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Abstract

Identifying learners’ preferred learning styles is essential for effective personalization in educational
environment. The VARK model (Visual, Auditory, Read/Write, and Kinesthetic) is widely used for this course,
yet traditional questionnaire-based assessments struggle with scalability, static data, and limited adaptability.
This study introduced an optimized Convolutional Neural Network (CNN) framework for real-time, automated
VARK classification using multimodal interaction data. Learner engagement was tracked through event listener
technique within a learning management system, capturing HTTP+play/pause for visual and auditory media,
HTTP+scroll for reading/writing materials, and HTTP+focus/blur for kinesthetic activities. These event listeners
were used to track time spent in each modality and combined with corresponding quiz performance scores to
form a comprehensive dataset. The CNN model was trained on twelve thousand (12,000) collected datasets of
learners from Hunter e-Academy (He-A) learning management system to classify individual learning styles,
enabling dynamic adaptation of content delivery.To evaluate performance, the CNN model was compared
through A/B testing against other machine learning (ML) models, including Support Vector Machines (SVM),
Random Forest, Naive Bayes, and XGBoost. Metrics such as accuracy, precision, recall, and F1-score were used
for assessment. The CNN achieved an accuracy of 99.05%, surpassing SVM (98.01%), XGBoost (98.0%),
Random Forest (96.69%), Naive Bayes (96.45%), and Decision Tree (95.98%). It demonstrated perfect
precision for Auditory and Read/Write, perfect recall for Visual and Auditory, and F1-scores >0.98 across all
categories, addressing the bias and uneven performance observed in unimodal approaches like KNN (89%). The
study confirmed the effectiveness of multimodal data fusion for accurate, objective learning style assessment,
offering a scalable, Al-driven alternative to surveys and supporting real-time adaptive learning environments.
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1. Introduction developed by (Fleming et al., 1992) remains

The diversity in learning preferences among
students has long been a critical factor in
educational research, with the Visual, Auditory,
Read/Write, and Kinesthetic (VARK) model
(Odejayi et al. 2025) serving as a widely
known model for classifying learning styles.
Learning styles represent a basic concept of
educational psychology, profoundly impacting
how learners perceive and assimilate
information (Pashler et al., 2008). Among the
various models proposed to categorize learning
preferences, the VARK learning styles model
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one of the most widely recognised due to its
practical applicability in diverse educational
settings. The model posits that learners exhibit
dominant sensory preferences, with visual
learners benefiting from diagrams and videos,
auditory learners excelling through verbal
explanations and audio, read/write learners
preferring textual and readable information, and
kinesthetic learners relying on hands-on and
experiment experiences (Leite et al., 2009).

Conventional methods for identifying learning
styles  mostly rely on  self-reported
questionnaires, such as the VARK inventory as
established by (Fleming, 2012). While these
learning styles classification tools provide
valuable insights, they are constrained by
several limitations, including response bias,
lack of real-time adaptability, and inability to
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capture dynamic changes in learning
preferences according to (Coffield et al., 2004).
Furthermore, manual classification poses
impractical in  large-scale  educational
environments, such as massive open online
courses (MOQOCs), Modular Object-Oriented
Dynamic Learning Environment (MOODLE),
or intelligent tutoring systems (ITS), where
personalized learning pathways must be
dynamically adaptive based on real-time
student interactions (Essalmi et al., 2015).

Recent growths in the field of artificial
intelligence (Al), particularly in deep learning,
present transformative  opportunities  for
automating learning style classification.
Convolutional Neural Networks (CNNs), a
class of deep neural networks famous for their
hierarchical feature extraction capabilities
(LeCun et al, 2015), have demonstrated
distinctive ~ performance in  processing
multimodal learning data. By leveraging real-
time datasets like eye-tracking metrics for
visual engagement (Xiaofu et al., 2025), audio
and speech analysis for auditory preferences
(Liu et al, 2024), reading texts and typing
dynamics for read/write classification (Njin, et
al.,, 2008), and empirical exercise data for
kinesthetic detection (Igbal et al., 2023). CNNs
can provide an objective, scalable, and
instantaneous  alternative  to  traditional
classification methods.

This study proposes an innovative CNN-based
framework designed to classify VARK learning
styles by integrating heterogeneous real-time
data streams like time spent and Quiz
performances on various contents modalities.
The primary contributions of this research
include:

(i) A multimodal data fusion approach that
synthesizes visual, auditory, textual, and
kinesthetic inputs for comprehensive
learning style assessment.

(i))An end-to-end deep learning architecture
optimized for real-time processing,
enabling immediate feedback in adaptive
learning environments.

(iii)  Empirical validation using real time
datasets and comparative analysis against
conventional machine learning (ML)
techniques.

By addressing the limitations of existing
methods, this work advances the field of Al-

driven educational personalization, offering
experimental implications for e-learning
platforms, classroom instruction, and neuro-
educational research.

2. Related Works

Kolb's (1984) experiential learning theory and
Gardner's  (1983) theory of multiple
intelligences are traced back from the
theoretical basis of learning styles. The VARK
model by (Fleming, et al., 1992) was later
introduced, this grouped learning preferences
into four sensory formats. While the model has
been widely adopted, critiques persist regarding
its psychometric validity (Pashler et al., 2008).
However, its experimental usage in learning
environment has encouraged computational
approaches for classification automation.

Rule-based systems and statistical models
formed the initial efforts of classifying learning
styles computationally. For example, (Paredes
et al., 2004) predicted learning styles using
decision trees base on navigation patterns in e-
learning platforms, achieving a moderate
accuracy. (Kondo et al., 2018) extended the
research by analyzing log data from Learning
Management Systems (LMS) using Bayesian
networks, despite demonstrating improved
precision but had limited scalability for real-
time applications.

Machine learning techniques gained
prominence in the advancement of educational
data mining. Clustering algorithms to group
students based on interaction logs was used by
(Sharif et al., 2009), while (Hmedna et al.,
2016) applied Support Vector Machines (SVMs)
to MOOC datasets, reporting 78% classification
accuracy. However, these methods were
challenged with high-dimensional, unstructured
data, prompting the exploration of deep
learning solutions despite the classification
accuracy.

Research works have leveraged deep neural
networks to overcome the limitations of
traditional machine learning recently. (Jawed et
al., 2024) compared Long-term, short-term
memory (LSTM), Long-term, short-term
memory-convolutional neural network (LSTM-
CNN), and Long-term, short-term memory-
Fully convolutional neural network (LSTM-
FCNN) models for real-time identification of
visual learning styles from raw EEG signals.
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LSTM-CNN technique has the highest average
accuracy of 94% to predict the visual learning
style of students. Similarly, a Moth Flame
Optimization—Attention—LongShort-Term
Memory (MFO-Attention-LSTM) model was
developed by (Qin et al. 2024) to predict
students’ in-class performance, integrating
attention mechanisms with moth flame
optimization to enhance predictive accuracy
over traditional methods.

CNNs have emerged as a powerful tool for
processing multimodal educational data.
(Hoppe et al., 2016) presented a CNN-based
method that performed robust and accurate eye
movement detection which include saccades,
fixations, and smooth pursuit from continuous
gaze data streams. (Gambo et al. 2021)
developed a compelling comparison between
convolutional neural networks (CNNs) and
multiclass neural networks (MCNNs) for
classifying learners into VARK learning-style
dimensions  (Visual, Aural, Read/Write,
Kinesthetic, plus a Neutral class) from facial
images. Their results showed that the MCNN
model outperformed the CNN in test accuracy,
evidencing more robust classification of
learning styles based on facial expression cues.
Despite these advancements, no prior study has
holistically addressed all four VARK
modalities using real-time sensor fusion,
leaving a critical gap in the literature.

This study filled the gap by introducing a
unified CNN framework capable of processing
and classifying multimodal real-time data. By
synthesizing insights from neuroscience,
educational psychology, and Al, this work
provided a scalable solution for dynamic
learning style assessment, paving the way for
next-generation adaptive learning systems.

Real Time
Interaction

Logging Preprocessing

TR W)
Y

3. Methodology

3.1 System Architecture

To achieve the aim, this study employed a
quantitative, data-driven methodology to
classify student learning styles; Visual,
Auditory, Read/Write, and Kinesthetic (VARK),
by leveraging real-time interaction data from a
custom developed and VARK-based Hunter e-
Academy (He-A) Learning Management
System. The architecture design illustrated in
Figure 1, unfolded across three (3) main phases:
the real-time data collection, data preprocessing,
and machine learning training process.

3.1.1 Real Time Data Collection

In the first phase, as shown in the figure 2, the
LMS was instrumented with JavaScript event
listeners to capture and transmit learner
interactions as they occurred. For Visual
content, such as videos, play, pause, and
TimeupDate event listeners recorded when a
learner started, paused, or resumed playback,
with timestamps used to calculate total viewing
time. Auditory content, including audio lectures,
employed similar play and pause listeners to
track listening duration. Read/Write content,
typically text-based materials, was tracked
using scroll listeners to monitor reading
progress and depth, while focus and blur events
ensured that time was only counted when the
learner actively viewed the page. Kinesthetic
learning activities, such as interactive
simulations, were tracked with mouse scroll
listeners to log physical engagement, again
paired with focus and blur events to measure
active participation. This concept is captured by
the mathematical methodology in equation (1).

Convolutional
Neural Network

Figure 1: System Architecture
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If U = A set of users.
M = {V, A, R, K} the set of learning styles.

For each user u € U, the system records a time-ordered sequence of interactions as shown in Equation

2):
D,(t)={(m,d,c)Im € Md € R'c €C} Equ.(1)
Where:
c;: Unique content identifier ceC
¢: Collection of content items. {cicp .0}
U : Set of all users (learners) items {uy,uy,...3
u : A specific user/learner uw ey
M : Set of VARK modalities {Vv,A R K}

d; : Duration (seconds) of the interactiond; > 0
m; . Modality of the i — ¢th interaction m; € M
t : Timestamp of interaction recording t € R*

Each captured event was packaged in a JSON
payload containing the user ID, content ID,
event type, timestamp, device type, location, and
IP address. This payload was transmitted
asynchronously from the LMS’s front-end
(client side) to the server via HTTP POST
requests using the XMLHttpRequest. On the
server side, server received these HTTP requests
and processed them wusing Asynchronous
JavaScript and eXtensible Markup Language
(AJAX) and Hypertext Preprocessor (PHP), the
data underwent validation, was augmented with

session metadata, and had raw timestamps
processed into cumulative measures such as total
time spent and interaction frequency for each
modality. The processed interaction records
were then stored in a PostgreSQL database,
following a schema optimized for time-series
behavioral data. Quiz performance was captured
through submit event listeners on quiz forms,
with both the score and the associated modality
linked to the time-spent data to create a

Client Side

i)

Devices + Web Browsers

combined measure of engagement and
comprehension.
Server Side

Time Data

User- LOs

Profile

Quizzes

Figure 2: Architectural Design of Real Time e-Learning Management System
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3.1.2 Data Preprocessing

In the second phase, forming the data
preprocessing, pre-deep learning model process
as shown in the section of figure 3, the raw event
log data was exported from PostgreSQL for
preprocessing. This involved cleaning the
dataset by removing null values, correcting
timestamp errors, and excluding patterns
indicative of automated or non-genuine activity.
Feature engineering followed, producing
measures such as average time spent per
modality, scroll depth for reading materials, quiz
performance categories (Fail, Pass, Good,
Excellent), and interaction frequency metrics
like clicks or play events per minute. All
numerical features were normalized to prevent
dominance of any single metric during training,
and the data was labeled with each learner’s self-
reported VARK preference to serve as the
ground truth for supervised learning.

The deep learning model development. Once the
dataset was balanced, data reshaping was
performed to transform the features into a format

CNN CLASSIFICATION

compatible with  CNN model. Since CNNs
required multi-dimensional inputs, the dataset
was reshaped into a 3D tensor of shape
(num_samples, num_features, 1), where each
learner's engagement time and quiz score were
structured as  sequential  inputs.  This
representation allowed the convolutional filters
to capture patterns in time-spent data across
different learning styles.

To evaluate model performance effectively, the
dataset was split into training (70%), validation
(15%), and testing (15%) sets as shown in figure
4. The training set was used to optimize the
model, while the test set assessed its ability to
generalize to unseen data. Before training,
feature standardization was performed using
StandardScaler, ensuring that all input features
had a zero mean and unit variance. This step
prevented large-magnitude features (e.g., quiz
scores) from overshadowing smaller-scale
features (e.g., time spent in different learning
modes).

VISUALIZATION

@ )

G

/ \ » Model Performance
Metrics
Accuracy/Precision/Rec
> VARK Feature all
> Extraction Learning (;HI'VBS
> CNN Model Training > A/B Testing
> Learning Style Framework
Classification
(VIARIK) /

/

Figure 3: Deep Learning Model

Training:
Split data (70% train, 15% validation, 15% test)

U A W N
|

Optimize with Adam, loss =
Train for 50 epochs, batch size 32
Evaluate accuracy on test set & generate classification report

sparse categorical cross-entropy

Figure 4: Training
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3.1.3 Deep Learning Model

The CNN architecture was designed to extract
meaningful patterns from the reshaped data as
shown in figure 5. The first layer was a 1D
convolutional layer with 32 filters and a kernel
size of 3 which learned spatial dependencies
between time-spent variables. A max-pooling
layer followed, reducing dimensionality while
preserving essential features. The output was
then flattened into a 1D vector, which was
passed through two fully connected (dense)
layers with 64 and 32 neurons, respectively.
Each dense layer applied ReLU (Rectified
Linear Unit) activation to introduce non-linearity,
allowing the model to Ilearn complex
relationships in the data. To prevent overfitting,
dropout layers were included, randomly
deactivating a fraction of neurons during training.
Finally, the output layer applied a softmax
activation function, producing a probability
distribution over the four VARK learning styles,
allowing for multi-class classification

Model optimization was performed using the
Adam optimizer, known for its adaptive learning
rate adjustments that improved convergence
efficiency. The model was trained using sparse
categorical cross-entropy loss, a standard loss
function for multi-class classification. Training
was conducted over 50 epochs with a batch size
of 32, ensuring sufficient iterations for learning
meaningful patterns.

The visualization section of the CNN model
focused on evaluating and interpreting the
model’s performance. Key performance metrics
such as accuracy, precision, and recall are
calculated to provide a quantitative measure of
classification effectiveness. Learning curves are
generated to monitor the model’s progression
over training epochs, offering insights into
possible underfitting or overfitting. In addition,
an A/B testing framework is implemented to
compare the CNN’s classification results with

CNN Architecture:

- Max-pooling

Dropout

O U B W N

those from other established algorithms,
including Support Vector Machine (SVM),
Decision Tree, Naive Bayes, K-Nearest
Neighbors (KNN), XGBoost, and Random
Forest. This benchmarking ensured that the
CNN’s selection was supported by empirical
evidence, demonstrating competitive
performance  across  multiple  evaluation
dimensions. The integrated methodology thus
enabled the development of a robust, real-time
learning style classification system capable of
informing  personalized adaptive learning
experiences.

4. Results and Discussion

The deployment of the Hunter e-Academy
platform  facilitated the collection  of
comprehensive real-time interaction datasets,
enabling the application of a Convolutional
Neural Network (CNN) algorithm to classify
learners according to the VARK framework:
Visual, Auditory, Read/Write, and Kinesthetic.
Through its secure, role-based access, learners
engaged with course materials in multiple
modalities as shown in the dashboard in the
figure 6, including video, audio, text, and
interactive exercises, with each interaction
logged via embedded event listeners. These
interactions captured detailed behavioral metrics
such as time spent per modality, quiz
performance, and engagement frequency,
forming the basis for feature extraction and
model training.

By providing consistent and structured multi-
format content, the platform ensured a rich and
balanced dataset for analysis. The results,
presented in this section, illustrate the CNN’s
effectiveness in identifying dominant learning
styles from behavioral patterns, while the
discussion evaluates the algorithm’s
classification performance in comparison with
alternative models and explores its implications
for real-time adaptive learning personalization.

— Conv layer (32 filters, kernel 3)
- Flatten + Dense (64, 32 neurons)

Softmax output (4 classes)

Figure 5: CNN Architecture
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Figure 6: Hunter e-Academy LMS Dashboard

The Convolutional Neural Network (CNN)
model for VARK learning style classification
achieved exceptional results, with an overall
accuracy of 99.05% and a low loss of 0.0438 on
a dataset of twelve thousand (12,000) learners as
shown in the figure 7. The model delivered near-
perfect precision, recall, and F1-scores across all
learning styles, notably scoring 1.00 for both
Auditory and Reading/Writing, 0.99 for
Kinesthetic, and 0.98 for Visual. This
performance reflected the effectiveness of its
optimized architecture and feature engineering,
which combined temporal interaction patterns
with quiz performance. The model demonstrated
balanced and unbiased classification (macro F1-
score: 0.99), highlighting its reliability and
generalizability for adaptive learning systems. It
set a strong benchmark for future research, with
potential for further improvement through
expanded behavioral features or ensemble
approaches.

As seen in the learning curves in figure 8, the
CNN model demonstrated strong and stable
performance throughout training. Both accuracy
and loss improve rapidly in the first 10 epochs,
then level off, showing the model quickly
learned the key patterns in the data. By epoch 20,
training and validation accuracy stabilized at an
excellent 97-99%, while loss drops to near zero
and remains there, meaning the model isn't
overfitting and makes reliable predictions. The

test accuracy (shown by the dashed line)
matches this high performance, confirming the
model worked well on new, unseen data. These
results proved the CNN effectively classified
learning styles from interaction data, achieving
both high accuracy and reliable generalization.

The comparative analysis revealed that the CNN
model significantly outperformed some other
machine learning approaches across all
evaluation metrics as shown in table 1. The
comparative analysis of learning style
classification models reveals distinct
performance tiers among the evaluated
algorithms. The Convolutional Neural Network
(CNN) achieved superior performance with
99.05% accuracy, representing a 1.05% gain
over XGBoost (98.0%). The CNN demonstrated
exceptional capability across all metrics,
particularly in Auditory learner recognition (1.00
precision/recall/F1-score).  While = XGBoost
(98.0%) showed strong overall performance, it
exhibited slightly weaker recall for Kinesthetic
learners (0.96) compared to the CNN's 0.99.
Support Vector Machines (98.01%) performed
comparably to XGBoost but with marginally
lower precision for Visual and Reading learners.
Traditional methods including Random Forest
(96.69%), Naive Bayes (96.45%), and Decision
Trees (95.98%) showed progressively weaker
results, while KNN (89.0%) demonstrated the
most significant limitations, particularly in
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Reading learner precision (0.85). These results  performance, the CNN's additional 1.05%
not only validated the CNN's advantages for  accuracy gain represented statistically significant
temporal pattern recognition but also highlight  (p<0.01) and educationally  meaningful
that while the XGBoost delivered competitive  improvement for adaptive e-learning systems.

@ [ ] Hunter Adaptive e-Academy CNN Model Pipeline
VARK Leaming Style Classifier
Data Management Inference Visualization
<
Model Training Complete!
il Final Accuracy: 99.05%
\ Final Loss: 0.0438
2 Classification Report:
precision recall fl-score support
Auditory Learner  0.99  1.00  1.00 111
Kinesthetic Learner  1.00  0.97 099 113
Reading/Text Learner 100 1.00 1.00 100
Visual Leamer 097 0.99 098 99
accuracy 099 423
macroavg 0.99 099 099 423
weightedavg 0.99 099 099 423
@ Model Architecture:
Model: "sequential_20"
r
| Layer (type) | Output Shape | Param# |
| convid_20 (ConviD) | (None, 3, 32) 1 1281
| max_pooling1d_20 (MaxPooling1D) | (None, 1, 32) | ol
| flatten_20 (Flatten) | (None, 32) | ol
| dense_60 (Dense) | (None, 64) | 2n2|
| dropout_40 (Oropout) | (None, 64) | ol
| dense_61 (Dense) | (None, 32) | 2,0801
| dropout_41 (Dropout) | {None, 32) | of
| dense_62 (Dense) | (None, 4) | 132|
b
Total params: 13,358 (52.18 K8)
Trainable params: 4,452 (17.39 KB)
Non-trainable params: 0 (0.00 B)
Optimizer params: 8,906 (34.79 K8)

Figure 7: CNN Learning Styles Classification Model
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Figure 8: CNN loss and accuracy curves
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Table 1: Comparison of Performance Metrics of the ML Models for Learning Style Classification.

Algorithms Precision 100% Recall 100% F1-Score 100%
v A R K v A R K v A R K

CNN 99.05 0.97 0.99 1.00 1.00
SVM 98.01 0.97 0.98 0.97 1.00
Decision Tree 95.98 0.93 0.97 0.98 0.96
Xboost 98.0 0.98 0.98 0.98 0.98
Naive Bayes 96.45 0.97 0.96 0.95 0.98
Random Forest 96.69 0.97 0.98 0.97 0.95
KNN 89.0 0.86 0.92 0.85 0.92

The analysis of learner interactions revealed
a balanced distribution across VARK
learning styles among learners as shown in
figure 9, with Visual and Auditory learners
each comprising 26.4%, followed by
Reading/Writing at 23.7% and Kinesthetic at
23.5%. This near-even split underscores the
need for an adaptive learning system that
effectively supports diverse preferences,
ensuring inclusivity and personalized

099  1.00 1.00 097 098 1.00 1.00 0.99

098  1.00 099 09 097 0.99 0.98 0.98

097 095 097 095 095 0.96 0.97 0.95
098 099 099 096  0.98 0.99 0.99 0.97
097 097 098 094 097 0.96 0.97 0.96
096  0.96 098 096 0.96 0.97 0.98 0.96

0.87 089 090 088 0.86 0.90 0.87 0.90

engagement. Visualizations included a pie
chart breaking down learning styles, bar
charts displaying average time spent per
modality, and histogram chart tracking quiz
performance trends over time. The findings
highlight the importance of a flexible
educational approach that accommodates all
primary learning styles to optimize
outcomes for every learner.

Hunter Adaptive e-Academy CNN Model Pipeline

-

VARK Leaming Style Classifier

Data Management  Model Training Inference

Visuaizations will appear here after model training

Learning Style Distribution

Visusl Leamer Auditory Learner

23.7%

Reading/Text Learner Kinesthetic Learner

Quiz Score Distribution

Average Time Spent per Modality

Minutes
8 8

=
5]

o

(A)

Timespent (V)
Timespent (R)
Timespent (K)

150

=

€
€ 100

/

60 80 100
Score

Figure 9: Learning styles and Interaction Distributions
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5. Conclusion

This study successfully demonstrated that an
optimized CNN algorithm, trained on
multimodal interaction data (captured through
event listeners tracking play/pause, scroll, and
focus/blur events), provided a highly accurate
and scalable solution for real-time VARK
learning style classification. The model's
superior performance of achieving 99.05%
accuracy and near-perfect precision and recall
across all modalities, this validated its
effectiveness over traditional machine learning
approaches like SVM, XGBoost, Decision Tree,
Naive Bayes, KNN, and Random Forest. By
leveraging behavioral data and quiz performance,
the CNN overcome the limitations of static
guestionnaires, offering an objective, dynamic,
and scalable method for personalized learning.
This study highlighted the transformative
potential of Al-driven learning styles assessment
in an adaptive educational system.
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