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Abstract  

Sickle Cell Anaemia (SCA) significantly impacts haemoglobin (HGB) levels, leading to severe health 

complications with high mortality rates. In Nigeria, about 2% of newborns, approximately 150,000 annually, are 

diagnosed with SCA. Accurate HGB monitoring is essential for effective disease management, yet traditional 

methods are labour-intensive and prone to errors. This necessitates automated and reliable diagnostic techniques 

like machine learning (ML) for improved SCA management. This study classifies HGB levels in SCA patients 

using clinical records and ML techniques. A dataset of 364 records (203 female population) was obtained from 

Kaggle; a public data repository containing eleven (11) features namely: age, sex, red blood cell (RBC) count, 

packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean 

corpuscular haemoglobin concentration (MCHC), red cell distribution width (RDW), total leukocyte count 

(TLC), platelets per cubic millimeter (PLT/mm³), and haemoglobin (HGB). Two ML models, Logistic 

Regression (LR) and Support Vector Machine (SVM), were used with two feature selection methods: all features 

and selected features. The latter identified age, RBC, PCV, MCV, and HGB as key predictors. Continuous HGB 

values were categorized into (1) low, (2) normal, and (3) high using standard medical metrics. SMOTE analysis 

was also carried out to mitigate class imbalance. SVM with a Radial Basis Function (RBF) kernel achieved 

84.90% accuracy and AUC-ROC of 93.40%, while LR underperformed with 79.50% accuracy and AUC-ROC 

of 90.90%. Using all feature selection, SVM improved to 91.80% accuracy and AUC-ROC of 98.20%, with LR 

achieving accuracy of 93.20% and AUC-ROC of 98.90%. Both models demonstrated high accuracy, with LR 

excelling using all features, while SVM performed better with selected features. Future work will involve the use 

of primary datasets, additional feature selection techniques and ML algorithms, and incorporate the use of 

Haemoglobin variants to provide further insight into SCA progression and in turn offer personalized treatment. 

 

Keywords: Haemoglobin level classification, Logistic Regression, Machine learning models, Sickle cell anaemia, 

Support Vector Machine 

 

1. Introduction 

Sickle Cell Anaemia (SCA) is a hereditary 

blood disease that is characterized by sickled 

red blood cell (RBC) usual caused by an 

abnormal gene mutation [1]. This abnormality 

is caused by a genetic substitution of glutamic 

acid with valine which alters the nature and 

function of RBCs. Unlike normal RBCs which 

are biconcave in nature, a SCA’s patient RBCs 

are sickle-shaped and deformed. This 

morphological abnormality hinders the 

seamless flow of blood, thereby leading to 

acute complications [2]. This structural 

abnormality disrupts oxygen transport, 

precipitating vaso-occlusion, chronic 

haemolysis, and ischemic tissue damage, which 

cumulatively contribute to severe complications 

such as stroke, organ dysfunction, and acute 

chest syndrome [3, 4]. The disease 

predominantly affects individuals of African, 

Mediterranean, Middle Eastern, and Indian 

ancestry, with Nigeria bearing the highest 
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global burden, where approximately 150,000 

infants are born annually with the condition 

[5,6]. Despite advancements in treatment, SCA 

continues to pose a significant public health 

challenge due to its high morbidity and 

mortality, particularly in low-resource settings 

with limited access to specialized healthcare. 

 

The severity of sickle cell disease varies greatly 

among varied populations, necessitating proper 

classification. This severity is driven by a 

variety of radiological variables, including 

RBC shortage and the frequency of clinical 

signs such as acute chest syndrome [7,8]. 

Haemoglobin (HGB) levels are a good 

predictor of SCA severity and ongoing clinical 

symptoms. Patients who suffer these ongoing 

manifestations always require appropriate and 

attentive care to improve their life expectancy 

[9,10]. Traditional techniques of SCA severity 

categorization rely exclusively on blood smear 

investigation of the patient. However, the 

process can be tasking and susceptible human 

error especially in low resourced area where 

access to top notch diagnostic tools is 

unavailable [11, 12]. 

The increasing availability of large-scale 

clinical datasets and advancements in 

computational methodologies have facilitated 

the application of artificial intelligence (AI) and 

machine learning (ML) techniques in medical 

diagnostics, offering a promising paradigm 

shift in disease classification and predictive 

analytics [11, 3].  

ML models have demonstrated remarkable 

efficacy in various healthcare applications, 

including disease detection, prognostic 

modelling, and personalized medicine, by 

leveraging high-dimensional data to uncover 

intricate patterns that may not be immediately 

apparent through conventional statistical 

methods [11, 12, 14]. In the context of SCA, 

ML-based classification systems hold 

significant potential for improving the accuracy 

and efficiency of HGB level estimation, 

thereby enabling more timely and targeted 

therapeutic interventions [14]. Among the array 

of ML algorithms explored for classification 

tasks, Support Vector Machines (SVM) and 

Logistic Regression (LR) have emerged as 

viable candidates due to their robust decision-

making capabilities and interpretability in 

clinical settings [14]. While SVM excels in 

constructing optimal hyperplanes to delineate 

complex classification boundaries, LR provides 

a probabilistic framework for modelling the 

likelihood of different disease states based on 

predictive variables, both of which are critical 

for reliable HGB classification [14,15]. 

Despite the transformative potential of ML 

models in haematological diagnostics, research 

in this domain remains relatively nascent, 

necessitating further empirical investigations to 

establish their clinical validity and real-world 

applicability. Existing studies have primarily 

focused on model optimization through 

hyperparameter tuning and feature engineering 

to enhance classification performance [14, 15, 

16]. However, a persistent challenge in ML-

based classification lies in feature selection, 

where the inclusion of extraneous variables 

may introduce noise and compromise model 

interpretability [16]. To address this limitation, 

this study employed a dual-feature selection 

strategy comprising all feature selection and 

selected features. The former leverages all 

available features to maximize predictive 

power, while the latter prioritizes clinically 

relevant variables to improve interpretability 

and facilitate integration into existing 

diagnostic workflows. A comparative 

evaluation of these models was conducted 

based on key performance metrics, including 

accuracy, precision, recall, and computational 

efficiency, to ascertain the optimal balance 

between model complexity and diagnostic 

utility.  

 

By integrating ML techniques into SCA 

management, this study aims to classify HGB 

levels in SCA patients using SVM and LR 

models. By leveraging machine learning 

techniques, we aim to improve the accuracy 

and reliability of HGB level classification in 

SCA cases, provide improved patient outcomes 

and reduced healthcare burdens associated with 

chronic haemoglobinopathies classification. 
 

2. Related Works 

An increasingly large number of studies have 

been devoted to the deployment of machine 

learning (ML) methods in healthcare diagnosis, 

especially in the case of hematologic diagnosis 

categories. These ML approaches have 

demonstrated great potential in the process of 
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correctly predicting and diagnosing blood 

disorders like leukaemia, anaemia and SCA 

through the examination of complete blood 

count (CBC) parameters and other pertinent 

biomarkers [7]. Though these breakthroughs 

have largely influenced the diagnosis of 

medical conditions, specifically haematological 

diseases, there exists a lapse in the actual area 

of haemoglobin (HGB) classification amongst 

the carriers of SCA. Precise classification of 

HGB level is essential, as it is one of the central 

indicators of SCA severity. 

HGB levels classification are of clinical 

benefits in SCA management [6, 7, 18]. One of 

the most significant factors of the disease 

progression and life-threatening risks 

assessment is the level of haemoglobin 

concentration that is used to individualize 

transfusion guidelines [8]. Patients who have 

low levels of HGB portray high danger of 

critical anaemia, multi-organ injury and high 

morbidity [7, 8, 9]. Furthermore, molecular 

analysis can give rise to a more accurate 

classification that allows clinicians to develop a 

more patient-specific treatment plan, maximize 

transfusion plan and accurately monitor the 

effectiveness of treatment. Timely and correct 

classification also has the benefits of lowering 

hospitalization rates and long-term outcomes of 

patients. 

The ability to handle a high dimension dataset 

and influence robustness makes SVM and LR 

some of the most used ML algorithms. SVM is 

highly efficient in its performance with binary 

classification task and is used in areas such as 

oncology and cardiovascular diseases 

diagnostics [8,16]. Likewise, LR has been used 

clinically to draw and understand patient 

outcome based on input variable and it had 

been seen to be especially instrumental in 

monitoring disease progression [9,10,17]. 

Empirical research has confirmed the capability 

of these models to appropriately categorize 

medical conditions with various arrays of 

biomarkers. Indeed, SVM has been 

demonstrated to be useful in classification of 

various anaemia types based on blood analysis 

[10]. Similarly, in the COVID-19 patients, it 

has been found that LR was helpful in 

estimating the level of haemoglobin and other 

important haematological features that assisted 

in categorizing the health profile of patients 

[11, 18]. 

 

In contrast to other ML-based works that have 

studied either the diagnosis of SCA or the 

detection of sickle cell traits, little attention has 

been given to the task of classifying the level of 

HGB to assist with clinical decision-making 

[6,7,16]. Bhatia et al. [17] used deep learning 

techniques to classify red blood cell 

morphologies in SCA patients with 81% 

accuracy in reference to the cell types including 

sickle cells and ovalocytes. Nonetheless, they 

focused on the morphology of the cells instead 

of an actual estimation of the HGB levels. A 

similar work was done by Srivastava et al. [18] 

in which ML models based on spectroscopy 

data were used to diagnose SCA with high 

sensitivity and specificity, although this work 

did not solve the problem of quantifying HGB. 

Additionally, Ekong et al. [19] designed a 

classification system that diagnoses SCA in 

adolescents using a Bayesian network with 99 

percent accuracy. Still, they emphasized only 

disease identification, but nothing was done on 

HGB classification. Concurrent to that, 

Alzubaidi et al. [20] presented deep learning 

lightweight models capable of classifying 

erythrocytes into normal, sickle, and 

miscellaneous categories. Nonetheless, in such 

method quantitative assessments of 

haemoglobin parameters were excluded, which 

rendered the model inapplicable in treatment 

monitoring. 

Though such studies reinforce the idea of the 

viability of ML in hematological diagnostics, 

the direct classification of HGB levels has not 

been studied well. Another work is that of Dada 

et al. [21] who applied convolutional neural 

networks (CNNs) to study peripheral blood 

smears in a children population and obtained an 

anaemia detection of 92% precise rate although 

they did not measure the level of haemoglobin 

in a blood sample. Likewise, Zemariam et al. 

[22] used a variety of ML classifiers to 

determine the anaemia prevalence rate among 

Ethiopian adolescent girls, and Random Forest 

scored an area under the curve (AUC) of 82%. 

However, they were concerned with general 

anaemia prediction, but not HGB level. Hybrid 

ML models with the attention mechanism were 

also suggested by Ramzan et al. [23] in respect 
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of the anaemia detection, which obtained a 

promising model high accuracy but without 

focusing on HGB at SCA patients. 

With the view of mitigating this gap, the 

current study focused on determining the 

performance of SVM and LR models in 

classifying the HGB level using a well-known 

CBC data primarily gathered by Mendeley 

team which was obtained from Kaggle 

repository. Focusing only on the issue of HGB 

classification in SCA patients, the study aims 

develop a machine learning framework for 

classifying haemoglobin levels in sickle cell 

anaemia patients. The knowledge obtained can 

be used as a useful input to the developing area 

of ML application in medical diagnosis and 

further encourage extensive research in the 

field of SCA management.   

 

3.   Methodology  

  

The approach used to develop the SCA HGB 

level classification model are discussed here. 

The process involved five main stages as 

shown in Figure 1; each stage is structured to 

ensure a systematic workflow for model 

development, optimization, and thorough 

assessment. 

3.1 Data Collection and Description 

The dataset used in this study is the Mendeley 

Complete Blood Count dataset source from 

Kaggle, an open-source standard dataset 

repository. The dataset contained 364 patient 

records and 11 features seen in Table 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1: Classification Architecture 
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Table 1: CBC Dataset Feature Description

 
S/N Feature Description Data Completeness 

(%) 

1 Age (years) The chronological age of the individual in 

years. 
100 

2 Sex The biological classification of the individual 

as either male or female. 
100 

3 Red Blood Count 

(RBC) 
The number of red blood cells present per 

unit volume of blood, typically measured in 

millions per microliter. 

100 

4 Packed Cell Volume 

(PCV) 
Also known as hematocrit, it represents the 

percentage of blood volume occupied by red 

blood cells. 

100 

5 Mean Corpuscular 

Volume (MCV) 
The average volume of a single red blood 

cell, measured in femtoliters (fL). 
100 

6 Mean Corpuscular 

Haemoglobin (MCH) 
The average amount of Haemoglobin in a 

single red blood cell, measured in picograms 

(pg). 

100 

7 Mean Corpuscular 

Haemoglobin 

Concentration 

(MCHC) 

The average concentration of Haemoglobin 

in each volume of packed red blood cells, 

measured in g/dL. 

100 

8 Red Cell Distribution 

Width (RDW) 
A measure of the variation in red blood cell 

size, expressed as a percentage. 
100 

9 Total Leukocyte 

Count (TLC) 
The total number of white blood cells in each 

volume of blood, measured in thousands per 

microliter (×10³/μL). 

100 

10 Per Cubic Millimetre 

(PLT /mm3) 
The platelet count, indicating the number of 

platelets per cubic millimeter of blood. 
100 

11 Haemoglobin (HGB) The concentration of Haemoglobin in the 

blood, measured in grams per deciliter 

(g/dL), which is crucial for oxygen transport. 

100 

3.2 Data Preprocessing and Feature Selection 

In preparing the dataset for machine learning 

functionalities, the sex feature, with categorical 

variables were transformed into numerical 

values using One-Hot Encoding (OHE), 

ensuring that qualitative features were 

represented in a binary format without 

imposing an artificial ordinal relationship 

[11,12,24]. SMOTE analysis was also 

employed to handle class imbalance to improve 

model generalizability. 

Also, HGB levels, originally recorded as a 

continuous numerical variable within the range 

of 4.2 g/dL to 19.6 g/dL, were discretized to 

enhance clinical interpretability and model 

performance. The discretization process was 

conducted using a binning technique based on 

established medical thresholds for haemoglobin 

classification [12,24]. The HGB level was 

mapped using clinically relevant metrics such 

that Low is (0–12 g/dL), Normal is (12–16 

g/dL), and High is (>16 g/dL). This was done 

using the binning which partitions the range 

into predefined bins and assigns discrete labels 

accordingly as shown below: 

Mathematically, the binning function can be 

expressed as: 

         (1) 

Where f(HGB) represents the discretized 

haemoglobin category. This technique was 

tailored to mirror real-world medical diagnostic 

ranges in alignment with the classification 

models to ensure realistic results [24]. This will  
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improve clinical relevance and model’s 

predictive capabilities.  

 

Feature Selection Technique 

All feature (AF), and literature selected features 

(SF) sets were used to ascertain the significance 

of features on model's performance and for 

comparison purposes. Clinical and 

hematological features that are important for 

predicting HGB levels were tagged as SF based 

on literature [12]. This informed the study to 

select features like age, RBC, PCV, MCV, and 

HGB as key predictors that are critical in the 

diagnosis of conditions like anaemia, including 

sickle cell anaemia. 

 

Data Splitting 
To avoid model train-test bias and maintain a 

balanced distribution of HGB level dataset 

between the train and test sets, this study 

employed a stratified sampling techniques and 

the dataset was split into 70:30 percentile [8, 

12]. 

(2) 

 

Where  is the sample size for stratum h,  

is the population size for stratum, N is the 

population size and n are the desired sample 

size. This ensures that each subgroup (stratum) 

is proportionally represented in the sample, 

maintaining the distribution of the population. 

 
3.3 Model Development and Implementation 

Four models were built, namely SVM using the 

entire features, SVM using selected features, 

LR using the entire features and LR using 

selected features. The SVM and LR models 

contributes uniquely to the overall performance 

of HGB level classification, ensuring a robust 

and well-balanced predictive approach as 

shown in Figure 2. In the context of this study, 

SVM RBF kernel was employed to handle non-

linear dataset attributes. While the LR model, 

L1 regularization was employed. RF n-

estimators was set, and maximum tree was used.  

LR and SVM were precisely selected based on 

their efficacy in handling medical data 

classification tasks [19, 24]. SVM adapts well 

to datasets with high dimensionality and good 

in capturing nonlinear relationships within 

datasets especially when using kernel function 

[19]. However, LR is a simple but powerful 

model that uses statistical probabilistic 

interpretation ability to predict results. The 

feature selection techniques were also added to 

understand how different features contribute to 

HGB levels prediction. Furthermore, the 

models were trained independently to allow 

their individual strengths contribute to a 

reliable and well-balanced classification 

system. 

 

3.4 Evaluation Metrics 

The following performance metrics were used 

to access the performance of the two ML 

models: 

1. Accuracy was used to determine the 

model’s total correct prediction in relation 

to the actual values. This is paramount to 

ensure efficient classification task. 

 

                    (3) 

2. Precision was used to determine the 

proportion of true positive predicted 

correctly and evaluate the model’s ability 

to minimize false positive predictions.  

 

                                (4) 

3. Recall also known as sensitivity was used 

was employed to measure the proportion of 

actual positive cases that were correctly 

identified by the mode. 

 

                                      (5) 

4. F1-Score was employed to measure the 

balance between precision and recall 

especially when data imbalance is present.  

 

(6) 

5. AUC (Area Under the Curve) was 

employed to measure the developed 

model’s ability to differentiate between 

positive and negative predictions. 

 

(7) 

 

Note: TP is True Positive, TN is True Negative, 

FP is False Positive, FN is False Negative and 

FPR is False Positive Rate for the equations 

above. 
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Figure 2: SVM-LR Sickle Cell Anaemia HGB Level Classification Flowchart 

 

4.   Results and Discussion 

  

4.1 Results 

Two ML models namely, Logistic Regression 

(LR) and Support Vector Machine (SVM) were 

used for the HGB level classification. Also, 

both models were trained using All Feature (AF) 

and Selected Feature (SF) sets. Evaluation 

metrics such as accuracy, precision, recall 

(sensitivity), f1-score and AUC-ROC were 

used to access the ML models performance. 

The results in Table 2 shows that when both 

models were evaluated using SF, SVM 

demonstrated superior performance an accuracy 

of 84.90%, precision of 73.90%, recall of 

77.30%, F1-score of 75.60% and AUC-ROC of 

93.40%. However, LR performed poorly under 

the same experimental condition with an 

accuracy of 79.50%, precision of 65.20%, 

recall of 68.20%, F1-score of 66.70%, and 

AUC-ROC of 90.90%. 

Furthermore, when both models were evaluated 

using AF, they had an improved classification 

performance with LR coming out top as 

opposed to the results when using SF. LR had 

an accuracy of 93.20%, precision of 90.50%, 

recall of 86.40%, F1-score of 84.40% and 

AUC-ROC of 98.90%. Also, SVM experienced 

a notable increase in performance with an 

accuracy of 91.80%, precision of 90.00%, 

recall of 81.00%, F1-score of 85.70% and 

AUC-ROC of 98.20% 

These findings showed that SVM had a strong 

classification performance on both SF and AF 

sets. However, LR showed better performance 

all when AF were used. This posits that LR 
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model has pronounced dependency on 

availability of inexhaustive feature sets. 

 

The ability of SVM to maintain a good 

classification performance under reduced 

number of features connotes its robust and 

effective characteristics to offer desired results 

when faced with computational constraints and 

limited data scenarios. However, the rise in 

performance of LR when all feature sets were 

introduced showed its optimal ability to explore 

high dimensional spaces where it can leverage 

on richer patterns and interactions across wide 

range of variables. This observation suggested 

that LR is highly effective and reliable for 

clinical settings, where a wide range of 

haematological and demographic features 

contribute significantly to disease classification.  

 

The results also gave a clear and precise 

description of the influence of feature selection 

techniques on the model’s predictive 

performance in classifying SCA haemoglobin 

level. It was further observed that HGB 

distribution in Figure 4 showed that Low HGB 

cases were predominant as compared to High 

HGB cases. This informed the study, to handle 

class imbalance using SMOTE analysis so that 

both models can effectively detect accurate 

percentages of both cases. 

This context made the analysis in Table 2 

particularly important, as it evaluates how each 

model performs across a range of metrics 

(accuracy, precision, recall, F1-score, and 

AUC-ROC) under different feature 

configurations. High precision and recall for 

minority classes, for instance, suggested a 

model’s robustness in identifying patients at 

risk. Therefore, the results in Table 2 did more 

than rank models but highlighted how well 

each model addressed real-world challenges of 

imbalanced data in a clinically meaningful 

classification task. Also, these findings 

emphasized the necessity of rigorous feature 

selection and extraction techniques when 

developing machine learning models, positing 

that well-engineered features can substantially 

improve classification accuracy and overall 

model robustness. 

4.2 Discussion 

The sole aim of this study was to develop a 

state-of-the-art ML model for classifying HGB 

level in SCA patients because accurate 

diagnosis and severity level classification of 

SCA ensures that patients are offered timely 

interventions, optimized treatment plan and 

personalized treatment strategies. To achieve 

these, two ML models namely LR and SVM 

were implemented using all feature and 

selected feature selection techniques to evaluate 

their efficacy in classifying various levels of 

HGB in SCA patients. Also, a comparison of 

both models was carried out to ascertain the 

best model and feature selection approach 

suitable for SCA timely diagnosis and 

monitoring. 

The results obtained from our study showed 

that LR outperformed SVM in its accuracy and 

AUC-ROC metrics when all feature sets were 

used. Also, it was noticed that both models 

performed exceptionally well when trained 

using all feature sets when compared with 

using the literature selected feature sets. LR 

achieved the highest classification accuracy of 

93.20% and AUC-ROC of 98.90% when all 

features were used, surpassing the 91.80% 

accuracy and AUC-ROC of 98.20% attained by 

SVM under similar conditions. However, with 

selected feature sets, both LR and SVM had an 

accuracy of 84.90%, and 79.50% respectively. 

The disparities in results while using all feature 

sets and selected feature sets suggested that the 

models perform better when been trained with a 

broader features spectrum. 

The optimal performance displayed by LR 

model in our study can be attributed to the 

ability of the model to adapt to both non-linear 

and linear relationships especially where there 

is high dimensionality in feature spaces. 

Although SVM has always shown strong 

performance in diverse ML classification tasks 

but its reliance on the radial basial functions 

might have hindered its efficiency when 

dealing with datasets that possess intricate 

relationships. It could also be deduced that 

there was significance improvement in both 

models when all feature sets were introduced. 

This, however, suggests that for the dataset 

used feature selection techniques could have 

hampered the performance of both models 

because there may have been exclusion of 

variables useful for a model superior 

performance. 
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Several studies have used ML models in 

predicting the level of haemoglobin in patients 

with SCA which is in line with this study. The 

first work by Oikonomou et al. [25] 

experimented on using genetic biomarkers lime 

BCL11A, Xmm1-HGB2 and HBS1L-MYB to 

predict the percentage of Haemoglobin patients 

with SCA. However, the model was only able 

to predict a small size of clinical trials, but our 

model aims to classify SCA Haemoglobin level 

across broader spectrum.  

 

Table 2: Classification Report Breakdown 

  

Support Vector Machine 

 SF AF 

Accuracy (%) 84.90 91.80 

Precision (%) 73.90 90.00 

Recall (%) 77.30 81.80 

F1-Score (%) 75.60 85.70 

AUC-ROC (%) 93.40 98.20 

Logistic Regression 

 SF AF 

Accuracy (%) 79.50 93.20 

Precision (%) 65.20 90.50 

Recall (%) 68.20 86.40 

F1-Score (%) 66.70 84.40 

AUC-ROC (%) 90.90 98.90 

 

 

 
 

Figure 3: SVM-LR Performance Comparison 
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Figure 4: HGB Level Distribution Before and After SMOTE Analysis 

 

Another study by Odigwe et al. [26] used 

artificial neural networks to predict a patient’s 

response to hydroxyurea therapy, a treatment 

that elevates haemoglobin levels. The model 

achieved a high accuracy of 92.6% in predicting 

HbF levels post-treatment. Unlike this targeted 

therapy response prediction, our model focuses 

on general severity classification using a 

broader feature set and dataset.  

The third study was HgbNet developed by Zhi 

et al. [27], a model leveraging electronic health 

records (EHRs) to predict haemoglobin levels 

and anaemia severity was developed. By 

handling missing values and using attention 

mechanisms, HgbNet provided a robust method 

for anaemia diagnosis. While this study 

emphasized feature engineering for EHR-based 

predictions, our work explores the impact of 

feature selection on model performance, 

demonstrating that using all available features 

significantly improves classification accuracy.  

This study contributes to the present body of 

knowledge by effectively evaluating the effect 

of using feature selection techniques on 

model’s predictive performance when 

compared to previous research studies. The 

results indicate that models using all features 

(AF) significantly outperform those with 

selected features (SF), with LR (AF) achieving 

an accuracy of 93.20% and AUC-ROC of 

98.90% and SVM (AF) reaching 91.80% 

accuracy and AUC-ROC of 98.20%. This 

reinforces the importance of comprehensive 

feature selection in improving classification 

accuracy for HGB level classification. 

The significant benefit of this study was that it 

explored the use of all feature sets and literature 

selected feature which served as a benchmark 

for comprehensive comparison between ML 

models. Also, the study took into cognizance 

the advantages of HGB level distribution for 

cross evaluation of true positive and false 

negative rates, which were important for 

carrying efficient diagnosis of SCA. Utilizing 

the above techniques, ensured that our findings 

were reliable and clinically applicable for SCA 

real-world problem management. 

Despite the above-mentioned strengths of this 

study, it still possesses some limitations. 

Though the dataset used was adequate, there is 

the possibility that it might not fully represent 

the variability found amongst diverse SCA 

patient population. Future work should focus on 

incorporating independent datasets to the 

framework as an external validation for model 

generalizability. Although, LR showed strong 

classification prowess, exploring other ML 

algorithms or ensemble models could further 

broaden the scope of the study, improve 

prediction capability and accuracy by capturing 

complex relationships within diverse dataset 

[28]. 
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5. Conclusion 

This study highlights ML potential in SCA-

HGB level classification. LR performed best 

with the full feature set, highlighting 

comprehensive data’s role in its accuracy. Also, 

the findings of this study, will contribute to the 

body of knowledge in the field of haematology 

as regards improving the diagnosis and 

management of SCA. Future research should 

explore deep learning techniques, alternative 

feature selection such as ANOVA, Chi-Square 

and the likes, exploring diverse datasets and 

extending the dataset by collecting more 

samples alongside augmentation techniques to 

enhance generalizability of the model and its 

applicability in clinical settings. 

Acknowledgement 

It is with deepest gratitude that I thank the staff 

of the Faculty of Computing at the University 

of Ibadan for their unwavering support and 

guidance throughout this project. I would like 

to also express my deep appreciation for the 

insightful discussions and collaborative efforts 

of my mentors, supervisors and colleagues. 

Furthermore, I am indebted to the medical 

professionals, including haematologists, 

laboratory technicians, and clinicians, whose 

expertise supported the study's medical context. 

I also want to appreciate DATICAN 

(www.datican.org) for their financial assistance, 

that made this study was possible. Finally, I 

would like to thank the Kaggle repository for 

providing access to the dataset used in this 

study. 

 

References 
[1] Johnston, J. D., Reinman, L. C., Bills, S. E., & 

Schatz, J. C. (2022). Sleep and fatigue among 

youth with sickle cell disease: A daily diary 

study. Journal of Behavioural Medicine, 1-11.   

[2] Luo, L., King, A. A., Carroll, Y., Baumann, A. 

A., Brambilla, D., Carpenter, C. R., Colla, J., 

Gibson, R. W., Gollan, S., Hall, G., Klesges, L., 

Kutlar, A., Lyon, M., Melvin, C. L., Norell, S., 

Mueller, M., Potter, M. B., Richesson, R., 

Richardson, L. D., Ryan, G., Siewny, L., 

Treadwell, M., Zun, L., Armstrong-Brown, J., 

Cox, L. & Tanabe P. (2021). Electronic Health 

Record-Embedded Individualized Pain Plans for 

Emergency Department Treatment of Vaso-

occlusive Episodes in Adults with Sickle Cell 

Disease: Protocol for a Pre-implementation and 

Postimplementation Study. JMIR Res Protoc. 

2021 Apr 16;10(4).   

[3] Bou-Fakhredin, R., De Franceschi, L., Motta, I., 

Cappellini, M. D., & Taher, A. T. (2022). 

Pharmacological Induction of Fetal 

Haemoglobin in β-Thalassemia and Sickle Cell 

Disease: An Updated Perspective. 

Pharmaceuticals, 15(6), 753.   

[4] Acharya, B., Mishra, D. P., Barik, B., 

Mohapatra, R. K., & Sarangi, A. K. (2023). 

Recent progress in the treatment of sickle cell 

disease: an up-to-date review. Beni-Suef 

University Journal of Basic and Applied 

Sciences, 12(1), 38  

[5] Tebbi, C. K. (2022). Sickle cell disease, a 

review. Hemato, 3(2), 341-366.  

[6] Ramachandran, P., Perisetti, A., Kathirvelu, B., 

Gajendran, M., Ghanta, S., Onukogu, I., Lao, T. 

& Anwer, F. (2020). Low Morbidity and 

Mortality with COVID-19 in Sickle Cell 

Anaemia: A Single Centre Experience. eJHaem, 

1, 608-614.  

[7] Obeagu, E. I., Adias, T. C., & Obeagu, G. U. 

(2024). Advancing life: innovative approaches 

to enhance survival in sickle cell anaemia 

patients. Annals of Medicine and 

Surgery, 86(10), 6021-6036. 

[8] Olatunji, S. O., Khan, M. A. A., Alanazi, F., 

Yaanallah, R., Alghamdi, S., Alshammari, R., ... 

& Ahmed, M. I. B. (2024). Machine Learning-

Based Models for the Preemptive Diagnosis of 

Sickle Cell Anaemia Using Clinical Data. 

In Finance and Law in the Metaverse World (pp. 

101-112). Springer, Cham. 

[9] Muhsen, I. N., Shyr, D., Sung, A. D., & Hashmi, 

S. K. (2021). Machine learning applications in 

the diagnosis of benign and malignant 

haematological diseases. Clinical Haematology 

International, 3(1), 13-20.  

[10] Santos-Silva, M. A., Sousa, N., & Sousa, J. C. 

(2024). Artificial intelligence in routine blood 

tests. Frontiers in Medical Engineering, 2, 

1369265.   

[11] Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. 

(2024). An Overview on the Advancements of 

Support Vector Machine Models in Healthcare 

Applications: A Review. Information, 15(4), 

235.  

[12] Nenova, Z., & Shang, J. (2022). Chronic disease 

progression prediction: Leveraging case‐based 

reasoning and big data analytics. Production 

and Operations Management, 31(1), 259-280.   

[13] Yıldız, T. K., Yurtay, N., & Öneç, B. (2021). 

Classifying anaemia types using artificial 

learning methods. Engineering Science and 

Technology, an International Journal, 24(1), 

50-70.   

[14] Zhu, J., Sun, R., Liu, H., Wang, T., Cai, L., 

Chen, Z., & Heng, B. (2023). A Non-Invasive 

Haemoglobin Detection Device Based on 

Multispectral 

Photoplethysmography. Biosensors, 14(1), 22.   

[15] Raza, A., Eid, F., Montero, E. C., Noya, I. D., & 

Ashraf, I. (2024). Enhanced interpretable 

thyroid disease diagnosis by leveraging 

http://www.datican.org/


 

12 UIJSLICTR Vol. 15  No. 1 September. 2025  ISSN: 2714-3627 

    

 

synthetic oversampling and machine learning 

models. BMC Medical Informatics and Decision 

Making, 24(1), 364 

[16] Bakır, H., & Ceviz, Ö. (2024). Empirical 

enhancement of intrusion detection systems: a 

comprehensive approach with genetic 

algorithm-based hyperparameter tuning and 

hybrid feature selection. Arabian Journal for 

Science and Engineering, 49(9), 13025-13043. 

[17] Bhatia, M., Meena, B., Rathi, V. K., Tiwari, P., 

Jaiswal, A. K., Ansari, S. M., ... & Marttinen, P. 

(2023). A novel deep learning-based model for 

erythrocytes classification and quantification in 

sickle cell disease.   

[18] Srivastava, S., Srinivasan, R., Nambison, N. K., 

& Gorthi, S. S. (2021). Diagnosis of sickle cell 

anaemia using AutoML on UV-Vis absorbance 

spectroscopy data.  

[19] Ekong, B., Ekong, O., Silas, A., Edet, A. E., & 

William, B. (2023). Machine Learning 

Approach for Classification of Sickle Cell 

Anaemia in Teenagers Based on Bayesian 

Network. Journal of Information Systems and 

Informatics, 5(4), 1793-1808.  

[20] Alzubaidi, L., Fadhel, M. A., Al-Shamma, O., 

Zhang, J., & Duan, Y. (2020). Deep Learning 

Models for Classification of Red Blood Cells in 

Microscopy Images to Aid in Sickle Cell 

Anaemia Diagnosis. Electronics, 9(3), 427. 

[21] Dada, E. G., Oyewola, D. O., & Joseph, S. B. 

(2022). Deep convolutional neural network 

model for detection of sickle cell anaemia in 

peripheral blood images. Communication in 

Physical Sciences, 8(1).  

[22] Zemariam, A. B., Yimer, A., Abebe, G. K., 

Wondie, W. T., Abate, B. B., Alamaw, A. W., 

Yilak, G., Melaku, T. M., & Ngusie, H. S. 

(2024). Employing supervised machine learning 

algorithms for classification and prediction of 

anaemia among youth girls in 

Ethiopia. Scientific reports, 14(1), 9080.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[23]  Ramzan, M., Sheng, J., Saeed, M.U. et 

al. Revolutionizing anaemia detection: 

integrative machine learning models and 

advanced attention mechanisms. Vis. Comput. 

Ind. Biomed. Art 7, 18 (2024).  

[24] Faye, L. M., Magwaza, C., Dlatu, N., & Apalata, 

T. (2025). Exploring Determinants and 

Predictive Models of Latent Tuberculosis 

Infection Outcomes in Rural Areas of the 

Eastern Cape: A Pilot Comparative Analysis of 

Logistic Regression and Machine Learning 

Approaches. Information, 16(3), 239. 

[25] Oikonomou, K., Steinhöfel, K., & Menzel, S. 

(2021, September). A Machine Learning Model 

for Predicting Fetal Haemoglobin Levels in 

Sickle Cell Disease Patients. In Proceedings of 

Sixth International Congress on Information 

and Communication Technology: ICICT 2021, 

London, Volume 1 (pp. 79-91). Singapore: 

Springer Singapore. 

[26] Odigwe, B. E., Eyitayo, J. S., Odigwe, C. I., & 

Valafar, H. (2019). Modelling of sickle cell 

anaemia patients’ response to hydroxyurea 

using artificial neural networks. arXiv preprint 

arXiv:1911.10978. 

[27] Zhi, Z., Elbadawi, M., Daneshmend, A., Orlu, 

M., Basit, A., Demosthenous, A., & Rodrigues, 

M. (2024). HgbNet: predicting Haemoglobin 

level/anaemia degree from EHR data. arXiv 

preprint arXiv:2401.12002. 

[28] Yaghoubi, E., Yaghoubi, E., Khamees, A., & 

Vakili, A. H. (2024). A systematic review and 

meta-analysis of artificial neural network, 

machine learning, deep learning, and ensemble 

learning approaches in field of geotechnical 

engineering. Neural Computing and 

Applications, 36(21), 12655-12699. 


