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Abstract

Sickle Cell Anaemia (SCA) significantly impacts haemoglobin (HGB) levels, leading to severe health
complications with high mortality rates. In Nigeria, about 2% of newborns, approximately 150,000 annually, are
diagnosed with SCA. Accurate HGB monitoring is essential for effective disease management, yet traditional
methods are labour-intensive and prone to errors. This necessitates automated and reliable diagnostic techniques
like machine learning (ML) for improved SCA management. This study classifies HGB levels in SCA patients
using clinical records and ML techniques. A dataset of 364 records (203 female population) was obtained from
Kaggle; a public data repository containing eleven (11) features namely: age, sex, red blood cell (RBC) count,
packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean
corpuscular haemoglobin concentration (MCHC), red cell distribution width (RDW), total leukocyte count
(TLC), platelets per cubic millimeter (PLT/mm3), and haemoglobin (HGB). Two ML models, Logistic
Regression (LR) and Support Vector Machine (SVM), were used with two feature selection methods: all features
and selected features. The latter identified age, RBC, PCV, MCV, and HGB as key predictors. Continuous HGB
values were categorized into (1) low, (2) normal, and (3) high using standard medical metrics. SMOTE analysis
was also carried out to mitigate class imbalance. SVM with a Radial Basis Function (RBF) kernel achieved
84.90% accuracy and AUC-ROC of 93.40%, while LR underperformed with 79.50% accuracy and AUC-ROC
of 90.90%. Using all feature selection, SVM improved to 91.80% accuracy and AUC-ROC of 98.20%, with LR
achieving accuracy of 93.20% and AUC-ROC of 98.90%. Both models demonstrated high accuracy, with LR
excelling using all features, while SVM performed better with selected features. Future work will involve the use
of primary datasets, additional feature selection techniques and ML algorithms, and incorporate the use of
Haemoglobin variants to provide further insight into SCA progression and in turn offer personalized treatment.

Keywords: Haemoglobin level classification, Logistic Regression, Machine learning models, Sickle cell anaemia,
Support Vector Machine

1. Introduction are sickle-shaped and deformed. This
Sickle Cell Anaemia (SCA) is a hereditary morphological  abnormality  hinders the

blood disease that is characterized by sickled
red blood cell (RBC) usual caused by an
abnormal gene mutation [1]. This abnormality
is caused by a genetic substitution of glutamic
acid with valine which alters the nature and
function of RBCs. Unlike normal RBCs which
are biconcave in nature, a SCA’s patient RBCs
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seamless flow of blood, thereby leading to
acute complications [2]. This structural
abnormality  disrupts  oxygen  transport,
precipitating vaso-occlusion, chronic
haemolysis, and ischemic tissue damage, which
cumulatively contribute to severe complications
such as stroke, organ dysfunction, and acute
chest syndrome [3, 4]. The disease
predominantly affects individuals of African,
Mediterranean, Middle Eastern, and Indian
ancestry, with Nigeria bearing the highest
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global burden, where approximately 150,000
infants are born annually with the condition
[5,6]. Despite advancements in treatment, SCA
continues to pose a significant public health
challenge due to its high morbidity and
mortality, particularly in low-resource settings
with limited access to specialized healthcare.

The severity of sickle cell disease varies greatly
among varied populations, necessitating proper
classification. This severity is driven by a
variety of radiological variables, including
RBC shortage and the frequency of clinical
signs such as acute chest syndrome [7,8].
Haemoglobin (HGB) levels are a good
predictor of SCA severity and ongoing clinical
symptoms. Patients who suffer these ongoing
manifestations always require appropriate and
attentive care to improve their life expectancy
[9,10]. Traditional techniques of SCA severity
categorization rely exclusively on blood smear
investigation of the patient. However, the
process can be tasking and susceptible human
error especially in low resourced area where
access to top notch diagnostic tools is
unavailable [11, 12].

The increasing availability of large-scale
clinical datasets and advancements in
computational methodologies have facilitated
the application of artificial intelligence (Al) and
machine learning (ML) techniques in medical
diagnostics, offering a promising paradigm
shift in disease classification and predictive
analytics [11, 3].

ML models have demonstrated remarkable
efficacy in various healthcare applications,
including disease  detection,  prognostic
modelling, and personalized medicine, by
leveraging high-dimensional data to uncover
intricate patterns that may not be immediately
apparent through conventional statistical
methods [11, 12, 14]. In the context of SCA,
ML-based  classification  systems  hold
significant potential for improving the accuracy
and efficiency of HGB level estimation,
thereby enabling more timely and targeted
therapeutic interventions [14]. Among the array
of ML algorithms explored for classification
tasks, Support Vector Machines (SVM) and
Logistic Regression (LR) have emerged as
viable candidates due to their robust decision-
making capabilities and interpretability in

clinical settings [14]. While SVM excels in
constructing optimal hyperplanes to delineate
complex classification boundaries, LR provides
a probabilistic framework for modelling the
likelihood of different disease states based on
predictive variables, both of which are critical
for reliable HGB classification [14,15].

Despite the transformative potential of ML
models in haematological diagnostics, research
in this domain remains relatively nascent,
necessitating further empirical investigations to
establish their clinical validity and real-world
applicability. Existing studies have primarily
focused on model optimization through
hyperparameter tuning and feature engineering
to enhance classification performance [14, 15,
16]. However, a persistent challenge in ML-
based classification lies in feature selection,
where the inclusion of extraneous variables
may introduce noise and compromise model
interpretability [16]. To address this limitation,
this study employed a dual-feature selection
strategy comprising all feature selection and
selected features. The former leverages all
available features to maximize predictive
power, while the latter prioritizes clinically
relevant variables to improve interpretability
and facilitate integration into existing
diagnostic ~ workflows. A comparative
evaluation of these models was conducted
based on key performance metrics, including
accuracy, precision, recall, and computational
efficiency, to ascertain the optimal balance
between model complexity and diagnostic
utility.

By integrating ML techniques into SCA
management, this study aims to classify HGB
levels in SCA patients using SVM and LR
models. By leveraging machine learning
techniques, we aim to improve the accuracy
and reliability of HGB level classification in
SCA cases, provide improved patient outcomes
and reduced healthcare burdens associated with
chronic haemoglobinopathies classification.

2. Related Works

An increasingly large number of studies have
been devoted to the deployment of machine
learning (ML) methods in healthcare diagnosis,
especially in the case of hematologic diagnosis
categories. These ML approaches have
demonstrated great potential in the process of
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correctly predicting and diagnosing blood
disorders like leukaemia, anaemia and SCA
through the examination of complete blood
count (CBC) parameters and other pertinent
biomarkers [7]. Though these breakthroughs
have largely influenced the diagnosis of
medical conditions, specifically haematological
diseases, there exists a lapse in the actual area
of haemoglobin (HGB) classification amongst
the carriers of SCA. Precise classification of
HGB level is essential, as it is one of the central
indicators of SCA severity.

HGB levels classification are of clinical
benefits in SCA management [6, 7, 18]. One of
the most significant factors of the disease
progression  and life-threatening  risks
assessment is the level of haemoglobin
concentration that is used to individualize
transfusion guidelines [8]. Patients who have
low levels of HGB portray high danger of
critical anaemia, multi-organ injury and high
morbidity [7, 8, 9]. Furthermore, molecular
analysis can give rise to a more accurate
classification that allows clinicians to develop a
more patient-specific treatment plan, maximize
transfusion plan and accurately monitor the
effectiveness of treatment. Timely and correct
classification also has the benefits of lowering
hospitalization rates and long-term outcomes of
patients.

The ability to handle a high dimension dataset
and influence robustness makes SVM and LR
some of the most used ML algorithms. SVM is
highly efficient in its performance with binary
classification task and is used in areas such as
oncology and  cardiovascular  diseases
diagnostics [8,16]. Likewise, LR has been used
clinically to draw and understand patient
outcome based on input variable and it had
been seen to be especially instrumental in
monitoring disease progression [9,10,17].
Empirical research has confirmed the capability
of these models to appropriately categorize
medical conditions with various arrays of
biomarkers.  Indeed, SVM has been
demonstrated to be useful in classification of
various anaemia types based on blood analysis
[10]. Similarly, in the COVID-19 patients, it
has been found that LR was helpful in
estimating the level of haemoglobin and other
important haematological features that assisted

in categorizing the health profile of patients
[11, 18].

In contrast to other ML-based works that have
studied either the diagnosis of SCA or the
detection of sickle cell traits, little attention has
been given to the task of classifying the level of
HGB to assist with clinical decision-making
[6,7,16]. Bhatia et al. [17] used deep learning
techniques to classify red blood cell
morphologies in SCA patients with 81%
accuracy in reference to the cell types including
sickle cells and ovalocytes. Nonetheless, they
focused on the morphology of the cells instead
of an actual estimation of the HGB levels. A
similar work was done by Srivastava et al. [18]
in which ML models based on spectroscopy
data were used to diagnose SCA with high
sensitivity and specificity, although this work
did not solve the problem of quantifying HGB.

Additionally, Ekong et al. [19] designed a
classification system that diagnoses SCA in
adolescents using a Bayesian network with 99
percent accuracy. Still, they emphasized only
disease identification, but nothing was done on
HGB classification. Concurrent to that,
Alzubaidi et al. [20] presented deep learning
lightweight models capable of classifying
erythrocytes into  normal, sickle, and
miscellaneous categories. Nonetheless, in such
method quantitative assessments of
haemoglobin parameters were excluded, which
rendered the model inapplicable in treatment
monitoring.

Though such studies reinforce the idea of the
viability of ML in hematological diagnostics,
the direct classification of HGB levels has not
been studied well. Another work is that of Dada
et al. [21] who applied convolutional neural
networks (CNNs) to study peripheral blood
smears in a children population and obtained an
anaemia detection of 92% precise rate although
they did not measure the level of haemoglobin
in a blood sample. Likewise, Zemariam et al.
[22] used a variety of ML classifiers to
determine the anaemia prevalence rate among
Ethiopian adolescent girls, and Random Forest
scored an area under the curve (AUC) of 82%.
However, they were concerned with general
anaemia prediction, but not HGB level. Hybrid
ML models with the attention mechanism were
also suggested by Ramzan et al. [23] in respect
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of the anaemia detection, which obtained a
promising model high accuracy but without
focusing on HGB at SCA patients.

With the view of mitigating this gap, the
current study focused on determining the
performance of SVM and LR models in
classifying the HGB level using a well-known
CBC data primarily gathered by Mendeley
team which was obtained from Kaggle
repository. Focusing only on the issue of HGB
classification in SCA patients, the study aims
develop a machine learning framework for
classifying haemoglobin levels in sickle cell
anaemia patients. The knowledge obtained can
be used as a useful input to the developing area
of ML application in medical diagnosis and

Data Acquisition

Preprocessing

ta Reauction or

Model
Testing

further encourage extensive research in the
field of SCA management.

3. Methodology

The approach used to develop the SCA HGB
level classification model are discussed here.
The process involved five main stages as
shown in Figure 1; each stage is structured to
ensure a systematic workflow for model
development, optimization, and thorough
assessment.

3.1 Data Collection and Description

The dataset used in this study is the Mendeley
Complete Blood Count dataset source from
Kaggle, an open-source standard dataset
repository. The dataset contained 364 patient
records and 11 features seen in Table 1.

Data Preprocessing

Dt
intogration

Feature Selection
(Age, Sex, RBC,
PCV, MCV, MCH,

>
MCHC, RDW, TLC,

and PLT)

Data Splitting

Data

T

Figure 1: Classification Architecture
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Table 1:

CBC Dataset Feature Description

SIN Feature Description Data Completeness
(%)

1 Age (years) The chronological age of the individual in 100

years.

2 Sex The biological classification of the individual | 100

as either male or female.

3 Red Blood Count The number of red blood cells present per 100
(RBC) unit volume of blood, typically measured in

millions per microliter.

4 Packed Cell Volume | Also known as hematocrit, it represents the 100
(PCV) percentage of blood volume occupied by red

blood cells.

5 Mean Corpuscular The average volume of a single red blood 100
Volume (MCV) cell, measured in femtoliters (fL).

6 Mean Corpuscular The average amount of Haemoglobin in a 100
Haemoglobin (MCH) | single red blood cell, measured in picograms

(P9).

7 Mean Corpuscular The average concentration of Haemoglobin 100
Haemoglobin in each volume of packed red blood cells,
Concentration measured in g/dL.

(MCHC)

8 Red Cell Distribution | A measure of the variation in red blood cell 100
Width (RDW) size, expressed as a percentage.

9 Total Leukocyte | The total number of white blood cells in each | 100
Count (TLC) volume of blood, measured in thousands per

microliter (x103/uL).

10 Per Cubic Millimetre | The platelet count, indicating the number of 100
(PLT /mm3) platelets per cubic millimeter of blood.

11 Haemoglobin (HGB) | The concentration of Haemoglobin in the 100

blood, measured in grams per deciliter
(g/dL), which is crucial for oxygen transport.

3.2 Data Preprocessing and Feature Selection

In preparing the dataset for machine learning
functionalities, the sex feature, with categorical
variables were transformed into numerical
values using One-Hot Encoding (OHE),
ensuring that qualitative features were
represented in a binary format without
imposing an artificial ordinal relationship
[11,12,24]. SMOTE analysis was also
employed to handle class imbalance to improve
model generalizability.

Also, HGB levels, originally recorded as a
continuous numerical variable within the range
of 4.2 g/dL to 19.6 g/dL, were discretized to
enhance clinical interpretability and model
performance. The discretization process was
conducted using a binning technique based on
established medical thresholds for haemoglobin
classification [12,24]. The HGB level was
mapped using clinically relevant metrics such

that Low is (0-12 g/dL), Normal is (12-16
g/dL), and High is (>16 g/dL). This was done
using the binning which partitions the range
into predefined bins and assigns discrete labels
accordingly as shown below:

Mathematically, the binning function can be
expressed as:

f(HGB) =
0,if HGB < 12 g/dL
Lif 12 < HGB < 16
2,if HGB > 16 g/dL

(1)

Where f(HGB) represents the discretized
haemoglobin category. This technique was
tailored to mirror real-world medical diagnostic
ranges in alignment with the classification
models to ensure realistic results [24]. This will
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improve clinical relevance and model’s
predictive capabilities.

Feature Selection Technique

All feature (AF), and literature selected features
(SF) sets were used to ascertain the significance
of features on model's performance and for
comparison purposes. Clinical and
hematological features that are important for
predicting HGB levels were tagged as SF based
on literature [12]. This informed the study to
select features like age, RBC, PCV, MCV, and
HGB as key predictors that are critical in the
diagnosis of conditions like anaemia, including
sickle cell anaemia.

Data Splitting

To avoid model train-test bias and maintain a
balanced distribution of HGB level dataset
between the train and test sets, this study
employed a stratified sampling techniques and
the dataset was split into 70:30 percentile [8,
12].

np = % X 1. (2)

Where ny, is the sample size for stratum h, Ny
is the population size for stratum, N is the
population size and n are the desired sample
size. This ensures that each subgroup (stratum)
is proportionally represented in the sample,
maintaining the distribution of the population.

3.3 Model Development and Implementation

Four models were built, namely SVM using the
entire features, SVM using selected features,
LR using the entire features and LR using
selected features. The SVM and LR models
contributes uniquely to the overall performance
of HGB level classification, ensuring a robust
and well-balanced predictive approach as
shown in Figure 2. In the context of this study,
SVM RBF kernel was employed to handle non-
linear dataset attributes. While the LR model,
L1 regularization was employed. RF n-

estimators was set, and maximum tree was used.

LR and SVM were precisely selected based on
their efficacy in handling medical data
classification tasks [19, 24]. SVM adapts well
to datasets with high dimensionality and good
in capturing nonlinear relationships within
datasets especially when using kernel function
[19]. However, LR is a simple but powerful
model that uses statistical probabilistic
interpretation ability to predict results. The

feature selection techniques were also added to
understand how different features contribute to
HGB levels prediction. Furthermore, the
models were trained independently to allow
their individual strengths contribute to a
reliable and well-balanced classification
system.

3.4 Evaluation Metrics

The following performance metrics were used
to access the performance of the two ML
models:

1. Accuracy was used to determine the
model’s total correct prediction in relation
to the actual values. This is paramount to
ensure efficient classification task.

TP+FP
TP+TN+FP+FN

Accuracy = 3
2. Precision was used to determine the
proportion of true positive predicted
correctly and evaluate the model’s ability

to minimize false positive predictions.

TP
TP+FP

Precision =

(4)

3. Recall also known as sensitivity was used
was employed to measure the proportion of
actual positive cases that were correctly
identified by the mode.

TP
TP+EN ®)

Recall =

4. F1-Score was employed to measure the
balance between precision and recall
especially when data imbalance is present.

PrecisionxRecall
F1 —Score = 2 X —— 22T ()

Precision+ Recall

5. AUC (Area Under the Curve) was
employed to measure the developed
model’s ability to differentiate between
positive and negative predictions.

FP
FP+TN (7)

FPR =

Note: TP is True Positive, TN is True Negative,
FP is False Positive, FN is False Negative and
FPR is False Positive Rate for the equations
above.
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Figure 2: SVM-LR Sickle Cell Anaemia HGB Level Classification Flowchart

4, Results and Discussion

4.1 Results

Two ML models namely, Logistic Regression
(LR) and Support Vector Machine (SVM) were
used for the HGB level classification. Also,
both models were trained using All Feature (AF)
and Selected Feature (SF) sets. Evaluation
metrics such as accuracy, precision, recall
(sensitivity), fl-score and AUC-ROC were
used to access the ML models performance.

The results in Table 2 shows that when both
models were evaluated using SF, SVM
demonstrated superior performance an accuracy
of 84.90%, precision of 73.90%, recall of
77.30%, F1-score of 75.60% and AUC-ROC of
93.40%. However, LR performed poorly under
the same experimental condition with an
accuracy of 79.50%, precision of 65.20%,

recall of 68.20%, Fl-score of 66.70%, and
AUC-ROC of 90.90%.

Furthermore, when both models were evaluated
using AF, they had an improved classification
performance with LR coming out top as
opposed to the results when using SF. LR had
an accuracy of 93.20%, precision of 90.50%,
recall of 86.40%, Fl-score of 84.40% and
AUC-ROC of 98.90%. Also, SVM experienced
a notable increase in performance with an
accuracy of 91.80%, precision of 90.00%,
recall of 81.00%, Fl1-score of 85.70% and
AUC-ROC of 98.20%

These findings showed that SVM had a strong
classification performance on both SF and AF
sets. However, LR showed better performance
all when AF were used. This posits that LR
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model has pronounced dependency on
availability of inexhaustive feature sets.

The ability of SVM to maintain a good
classification performance under reduced
number of features connotes its robust and
effective characteristics to offer desired results
when faced with computational constraints and
limited data scenarios. However, the rise in
performance of LR when all feature sets were
introduced showed its optimal ability to explore
high dimensional spaces where it can leverage
on richer patterns and interactions across wide
range of variables. This observation suggested
that LR is highly effective and reliable for
clinical settings, where a wide range of
haematological and demographic features

contribute significantly to disease classification.

The results also gave a clear and precise
description of the influence of feature selection
techniques on the model’s predictive
performance in classifying SCA haemoglobin
level. It was further observed that HGB
distribution in Figure 4 showed that Low HGB
cases were predominant as compared to High
HGB cases. This informed the study, to handle
class imbalance using SMOTE analysis so that
both models can effectively detect accurate
percentages of both cases.

This context made the analysis in Table 2
particularly important, as it evaluates how each
model performs across a range of metrics
(accuracy, precision, recall, F1-score, and
AUC-ROC) under different feature
configurations. High precision and recall for
minority classes, for instance, suggested a
model’s robustness in identifying patients at
risk. Therefore, the results in Table 2 did more
than rank models but highlighted how well
each model addressed real-world challenges of
imbalanced data in a clinically meaningful
classification task. Also, these findings
emphasized the necessity of rigorous feature
selection and extraction techniques when
developing machine learning models, positing
that well-engineered features can substantially
improve classification accuracy and overall
model robustness.

4.2 Discussion

The sole aim of this study was to develop a
state-of-the-art ML model for classifying HGB

level in SCA patients because accurate
diagnosis and severity level classification of
SCA ensures that patients are offered timely
interventions, optimized treatment plan and
personalized treatment strategies. To achieve
these, two ML models namely LR and SVM
were implemented using all feature and
selected feature selection techniques to evaluate
their efficacy in classifying various levels of
HGB in SCA patients. Also, a comparison of
both models was carried out to ascertain the
best model and feature selection approach
suitable for SCA timely diagnosis and
monitoring.

The results obtained from our study showed
that LR outperformed SVM in its accuracy and
AUC-ROC metrics when all feature sets were
used. Also, it was noticed that both models
performed exceptionally well when trained
using all feature sets when compared with
using the literature selected feature sets. LR
achieved the highest classification accuracy of
93.20% and AUC-ROC of 98.90% when all
features were used, surpassing the 91.80%
accuracy and AUC-ROC of 98.20% attained by
SVM under similar conditions. However, with
selected feature sets, both LR and SVM had an
accuracy of 84.90%, and 79.50% respectively.
The disparities in results while using all feature
sets and selected feature sets suggested that the
models perform better when been trained with a
broader features spectrum.

The optimal performance displayed by LR
model in our study can be attributed to the
ability of the model to adapt to both non-linear
and linear relationships especially where there
is high dimensionality in feature spaces.
Although SVM has always shown strong
performance in diverse ML classification tasks
but its reliance on the radial basial functions
might have hindered its efficiency when
dealing with datasets that possess intricate
relationships. It could also be deduced that
there was significance improvement in both
models when all feature sets were introduced.
This, however, suggests that for the dataset
used feature selection techniques could have
hampered the performance of both models
because there may have been exclusion of
variables useful for a model superior
performance.
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Several studies have used ML models in
predicting the level of haemoglobin in patients
with SCA which is in line with this study. The
first work by Oikonomou et al. [25]
experimented on using genetic biomarkers lime
BCL11A, Xmm1-HGB2 and HBS1L-MYB to

predict the percentage of Haemoglobin patients
with SCA. However, the model was only able
to predict a small size of clinical trials, but our
model aims to classify SCA Haemoglobin level
across broader spectrum.

Table 2: Classification Report Breakdown

Support Vector Machine

SF
Accuracy (%) 84.90
Precision (%) 73.90
Recall (%) 77.30
F1-Score (%) 75.60
AUC-ROC (%) 93.40

AF
91.80
90.00
81.80
85.70
98.20

Logistic Regression

SF
Accuracy (%) 79.50
Precision (%o) 65.20
Recall (%) 68.20
F1-Score (%) 66.70
AUC-ROC (%) 90.90

120

AF
93.20
90.50
86.40
84.40
98.90

100

80

60 1

Performance (%)

40 A

204

SVM (SF)

LR (SF)

EEl Accuracy (%)
mm AUC-ROC (%)

SVM (AF)

Model

Figure 3: SVM-LR Performance Comparison
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Figure 4: HGB Level Distribution Before and After SMOTE Analysis

Another study by Odigwe et al. [26] used
artificial neural networks to predict a patient’s
response to hydroxyurea therapy, a treatment
that elevates haemoglobin levels. The model
achieved a high accuracy of 92.6% in predicting
HbF levels post-treatment. Unlike this targeted
therapy response prediction, our model focuses
on general severity classification using a
broader feature set and dataset.

The third study was HgbNet developed by Zhi
et al. [27], a model leveraging electronic health
records (EHRSs) to predict haemoglobin levels
and anaemia severity was developed. By
handling missing values and using attention
mechanisms, HgbNet provided a robust method
for anaemia diagnosis. While this study
emphasized feature engineering for EHR-based
predictions, our work explores the impact of
feature selection on model performance,
demonstrating that using all available features
significantly improves classification accuracy.

This study contributes to the present body of
knowledge by effectively evaluating the effect
of using feature selection techniques on
model’s  predictive  performance  when
compared to previous research studies. The
results indicate that models using all features
(AF) significantly outperform those with
selected features (SF), with LR (AF) achieving
an accuracy of 93.20% and AUC-ROC of
98.90% and SVM (AF) reaching 91.80%
accuracy and AUC-ROC of 98.20%. This

reinforces the importance of comprehensive
feature selection in improving classification
accuracy for HGB level classification.

The significant benefit of this study was that it
explored the use of all feature sets and literature
selected feature which served as a benchmark
for comprehensive comparison between ML
models. Also, the study took into cognizance
the advantages of HGB level distribution for
cross evaluation of true positive and false
negative rates, which were important for
carrying efficient diagnosis of SCA. Utilizing
the above techniques, ensured that our findings
were reliable and clinically applicable for SCA
real-world problem management.

Despite the above-mentioned strengths of this
study, it still possesses some limitations.
Though the dataset used was adequate, there is
the possibility that it might not fully represent
the variability found amongst diverse SCA
patient population. Future work should focus on
incorporating independent datasets to the
framework as an external validation for model
generalizability. Although, LR showed strong
classification prowess, exploring other ML
algorithms or ensemble models could further
broaden the scope of the study, improve
prediction capability and accuracy by capturing
complex relationships within diverse dataset
[28].
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5. Conclusion

This study highlights ML potential in SCA-
HGB level classification. LR performed best
with the full feature set, highlighting
comprehensive data’s role in its accuracy. Also,
the findings of this study, will contribute to the
body of knowledge in the field of haematology
as regards improving the diagnosis and
management of SCA. Future research should
explore deep learning techniques, alternative
feature selection such as ANOVA, Chi-Square
and the likes, exploring diverse datasets and
extending the dataset by collecting more
samples alongside augmentation techniques to
enhance generalizability of the model and its
applicability in clinical settings.
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