and system
vulnerabilities.

As digital infrastructures become increasingly
interconnected and attackers adopt
sophisticated  Tactics,  Techniques, and
Procedures (TTPs) to carry out malicious
activities, security experts appear to be
accelerating the integration of Al into
cybersecurity operations. The role of Al as a
double-edged sword in cyber operations is how
a widely discussed topic. While it strengthens
cyber defenses through anomaly identification,
intelligent threat detection, and automated
response, it also serves as an important leverage
for cyber attackers who utilise Al tools for
automating cyberattacks, exploiting system
vulnerabilities at scale, and evading detection

[1].

The performance of cybersecurity frameworks
has been enhanced by the introduction of Al
during their adoption by organisations. This is
equally true of the CKC framework, which has
evolved, resulting in an enhanced level of
dynamic intelligence, automation, adaptability,
and responsiveness. However, this integration
has also equipped cyber attackers with tools to
carry out malicious activities across the Kkill
chain in a more complex way.

Several studies have been conducted to
examine the effectiveness of the CKC
framework, given the evolution of threats and
advancements in technology. According to

Kazimierczak et al., [4], the integration of Al
within the CKC plays to the advantage of both
cyber defenders and attackers as players on
both sides of the divide can automate and
optimise tasks at each phase. The findings of
this study further underscore the continued
relevance of the CKC framework while
highlighting its limitations in modelling multi-
vector attacks.

Caltagirone et al., [5] identified the lack of
relational depth needed for attacker attribution
as a major challenge with the adoption of the
CKC. The study suggested that organisations
should consider integrating the Diamond Model
within the CKC framework to develop a more
dynamic and robust threat intelligence system.

Furthermore, the framework performs poorly
when faced with sophisticated cloud-based
attacks and insider threats, largely because of
its linearity and tendency to be biased towards
external threats [6]. To tackle this issue, it was
also recommended that the CKC framework be
augmented with iterative loops and behavioural
indicators that more closely reflect real-world
attack patterns.

2.1 Overview of Artificial Intelligence

Artificial Intelligence, or simply Al, is the
theory and application of computer systems that
perform tasks that would normally require
human intelligence and interference [7]. These
tasks include learning, reasoning, decision-
making, and problem-solving, and are carried
out by analysing data to identify patterns.
According to Sharma et al., [8], ML involves
making algorithms learn by acquiring
knowledge from previous experiences and is
one branch of Al that has advanced greatly over
the last 30 years. Deep Learning, Computer
Vision, Natural Language Processing (NLP),
and Generative Al (GenAl), among other fields,
have also evolved significantly in recent years.

2.2. Types of Learning

Depending on the kind of project at hand, the
following are types of learning one can deploy
for a Machine Learning project:

1. Supervised Learning: Involves training
an algorithm with a labelled dataset. The
goal here is to predict the labels of
unseen data — to generalise accurately.
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2. Unsupervised Learning: It is used when
the project involves drawing inferences
from unlabelled datasets. It is best used
for pattern recognition and predictive
modelling.

3. Reinforcement Learning: This type of
learning is used in robotics, whereby the
reward and punishment approach is
adopted in training Al agents.

2.2 Al in Cybersecurity: A Foundational
Perspective

Predictive analytics helps cybersecurity teams
across multiple organisations to anticipate
threats using known behavioural patterns of an
attacker; hence, they get to approach cyber
threats from a position of strength (Sarker et al.,
[9]). Al has become a critical enabler within the
cybersecurity landscape, leading to the
development of improved cybersecurity
strategies in behavioural analytics and anomaly
detection irrespective of the size of the datasets
involved (Buczak and Guven [10]). The ability
to detect known threats and zero-day threats
will help organisations drastically reduce threat
response time and mitigate potential attacks
[17].

Acrtificial Intelligence supports the automation
of cybersecurity operations through Security
Orchestration, Automation, and Response
(SOAR) systems. According to Mohamed [11],
these systems are known to streamline
cybersecurity tasks such as alert triaging, log
analysis, and incident response. These
advancements greatly ease the burdens on
human analysts and greatly enhance the
scalability of defense strategies. In terms of
identity and access management, Al systems
are used to power adaptive authentication
systems, which make use of behavioural
biometrics to provide a real-time response to
suspicious login activities across security
infrastructures [12].

3. Overview of Cybersecurity Frameworks

A cybersecurity framework is a model, a
structured set of documents and methodologies
that assist an organisation in managing digital
security risks, identifying breach attempts, and
mitigating cyber threats promptly. These
frameworks allow cybersecurity teams to
integrate policies, technological structures and
controls into organisational cybersecurity
strategies that align with operational guidance

on emerging threat landscapes [13, 14]. In
addition, cybersecurity frameworks assist in the
critical task of creating a uniform standard for
cybersecurity procedures across various sectors
and industries. As compliance regulations
become  more  stringent,  cybersecurity
frameworks support compliance governance,
threat modelling, incident response and even
prevention approaches. In a growing number of
jurisdictions where organisations and states
increase efforts to secure digital infrastructure,
these frameworks aid in the organisation of
defense strategies to support situational
understanding by providing a systematic,
consistent,  reproducible, and replicable
approach.

Cybersecurity frameworks can be categorised

into two:

1. Threat Modelling and Operational Defense
Frameworks: These frameworks attempt to
describe, categorise, and defend an
adversary activity. Examples are the
Unified Kill Chain (UKC), MITRE
ATT&CK, Diamond Model, and CKC.

2. Governance and Risk Management
Frameworks: These are focused on system
principles guiding the creation of an
Information Security Management System
(ISMS). They help integrate cybersecurity
policies with the organisation’s goals.
Unlike the threat modelling frameworks,
they focus on policy development,
enterprise-wide risk management, and asset
protection. Examples include NIST
Cybersecurity Framework (CSF), ISO/IEC
27001, and Control Objectives for
Information Technologies (COBIT).

Cybersecurity frameworks have continued to
evolve, becoming more context-sensitive,
adversary-aware, and dynamic, in response to
the increasing complexity of cyber threats,
particularly with the integration of Al.

3.1 The Cyber Kill Chain Framework

The Cyber Kill Chain is a conceptual
framework designed to model the sequence of
steps adversaries typically follow to execute a
cyberattack successfully [3]. Inspired by
traditional military kill chains, the CKC
decomposes the cyberattack lifecycle into 7
linear stages. One of the most important strong
points of this framework is its capacity to guide
cyber defense strategies by  promptly
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identifying opportunities to detect, deny,
disrupt, degrade, or deceive adversaries or
attackers at each phase of an attack’s lifecycle.
The evolution of Al brought about a rapid
change in cybersecurity operations at each
stage of the CKC framework. In recent years,
cybersecurity  operations have improved
significantly, especially in the aspects of threat
intelligence, threat hunting, and incident
response. CKC offers a structured lens through
which defenders can understand attack
progression and swiftly implement mitigation
measures before adversaries can achieve the
objectives of their cyberattack efforts. The
linear nature of the framework has been heavily
criticised in recent years as it fails to capture
non-linear and recursive behaviours of modern
threat actors, especially within the scope of
Advanced Persistent Threats (APTSs). This has
prompted calls for more dynamic models such
as the UKC, MITRE ATT&CK framework, and
hybridisation of multiple models for
effectiveness [15, 16].

Therefore, it is imperative to examine the CKC
framework from a dynamic cybersecurity
perspective, where Al serves both as a
defensive tool and a potential threat vector on
the cybersecurity spectrum.

3.1.1 Phases of the Cyber Kill Chain

The following are the stages of the CKC

framework:

1. Reconnaissance: Offenders gather
information to identify vulnerabilities in the
target system

2. Weaponization: A tailored payload is
created to exploit the vulnerabilities

3. Delivery: Malware is transmitted using
phishing emails or infected websites

4. Exploitation: Triggers malicious code to
exploit the system vulnerability

5. Installation: Malware is installed to ensure
persistent access to the target system

6. Command and Control (C2):
Communication is established with an
external server

7. Actions on Objectives: The attacker
achieves their end goal, exfiltrating data or
disrupting operations.

CKC models a cyberattack as a series of
sequential phases an adversary progresses
through to achieve malicious objectives. These
7 phases present a structured approach for
identifying, understanding, and mitigating
threats at each step of an attack lifecycle.

Reconnaissance involves attackers gathering
intelligence about the target system, network,
or personnel using techniques such as open-
source intelligence and social engineering. The
stealthy nature of this stage of the CKC,
especially when passive methods are adopted,
represents a huge challenge for cyber defenders,
as such activities often leave no traceable
footprint [4]. However, the deployment of
sophisticated network monitoring tools can
help organisations detect anomalies such as
repetitive  scanning and/or unusual user
behaviour. This, therefore, presents the
organisation with an opportunity to promptly
disrupt potential attacks at their inception.

In the Weaponization phase, adversaries create
a malicious payload, mostly by combining a
vulnerability exploit with a random, deliverable
medium such as a script or document. This
stage of the CKC typically occurs outside the
defender’s network, thus limiting visibility and
making it a herculean task for traditional
intrusion detection systems to respond [4].

Reconnaissance Weaponization Delivery

Left-of-Boom

Exploitation

Command &  Actions on

Installation K
Control Objectives ;

Figure 1: Phases of the CKC (Adapted from Dargahi et al., [20])
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However, this limitation notwithstanding, an
understanding of prevalent malware
construction techniques can help defenders
anticipate the types of payloads being prepared
and adjust their defenses promptly with the use
of proactive threat intelligence.

The transmission of the weaponized payload to
the target is carried out in the Delivery Phase,
mostly via methods such as phishing emails,
removable media or compromised websites.
The CKC model proves valuable here, as this is
one of the stages where organizations can exert
a level of control. Using antivirus software,
email filters, and network security gateways,
organizations can intercept and quarantine
malicious content before it reaches a host or an
end user. However, the growing use of fileless
malware and encrypted traffic further
complicates threat detection efforts by
organisations and individuals alike, as these
methods are often known to allow threats to
bypass traditional signature-based security
solutions [18]. As illustrated in Figure 1, the
left-of-boom (Reconnaissance, Weaponisation
and Delivery phases) presents organisations
with an opportunity to prevent cyberattacks by
taking proactive measures instead of being
reactive once the attacker has gained access to
their infrastructure.

The Exploitation stage is where the attack is
executed on the target machine by leveraging
vulnerabilities in software, user behaviour, or
system configurations. Attackers often exploit
gaps when system patches are outdated. While
it is possible to stop an attack at this stage,
especially through endpoint protection tools
and vulnerability management, the increasing
prevalence of zero-days continues to render
many conventional defenses ineffective [19].
Hence, the extremely narrow window between
the discovery and exploitation phases requires a
swift and automated response to thwart attacks
effectively.

The next phase after a successful exploitation is
the Installation phase, where the attacker places
malware or backdoors that will enable

persistent access to the victim’s environment.
This can be in the form of rootkits, keyloggers,
or remote access tools. As a control measure,
well-configured Endpoint  Detection and
Response (EDR) solutions can identify
unauthorised changes to registry keys and
system files. However, sophisticated malware
is often obfuscated or embedded in legitimate
processes, thereby allowing it to evade
detection while maintaining persistence over
time 19].

The Command and Control, known simply as
the C2 stage, allows an attacker to manipulate
compromised systems remotely, typically
through covert channels such as DNS or HTTP
tunnelling. With the CKC framework,
cybersecurity officers can identify anomalous
network behaviours, which often serve as
Indicators of Compromise. More recently,
adversaries have adapted by encrypting their
communications or using trusted cloud services
for C2. This action helps them blend their
actions into legitimate network traffic thereby
evading detection completely [4]. This
challenge further highlights the limitations of
static monitoring systems and underscores the
need for behavioural analysis.

Finally, Actions on Obijectives refers to the
stage where an attacker achieves their
objective, including data exfiltration, data
destruction, or further lateral movement within
the network. Once here, the attacker has
already bypassed most defenses, hence
response and containment efforts become more
difficult and costly. The CKC model
emphasises earlier stages of attack detection to
prevent escalation. However, researchers have
argued that this reactive orientation overlooks
proactive defense strategies and downplays
threats such as insider abuse and supply chain
vulnerabilities that do not conform to the linear
kill chain model [21].

Table 1 presents a comparative overview of
each phase of the CKC framework, identifying
the impact of Al across both offensive and
defensive cybersecurity operations.
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Table 1. Impact of Al across the phases of the CKC

CKC Phase Al Impact Offensive Al Defensive Al
Techniques Techniques
Reconnaissance Automated, large-scale Web crawlers, NLP Al-based threat
info-gathering profiling intelligence, anomaly

detection

Weaponization

Tailored malware
generation

GAN-based malware,
evasion testing

Predictive patching,
Al sandboxes

Delivery Personalised and covert Deepfakes, spear- NLP email filters,
transmission phishing automation Al-based SEG
Exploitation Adaptive and intelligent Al fuzzing, EDR, automated
exploitation reinforcement learning patching
Installation Covert, polymorphic Dynamic malware, Al- Al HIDS,
malware deployment coded droppers behavioural detection
Command & Control Sophisticated and Encrypted Al C2, Al network
stealthy communication botnet orchestration monitoring, DPI
Actions on Strategic and prioritised | Smart data exfiltration, Al DLP, UEBA
Objectives attacks timed extraction systems

3.1.2  Strengths and Weaknesses of the CKC
As the cybersecurity landscape evolves with the
introduction of more sophisticated adversarial
techniques, it is important to understand the
strengths and weaknesses of the CKC
framework.

Strengths of the CKC

1. Early Detection and Prevention: The
proactive approach of the CKC framework
aligns greatly with intelligence-driven
defense strategies [21]. With a strong
emphasis on  left-of-boom  phases
(reconnaissance, weaponisation, and
delivery), the framework enables security
teams to stop cyberattacks as they arise,
long before attackers can carry out their
malicious objectives.

2. Sequential and Structured Understanding of
Attacks: By projecting cyberattacks in a
linear, sequential manner, the CKC
framework allows organisations to identify
and mitigate even the most complex threats
before they can affect cybersecurity
infrastructures [3].

3. Incident Response and Forensics: The post-
attack analysis offered by the framework
helps security analysts to reconstruct
cyberattacks, thereby gaining insights into
compromised units [6].

4. Threat Intelligence: The framework enables
cybersecurity teams across organisations to
map cyberattacks to the threat intelligence
obtained from well-known threat incidents

. Foundation for

[22]. This enhances situational awareness
and the contextual relevance of Indicators
of Compromise (IOCs).

Advanced Defensive
Models: The CKC framework has inspired
the development of complementary and
improved models, including the AIVC
(Diamond Model), MITRE ATT&CK, and
UKC frameworks [23]. The much-improved
frameworks are built upon the foundational
principles of the CKC by addressing its
limitations.

Limitations of the CKC
1. Linear Bias and Lack of Flexibility: A

major criticism of the CKC framework is its
assumption of a strictly linear progression
of attack stages. In real-world scenarios,
attackers can skip stages, loopback, or
simultaneously perform multiple phases
[24]. A typical example of this is when
malware downloaded via phishing includes
both delivery and exploitation, thereby
undermining the model’s granularity.

. Ineffectiveness against Insider Threats: The

CKC is primarily designed to detect
external threats that require entry into the
system; hence, it is known to struggle to
model insider threats where malicious
activity begins post-authentication and may
bypass several early stages entirely [25].
This has led to calls for supplemental
frameworks like the Insider Threat Matrix
of the MITRE ATT&CK.
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3. Limited Applicability in Cloud and
Decentralised Environments: The rise of
cloud-native applications, SaaS platforms
and microservices has continued to render
CKC’s  perimeter-based  assumptions
outdated. In recent years, attacks have often
targeted identity and access tokens or
exploited third-party APIs. These entry
points are not succinctly represented in the
original chain [6].

4. Overemphasis on Malware-Centric Attacks:
The CKC framework is suited mainly to
malware-driven, targeted APT-style
campaigns, making it less applicable to
misconfiguration  exploitation,  social
engineering, or supply-chain compromises
that are known not to follow the traditional
mechanisms of payload delivery [3].

5. Limited Support for Real-Time Defense
Adaptation: In contrast to the increasingly
dynamic adversary behaviour and Al-driven
attacks, it lacks the flexibility to
accommodate evolving tactics. The CKC
framework does not support real-time threat
scoring and adaptive feedback, which is
increasingly vital for modern cybersecurity
defense strategies [4].

3.2 The Course of Action Matrix

The COA Matrix is tailored to evaluate different
defensive strategies in terms of risk, operational
impact, deployment time, feasibility, cost, and
overall impact on an organisation or state.
Actions are mapped to specific threat
behavioural responses or tactics, primarily
drawn from cybersecurity frameworks, to aid
decision-making in selecting a countermeasure
needed to address cyber threats [3, 22].

The matrix complements the CKC framework by
assigning targeted defensive strategies against

adversarial actions at each phase of the sequence.

It also provides structured response profiles for
cyberattacks by giving room for justification of
control allocation. This becomes increasingly
relevant when working under resource-
constrained and time-sensitive conditions [22,
29].

3.2.1 The COA Matrix and the CKC Framework
Each stage of the CKC provides security
response teams with the opportunity to detect,
disrupt, or contain cyber threats; hence,

integrating the COA Matrix across the
framework will help in defining and selecting
the best suitable countermeasures at each phase

3].

The COA Matrix in Table 2 describes 6
operational responses security teams can take at
each phase of the CKC framework, alongside
corresponding defensive measures. For instance,
since the Host Intrusion Detection System
(HIDS) can detect exploitation attempts
passively, they are implemented at the
exploitation phase. To block adversaries from
gaining access to a cybersecurity infrastructure,
the security team must ensure timely system
patching. The matrix captures the wide range of
defensive tools available to security teams,
including Network Intrusion Detection Systems
(NIDS), firewalls, ACLs, and even system
hardening techniques like audit logging, which
are considered traditional. More importantly, it
also emphasises the critical role of human
vigilance, acknowledging that alert users can be
instrumental in identifying and responding to
suspicious activity.

3.3 Comparative Review of Threat Modelling
Frameworks

The evolution of cyber threats, fuelled by the
interflow of Al and cybersecurity, and the
limitations of the CKC framework have led to
the emergence of alternative frameworks. In the
following subsection, these frameworks are
reviewed to understand their differences,
complementary strengths, and applicability in
Al-enhanced cybersecurity environments.

3.3.1 The MITRE Adversarial Tactics,

Techniques, and Common Knowledge
The MITRE ATT&CK organises attack
behaviours into a matrix of tactics (goals) and
techniques (methods) in a detailed manner. It is
continuously updated with observations from the
real world to ensure its applicability across
various platforms, including cloud, mobile,
Linux, and Windows systems [21]. The
behavioural taxonomy of the framework
enhances detection systems by mapping Al
techniques to telemetry data [6]). The constant
training of Al models with the ATT&CK
datasets significantly enhances threat correlation
and detection.
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Table 2: COA Matrix of Operational Responses Across the CKC Phases

Phase Detect Deny Disrupt Degrade Deceive | Destroy
Reconnaissance Web Firewall
Analytics ACL
Weaponization NIDS NIPS
Delivery Vigilant User | Proxy Filter | In-line AV Queuing
Exploitation HIDS Patch DEP
Installation HIDS “chroot” jail AV
C2 NIDS Firewall NIPS Tarpit DNS
ACL redirect
Actions on Audit log Quality of | Honeypot
Objectives Service
Strengths of the MITRE ATT&CK 2. Not widely adopted like CKC or
1. Granular catalogue of adversarial ATT&CK
behaviours

2. Threat intelligence can be mapped to red
teaming and other SOC operations

3. Improved alignment with detection rules,
SIEMs, and EDR tools

Limitations of the MITRE ATT&CK
1. The complexity of the framework can
overwhelm security teams
2. Not designed for high-level
communication or training

strategic

3.3.2  The Unified Kill Chain (UKC)

The UKC, proposed by Hutchins and
collaborators, expands the CKC framework by
adding more phases from both real-world
campaigns and the ATT&CK framework to
make up 18 unique phases. The framework
categorises the cyberattack lifecycle into three
primary stages: initial foothold, network
propagation, and action on objectives [26, 27].

The detailed phase structure and expanded scope
of the framework provide a rich basis for
training Al models. For instance, Reinforcement
Learning systems can simulate the behaviours of
an attacker across the stages of the framework to
test and optimise defense postures [4].

Strengths of the UKC
1. Integrates insights from both ATT&CK
and the CKC frameworks
2. Captures privilege escalation and lateral
movement more accurately
3. Better suited for modelling persistent and
multi-phase cyber attacks

Limitations of the UKC

1. Increased complexity makes
implementation and interpretation more
difficult

3.3.3 The Diamond Model of Intrusion Analysis

Introduced in 2013, the framework helps to
understand cyber intrusions through four
interrelated features: adversary, capability,
infrastructure, and victim [5]. Rather than the
sequence of attack, it focuses on relationships
and causality. It is well-suited for Al-powered
threat correlation and clustering by analysing
datasets to infer relationships  between
adversaries, infrastructure, and techniques [28].

Strengths of the Diamond Model
1. The framework supports advanced
intelligence analysis and threat attribution
2. Uses observable characteristics to perform
hypothesis-driven investigations
3. Emphasises  adversary intent and
infrastructure, and aids campaign tracking

Limitations of the Diamond Model
1. The framework is less focused on specific
stages of an attack or technical mitigations
2. Not ideal for response workflows and
SOC operations

Table 3 compares the four cybersecurity
frameworks in terms of their unique strengths,
weaknesses and relevance with the prevalence of
Al in cybersecurity today. This further
underlines the effectiveness of hybridised
frameworks in mitigating evolving cyber threats.
While CKC remains valuable for structured
incident response, MITRE ATT&CK and the
UKC offer much deeper operational insight,
especially in dynamic, Al-enhanced threat
environments
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Table 3: Comparative Overview of the Cybersecurity Frameworks

Framework Focus Strengths

Weaknesses Al Relevance

CKC Linear attack | Simplicity; good for
defense planning

progression

Outdated for clouds | Useful for mapping Al
and insider threats | to known attack stages

MITRE Techniques & | Granularity; updated
threat behaviour

ATT&CK tactics matrix

Complexity Ideal for training Al
models in detection &

Less strategic analysis

Unified Kill | Extended attack Full campaign Complex Strong Al mapping
Chain lifecycle coverage; includes across persistent and
lateral movement Less adopted adaptive threats
Diamond Adversary- Adversary profiling Less suited for Excellent for Al-
Model infrastructure Intelligence-driven defense tool driven attribution and
mapping alignment clustering

The Diamond Model complements these by
supporting strategic attribution and intelligence
development. It is expedient for organisations
seeking to build Al-driven security architectures
to adopt a hybrid approach by leveraging CKC
for detection stages, ATT&CK for technical
defenses, and the Diamond Model for threat
intelligence enrichment.

4. Applications Areas of Al in Cybersecurity

The important role Al plays in cybersecurity
cannot be overemphasised. Similarly, it has
contributed greatly to the enhancement of both
the effectiveness and agility of actions across the
stages of the CKC. This subsection explores the
integral role Al plays across the different
application areas in cybersecurity.

4.1Al in Offensive Cybersecurity Operations

The offensive application of Al in cyber
operations has ushered in new dimensions of the
threat landscape. Attackers now employ Al
systems to develop polymorphic malware that
can change its code to avoid detection, automate
reconnaissance and vulnerability assessment,
and conduct highly targeted phishing attacks [4].

Cyberattacks are much more effective and
persistent today as adversaries adapt their tactics
in real-time while making efforts to breach
security systems. Social engineering has become
much more sophisticated with Generative Al
deepfakes making it difficult to distinguish
between fake and real content [4, 24].

1. Reconnaissance: The initial phase of the
CKC can be time-consuming as it involves
information gathering. Al techniques are

now used to automate Open-Source
Intelligence (OSINT) collection across
social media platforms, databases and
websites [4]. By mining and synthesising
information such as employee names,
email addresses, and software stacks,
among others, attackers can develop
precise attack vectors to curate believable
phishing messages [1].

Exploitation: Through a process known as
fuzzing, adversaries input malformed data
into software to uncover unknown
vulnerabilities. This empowers adversaries
to optimise test case generation and
prioritise likely failure points, which
drastically reduces the time needed to
exploit weaknesses even in the most
complex security systems [33]). In reverse
engineering endeavours, attackers use Al
models to understand and manipulate
binary code, firmware, or proprietary
protocols to find entry points into systems.
Evasion: Al has also become a critical
enabler of evasion techniques, particularly
in the use of Adversarial Machine
Learning. Attackers craft inputs, such as
modified malware samples or poisoned
datasets that deliberately deceive Al-based
security models like Intrusion Detection
Systems (IDS) or malware classifiers. By
altering features subtly, adversarial
attackers can bypass defenses without
triggering alerts before proceeding to
exploit the vulnerabilities in the learning
algorithms directly [34].

Phishing and Malware Customisation:
With GPT-based models, adversaries can
now generate personalised phishing
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campaigns that mimic the writing styles of
victims. Adversaries use deepfakes to
impersonate people and executives of
organisations to carry out scams such as
the Business Email Compromise (BEC).
Furthermore, Al-enhanced malware
delivered to a target system can alter the
system’s configurations such that it delays
execution to avoid sandbox detection [1].

4.2 Al in Defensive Cybersecurity Operations
The offensive application of Al in cyber
operations has ushered in new dimensions of the
threat landscape by enabling attackers to develop
polymorphic malware that can change its code to
avoid detection, automate reconnaissance and
vulnerability assessment, and conduct highly
targeted phishing attacks [4].

To effectively mitigate evolving cyber threats,
the following systems have been adopted:

1. Anomaly Detection (IDS/1PS):
Cybersecurity teams in organisations and
states are beginning to discard signature-
based Intrusion  Detection/Prevention
Systems for more dynamic and current
alternatives that do not rely on predefined
patterns.  Supervised Learning and
Unsupervised Learning ML algorithms are
now employed to accurately detect
anomalies in network traffic. Considering
that there is a continuous flow of traffic
within the network, Intrusion Detection
Systems are developed using the Online
Learning ML paradigm, thereby always
ensuring adaptability to novel threats [11].

2. Malware Detection and Classification: In
the past, antivirus programs used known
malware signatures to scan systems, which
has proven to be ineffective in detecting
masked cyberattacks. Al-based malware
detection systems are trained on large
datasets to generalise accurately by

constantly training the models with new
datasets obtained from continuous network
monitoring, as described in Figure 2. To
build adaptive systems, security teams can
develop hybrid models by combining
static, dynamic, and contextual analysis or
utilise Deep Learning architectures, such
as CNN and RNNs that are known to be
highly effective in detecting masked
variations and zero-days in cyber threats
[1].

User and Entity Behaviour Analytics
(UEBA): This involves the use of
statistical analysis and ML technigues to
detect and analyse anomalies in both user
and entity behaviour across systems and
networks. By monitoring the behavioural
patterns, the ML model learns about the
network and promptly flags noticeable
deviations such as compromised accounts,
lateral movements, or unusual network
traffic. UEBA drastically reduces false
positives by constantly improving its
network traffic classification. To enhance
the threat visibility of a network, security
teams are encouraged to deploy UEBA
with the SIEM tool [35].

Automating Threat Intelligence and
Incident Response: This helps security
teams to obtain more context about cyber
threats. NLP tools are now used for
mining, analysing and  extracting
actionable intelligence from unstructured
data. The intelligence obtained is used to
correlate  disparaging  indicators  of
compromise (I0Cs), monitor trends to
predict threats, and prioritise alerts based
on the context and severity of attacks.
Furthermore, the automation of incident
response minimises human interference by
executing actions such as the isolation of
compromised systems and IP addresses
blocking [4].

Data from continuous monitoring Analyze huge amounts of data Pinpoint possible threats

and anomalies

Figure 2: Illustration of the role of Al in cybersecurity defense operation (adapted from Astra [32])
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4.3 Case-Based Incidents

Real-world cyber incidents highlight the
growing role of Al across cybersecurity
operations. This section presents key examples
of high-profile attacks and the corresponding
influence of Al techniques. These case studies
exemplify the dual role of Al in amplifying
attack effectiveness and in empowering timely
detection and mitigation.

4.3.1 Stuxnet (2010)

Stuxnet, although predating the contemporary
rise of Al, laid foundational strategies that are
now being enhanced through Al. Its multi-stage
attack mirrored the CKC, from reconnaissance to
physical destruction. If executed today, Al
would augment its evasion techniques using
behavioural cloaking and optimise payload
delivery through Al-powered reconnaissance of
SCADA systems. Defensively, Al-driven
anomaly detection tools could flag the abnormal
operation of programmable logic controllers
(PLCs) far earlier than traditional signature-
based methods.

4.3.2 SolarWinds Attack (2020)

The SolarWinds  supply chain  attack
demonstrated the potential scale of stealthy,
long-term infiltration. Al could have played a
role in both improving the attacker’s ability to
identify low-noise lateral movement and evasion
tactics and in helping defenders detect anomalies
in network behaviour and irregular data
exfiltration. Al-enhanced threat intelligence
platforms that cross-correlate system behaviours
and code patterns across multiple clients may
have reduced the detection time.

4.3.3 Microsoft Exchange Server Exploits (2021)
This attack campaign exploited zero-day
vulnerabilities in Microsoft Exchange servers.
Al-based fuzzing tools may have accelerated the
exploitation process by identifying
vulnerabilities faster than traditional methods.
On the defensive end, Al-enabled Endpoint
Detection and Response (EDR) platforms have
been critical in post-exploit detection, helping
security teams recognise behavioural anomalies
and isolate affected systems before further
lateral movement.

4.3.4 Colonial Pipeline Ransomware Attack
(2021)

The 2021 Colonial Pipeline incident revealed

weaknesses in ransomware preparedness. While

Al may not have been used directly by attackers,

the use of Al-enabled phishing kits to automate
the targeting process is a growing trend. In
contrast, Al-based email filters, UEBA tools,
and ransomware behaviour classifiers could have
been used defensively to detect suspicious
activity in the early phases of the kill chain.

5. Conclusion

This paper presents an overview of the CKC
framework, exploring its structure, areas of
application, and integration with Al by critically
analysing the double-edged role it plays across
each stage of the CKC framework. In recent
literature, the CKC has proven to remain a
relevant framework in cybersecurity threat
modelling as its linear, sequential approach
enables security teams the ability to identify and
mitigate even the most complex cyber threats.
However, it is not without its limitations; hence,
organisations  should  consider  deploying
frameworks such as the MITRE ATT&CK that
offer a more granular and flexible taxonomy of
the tactics and techniques used by cyber
attackers.

5.1 Future Research Directions

The fusion of Al and cybersecurity has led to the
development of much-improved strategies and
systems to handle the sophisticated cyber threats
in our world today. However, there exist critical
gaps that should be explored further in academic
investigation. Considering the linearity of the
CKC, more studies should be carried out to
explore how it performs when deployed in
tandem with other frameworks. Al models
perform best when trained when quality data and
with access to data come issues such as privacy.
More studies should be conducted on the best
approach to enhance Al model transparency and
explainability [30, 31]. The following are other
areas future research studies should be directed
at:

1. Legal, Ethical, and Policy Frameworks
Governing the Use of Al in Cybersecurity:
Al has equipped both the bad guys and the
good actors with tools and techniques to
carry out their objectives across the
cybersecurity landscape, thereby raising
ethical and legal questions. Intentional
efforts should go into the development of
frameworks for responsible Al in areas of
discussion such as international norms,
accountability mechanisms, and ethical
red lines for the use of Al in cybersecurity
applications.
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2. Explainable Artificial Intelligence (XAl):

The reliance on Al for decision-making
does not look like slowing down in areas
such as real-time threat detection or
automated incident response. Therefore,
future research must focus on bridging the
gap between complex Al models and
human understanding as this increases
trust across systems such as the
exploitation and C2 phases of the CKC
framework.

Design of Resilient Al Systems Against
Adversarial Attacks: Al models are
inherently vulnerable to adversarial attacks,
where small perturbations in input data
can mislead systems into incorrect
classifications or predictions. In the
context of the CKC, such vulnerabilities
could be exploited to bypass detection
systems or manipulate  automated
responses. Future research must explore
the development of robust Al architectures
and adversarial training techniques that
can withstand sophisticated evasion
strategies.

Development of Simulation Environments

to Evaluate Al Models Across CKC Stages:

The development of a controlled
simulation environment will give room for
security teams to test how their security
systems respond to threat incidents under
diverse cyberattack scenarios across the
phases of the CKC framework. By
developing open-source, modular
simulators, cyberattacks can be
reproduced to fine-tune the architecture to
withstand actual attacks.

References

[1]

[2]

[3]

[4]

Gaber, M. G., Ahmed, M., & Janicke, H. (2024).
Malware Detection with Artificial Intelligence: A
Systematic Literature Review. ACM Computing
Surveys, 56(Article 148), 1-33.
https://doi.org/10.1145/3638552

Berman, D. S., Buczak, A. L., Chavis, J. S., &
Corbett, C. L. (2019). A Survey of Deep
Learning Methods for Cyber  Security.
Information, 10, 122.
https://doi.org/10.3390/info10040122

Hutchins, E. M., Cloppert, M. J., & Amin, R. M.
(2011). Intelligence-Driven Computer Network
Defense Informed by Analysis of Adversary
Campaigns and Intrusion Kill Chains. Leading
Issues in Information Warfare and Security
Research, 1, 80-106.

Kazimierczak, M., Habib, N., Chan, J. H., &
Thanapattheerakul, T. (2024). Impact of Al on
the Cyber Kill Chain: A Systematic Review.

(5]

(6]

[7]

(8]

[l

Heliyon, 10, e40699.
https://doi.org/10.1016/j.heliyon.2024.e40699
Caltagirone, S., Pendergast, A., & Betz, C.
(2013). The Diamond Model of Intrusion
Analysis (Report No. ADA586960). U.S.
Department of Defense.
http://dx.doi.org/10.13140/RG.2.2.31143.265648
1

Kim, H., Kwon, H., & Kim, K. K. (2019).
Modified Cyber Kill Chain  Model for
Multimedia Service Environments. Multimedia
Tools and Applications, 78, 3153-3170.
https://doi.org/10.1007/s11042-018-5897-5
Vieira, S., Pinaya, W. H., & Mechelli, A. (2019).
Introduction to Machine Learning. In Machine
learning: Methods and Applications to Brain
Disorders (pp. 1-6). Elsevier.
https://doi.org/10.1016/B978-0-12-815739-
8.00001-8

Sharma, N., Sharma, R., & Jindal, N. (2021).

Machine  Learning and Deep Learning
Applications — A Vision. Global Transitions
Proceedings, 2, 24-28.

https://doi.org/10.1016/j.gltp.2021.01.004
Sarker, I. H., Kayes, A. S. M., Badsha, S.,
Algahtani, H., Watters, P., & Ng, A. (2020).
Cybersecurity Data Science: An Overview from
Machine Learning Perspective. Journal of Big
Data, 7, 41. https://doi.org/10.1186/s40537-020-
00318-5

[10] Buczak, A. L., & Guven, E. (2016). A Survey of

Data Mining and Machine Learning Methods for
Cyber Security Intrusion Detection. IEEE
Communications Surveys & Tutorials, 18, 1153-
1176.
https://doi.org/10.1109/COMST.2015.2494502

[11] Mohamed, N. (2025). Artificial Intelligence and

Machine Learning in Cybersecurity: A Deep
Dive into State-of-the-Art Techniques and Future
Paradigms. Knowledge and Information Systems.
https://doi.org/10.1007/s10115-025-02429-y

[12] Awad, A. I., Babu, A., Barka, E., & Shuaib, K.

(2024). Al-Powered Biometrics for Internet of
Things Security: A Review and Future Vision.
Journal of Information Security and Applications,
82, 103748.
https://doi.org/10.1016/j.jisa.2024.103748

[13] Mehmood, K., Ashraf, Z., Igbal, R., Rafique, A.

A., Gul, H., & Khawaja, D. (2025). Cyber
Security Governance as a Pillar of Enterprise
Risk Management: Designing a Compliance-
Driven Framework for Operational Resilience,
Policy Enforcement, and Regulatory Alignment.
Annual  Methodological Archive Research
Review, 3, 59-77.
https://doi.org/10.63075/0jv35d33

[14] Toussaint, M., Krima, S., & Panetto, H. (2024).

Industry 4.0 Data Security: A Cybersecurity
Frameworks Review. Journal of Industrial
Information Integration, 39, 100604.
https://doi.org/10.1016/j.jii.2024.100604

243 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627


https://doi.org/10.1145/3638552
https://doi.org/10.3390/info10040122
https://doi.org/10.1016/j.heliyon.2024.e40699
http://dx.doi.org/10.13140/RG.2.2.31143.2656481
http://dx.doi.org/10.13140/RG.2.2.31143.2656481
https://doi.org/10.1007/s11042-018-5897-5
https://doi.org/10.1016/B978-0-12-815739-8.00001-8
https://doi.org/10.1016/B978-0-12-815739-8.00001-8
https://doi.org/10.1016/j.gltp.2021.01.004
https://doi.org/10.1186/s40537-020-00318-5
https://doi.org/10.1186/s40537-020-00318-5
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1007/s10115-025-02429-y
https://doi.org/10.1016/j.jisa.2024.103748
https://doi.org/10.63075/0jv35d33
https://doi.org/10.1016/j.jii.2024.100604

[15] Odarchenko, R., Pinchuk, A., Polihenko, O., &
Skurativskyi, A. (2025). A Comparative Analysis
of Cyber Threat Intelligence Models. In
Proceedings of the Third International
Conference on Cyber Hygiene & Conflict
Management in Global Information Networks
(CH&CMIGIN 2024) (pp. 3-12). CEUR-WS.org.

[16] Naik, N., Jenkins, P., Grace, P., & Song, J.
(2022). Comparing Attack Models for IT
Systems: Lockheed Martin’s Cyber Kill Chain,
MITRE ATT&CK Framework and Diamond

Model. In Proceedings of the 2022 IEEE
International Symposium on Systems
Engineering  (ISSE) (pp. 1-7). IEEE.

https://doi.org/10.1109/ISSE54508.2022.100054
90

[17]Sayed, M. A., Anwar, A. H., Kiekintveld, C.,
Bosansky, B., & Kamhoua, C. (2023). Cyber
Deception Against Zero-Day Attacks: A Game
Theoretic Approach. arXiv.
https://arxiv.org/abs/2307.13107

[18]Bada, M., Sasse, M. A., & Nurse, J. R. (2019).
Cybersecurity Awareness Campaigns: Why do
they fail to Change Behaviour? arXiv.
https://arxiv.org/abs/1901.02672

[19] Touré, A., Imine, Y., Semnont, A., Delot, T., &
Gallais, A. (2024). A Framework for Detecting
Zero-Day Exploits in Network Flows. Computer
Networks, 248, 110476.
https://doi.org/10.1016/j.comnet.2024.110476

[20] Dargahi, T., Dehghantanha, A., Bahrami, P. N.,
Conti, M., Bianchi, G., & Benedetto, L. (2019).
A Cyber-Kill-Chain Based Taxonomy of Crypto-
Ransomware Features. Journal of Computer
Virology and Hacking Techniques, 15, 153-174.
https://link.springer.com/article/10.1007/s11416-
019-00338-7

[21] Strom, B. E., Applebaum, A., Miller, D. P,
Nickels, K. C., Pennington, A. G., & Thomas, C.
B. (2018). MITRE ATT&CK: Design and
Philosophy. MITRE Corporation.

[22] Mavroeidis, V., & Bromander, S. (2017). Cyber
Threat Intelligence Model: An Evaluation of
Taxonomies, Sharing Standards, and Ontologies
within Cyber Threat Intelligence. In Proceedings
of the 2017 European Intelligence and Security
Informatics  Conference  (EISIC).  IEEE.
https://doi.org/10.1109/E1SIC.2017.20

[23]Abo El Rob, M. F., Islam, M. A., Gondi, S., &
Mansour, O. (2024). The Application of MITRE
ATT&CK Framework in Mitigating
Cybersecurity Threats in the Public Sector.
Issues in Information Systems, 25, 62-80.
https://doi.org/10.48009/3_iis_2024 106

[24] CrowdStrike. (2025). What is the Cyber Kill
Chain? Retrieved June 2, 2025, from
https://www.crowdstrike.com/en-
us/cybersecurity-101/cyberattacks/cyber-kill-
chain/

[25] Splunk. (2025). Cyber Kill Chains: Learn How
They Work and How to Break Them. Retrieved
June 2, 2025, from

https://www.splunk.com/en_us/blog/learn/cyber-
kill-chains.html

[26] Cipher Security. (2024, September 14). The
Unified Kill Chain: A Comprehensive Approach
to Cybersecurity Defense. Retrieved June 2,
2025, from https://cipherssecurity.com/unified-
kill-chain-approach-to-cyber-defense/

[27]Pols, P. (2023). The Unified Kill Chain: Raising
Resilience against Advanced Cyberattacks
(Version 1.3). Retrieved June 2, 2025, from
https://www.unifiedkillchain.com/

[28] Sanchez del Monte, A., & Hernandez-Alvarez, L.
(2023).  Analysis of  Cyber-Intelligence
Frameworks for Al Data Processing. Applied
Sciences, 13, 9328.
https://doi.org/10.3390/app13169328

[29]Hubbard, D. W., & Seiersen, R. (2023). How to
Measure Anything in Cybersecurity Risk (2nd
ed.). Wiley. https://www.wiley.com/en-
us/How+to+Measure+Anything+in+Cybersecurit
y+Risk%2C+2nd+Edition-p-9781119892304

[30]Ali, 1. (2024). Al Transparency and
Explainability. Frankfurt University of Applied
Sciences. Retrieved June 2, 2025, from
https://www.researchgate.net/publication/386416
207

[31] Marey, A., Arjmand, P., Alerab, A. D. S., Elsami,
M. J., Saad, A. M., Sanchez, N., & Umair, M.
(2024). Explainability, Transparency and Black
Box Challenges of Al in Radiology: Impact on
Patient Care in Cardiovascular Radiology.
Egyptian Journal of Radiology and Nuclear
Medicine, 55, 183.
https://doi.org/10.1186/s43055-024-01356-2

[32] Astra (2025). Al in Cybersecurity: Benefits and
Challenges. Retrieved June 2, 2025, from
https://www.getastra.com/blog/ai-security/ai-in-
cybersecurity/

[33] Mohurle, S., & Patil, M. (2017). A Brief Study of
WannaCry Threat: Ransomware Attack 2017.
International Journal of Advanced Research in
Computer Science, 8, 1938-1940.

[34] Sharma, D. P., Habibi Lashkari, A., Firoozjaei,
M. D., Mahdavifar, S., & Xiong, P. (2025).
Defense Methods for Adversarial Attacks and
Privacy Issues in Secure Al. In Understanding Al
in Cybersecurity and Secure Al (pp. 159-195).
Springer. https://doi.org/10.1007/978-3-031-
91524-6_9

[35]Khalig, S., Tarig, Z. U. A., & Masood, A. (2020).
Role of User and Entity Behaviour Analytics in
Detecting Insider Attacks. In Proceedings of the
2020 International Conference on Cyber
Warfare and Security (ICCWS) (pp. 1-6). IEEE.

[36] Azeez, N. A., & Ajetola, A. R. (2009).
Exploration of the Gap Between Computer
Science Curriculum and Industrial IT Skills
Requirements.  International  Journal  of
Computer Science and Information Security
(1JCSIS), 4(1 & 2), [n.p.], USA.

[37]Azeez, N. A, Venter, . M., & Tiko, I. (2011).
Grid  Security Loopholes with  Proposed

244 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627


https://doi.org/10.1109/ISSE54508.2022.10005490
https://doi.org/10.1109/ISSE54508.2022.10005490
https://arxiv.org/abs/2307.13107
https://arxiv.org/abs/1901.02672
https://doi.org/10.1016/j.comnet.2024.110476
https://link.springer.com/article/10.1007/s11416-019-00338-7
https://link.springer.com/article/10.1007/s11416-019-00338-7
https://doi.org/10.1109/EISIC.2017.20
https://doi.org/10.48009/3_iis_2024_106
https://www.crowdstrike.com/en-us/cybersecurity-101/cyberattacks/cyber-kill-chain/
https://www.crowdstrike.com/en-us/cybersecurity-101/cyberattacks/cyber-kill-chain/
https://www.crowdstrike.com/en-us/cybersecurity-101/cyberattacks/cyber-kill-chain/
https://www.splunk.com/en_us/blog/learn/cyber-kill-chains.html
https://www.splunk.com/en_us/blog/learn/cyber-kill-chains.html
https://cipherssecurity.com/unified-kill-chain-approach-to-cyber-defense/
https://cipherssecurity.com/unified-kill-chain-approach-to-cyber-defense/
https://www.unifiedkillchain.com/
https://doi.org/10.3390/app13169328
https://www.wiley.com/en-us/How+to+Measure+Anything+in+Cybersecurity+Risk%2C+2nd+Edition-p-9781119892304
https://www.wiley.com/en-us/How+to+Measure+Anything+in+Cybersecurity+Risk%2C+2nd+Edition-p-9781119892304
https://www.wiley.com/en-us/How+to+Measure+Anything+in+Cybersecurity+Risk%2C+2nd+Edition-p-9781119892304
https://www.researchgate.net/publication/386416207
https://www.researchgate.net/publication/386416207
https://doi.org/10.1186/s43055-024-01356-2
https://www.getastra.com/blog/ai-security/ai-in-cybersecurity/
https://www.getastra.com/blog/ai-security/ai-in-cybersecurity/
https://doi.org/10.1007/978-3-031-91524-6_9
https://doi.org/10.1007/978-3-031-91524-6_9

Countermeasures. In Proceedings of the 26th
International Symposium on Computer and
Information Sciences (ISCIS 2011), Imperial
College, London, UK. Springer Verlag.

[38] Azeez, N. A., & Van Vyver, C. (2018). Security

Challenges and Suggested Solutions for E-Health
Information in Modern Society. In Proceedings
of the 5th EAI International Conference on loT

Technologies for HealthCare (HealthyloT 2018),
Guimarées, Portugal.
http://healthyiot.org/accepted-papers/

[39] Azeez, N. A., & Anochirionye, E. C. (2017).

Detecting Malicious and Compromised URLSs in
E-Mails using Association Rule. Covenant
Journal of Informatics and Communication
Technology (CJICT), 5(2), 36-48.

245 UIJSLICTR Vol. 14 No. 1 June. 2025 ISSN: 2714-3627


http://healthyiot.org/accepted-papers/

