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Abstract

This study presents a dual-model intelligent cybersecurity framework integrating Malware Detection and SQL
Injection Detection to enhance automated threat identification and prevention. For malware detection, a Random
Forest classifier was employed to analyze users activities. The model achieved an accuracy of 99.13%, precision
of 98.52%, and recall of 98.56%, demonstrating exceptional reliability in differentiating malicious from benign
files. The ROC curve (AUC = 0.9994) and Precision—Recall curve confirmed the model’s high discriminative
power, while LIME and Permutation Feature Importance analyses provided interpretability, revealing that
features like MajorSubsystemVersion and SectionsMeanEntropy strongly influence classification outcomes. For
SQL injection detection, a feedforward neural network (FFNN) with two dense layers (32 and 64 neurons) was
implemented using three handcrafted features—query length, punctuation, and SQL keywords. The model
achieved an accuracy of 99.73%, precision of 99.7%, recall of 99.95%, and F1-score of 99.8%, indicating near-
perfect discrimination between malicious and benign queries. The ROC (AUC = 1.00) and Precision—Recall
curves further confirmed its robustness. LIME explanations provided local interpretability by highlighting
influential query attributes driving predictions. A real-time detection dashboard continuously validates every
access attempt—file uploads or SQL queries—using both models in parallel. Malicious inputs are instantly
flagged and blocked, ensuring proactive protection. Overall, the proposed framework combines high detection
accuracy with explainable artificial intelligence (XAI) techniques, providing both transparency and reliability
for modern cybersecurity defense systems.

Keywords: Machine Learning, Cybersecurity, Malware Detection, SQL Injection, Explainable Artificial
Intelligence (XAl), Random Forest, Neural Network

1. Introduction

In the era of digital transformation, cyber threats
have become increasingly sophisticated, posing
significant risks to organizations across various
sectors. Traditional security paradigms often fall
short in defending against these advanced
threats due to their inherently reactive nature. In
the realm of cybersecurity, hybrid machine
learning models have emerged as pivotal tools
for effectively detecting and preventing cyber
threats. The integration of these models with the
Zero Trust security architecture represents a
transformative approach in handling
sophisticated cyber threats. Zero Trust operates
on the principle of "never trust, always verify,"
challenging the wvulnerabilities inherent in
traditional security postures by ensuring
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comprehensive authentication and authorization
for every access request within a network[14].

This paper presents a novel hybrid machine
learning approach combining the strengths of
Random Forest and Feed-Forward Neural
Networks to address the challenges of malware
and SQL injection detection, respectively.
Random Forest, known for its robust ensemble
learning capability, excels in malware detection
by improving accuracy through its ability to
handle large datasets and provide insights
through decision tree-based structures [17].
Meanwhile, the Feed-Forward Neural Network,
noted for its proficiency in uncovering complex
patterns, enhances SQL injection detection,
tackling one of the most prevalent
vulnerabilities in cybersecurity [4].

Beyond detection, the explainability of these
models is enhanced using Local Interpretable
Model-Agnostic Explanations (LIME), which
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provides interpretability to machine learning
models by approximating them with simpler
models for better human comprehension [12].
This aspect is critical as it aligns with the
necessity for transparency and trustworthiness
in Al-driven cybersecurity systems, allowing
security teams to understand and trust the
decisions made by automated systems [15].

The synthesis of Zero Trust principles with
explainable hybrid machine learning models
represents a comprehensive strategy to mitigate
ever-evolving cyber threats. By prioritizing
endogenous  verification and  leveraging
explainable Al, this study aims to lay a
foundation for enhancing threat detection and
prevention strategies that are both robust and
transparent.

2. Malware Attacks and SQL Injection
Attacks

Cyber threats have become increasingly
sophisticated, posing significant risks to
organizations across various sectors. Many
reseechers have employed machine learning
algorithms to mitigate the effects of cyber
threats. Nnodi and Obasi [20] researched on
Leveraging Artificial Intelligence for Detecting
Insider Threats in Corporate Networks. Their
system helps to identify abnormal user activities
and flags suspicious activities in real time,
providing an early warning sign for potential
breaches. Obasi and Nlerum [21] worked on
Intrusion Detection System for Structured
Query Language Injection Attack in E-
Commerce Database. Their system introduces a
filter layer specifically designed to verify user
inputs and mitigate known SQL injection
threats, thereby enhancing the security of e-
commerce platforms.

Timadi and Obasi [25] researched Integrating
Zero-Trust Architecture with Deep Learning
Algorithm to prevent structured query Language
injection attack in cloud database. Their
research contributes to the development of
robust security measures for cloud databases,
safeguarding  sensitive  information  and
protecting against costly data breaches. Ayush
et al. [6] investigated a "Deep Learning
Approach for Detection of SQL Injection
Attacks Using Convolutional Neural Networks."
The authors scrutinized the performance of an
array of machine learning algorithms, which

included Naive Bayes, Decision Trees, Support
Vector Machines, and K-nearest neighbors.
Malware attacks and SQL injection attacks
represent significant challenges in cybersecurity,
with both having distinct mechanisms and
impacts, but similar implications on data
integrity, confidentiality, and accessibility.
Malware, a broad term for malicious software,
includes a variety of hostile or intrusive
software types like viruses, worms, Trojans,
ransomware, and spyware. These programs are
designed to damage or disrupt systems, steal
sensitive data, or gain unauthorized access to
networks.

The proliferation of malware has seen an
upward trend due to the increasing
sophistication of attack methods, where modern
malware often evades traditional detection
mechanisms  through techniques like
polymorphism and encryption [7]. The impact
of malware attacks can be severe, leading to
significant financial losses, data breaches, and
operational  disruptions. Important defense
mechanisms against malware include employing
advanced machine learning and deep learning
models for anomaly detection, which can adapt
to new malware signatures and behaviors that
traditional signature-based methods might miss
[26].

SQL injection attacks (SQLI), on the other hand,
primarily — target web applications by
manipulating improperly sanitized SQL code to
execute arbitrary queries on a database [4]. This
type of attack can result in unauthorized data
access, data loss, or modification, severely
compromising the application's security and its
users' data. SQLI is particularly damaging due
to its potential to exploit any application that
inputs user data directly into SQL queries
without proper sanitization or validation [16].
Effective prevention of SQL injection attacks
involves the use of parameterized queries,
stored procedures, and rigorous input validation.
Additionally, machine learning  models,
including methods like CNN-BIiLSTM for SQLI
detection, have demonstrated significant
performance improvements in accurately
identifying potential SQLI threats in web
systems [9].

Both malware and SQL injection attacks
necessitate a proactive and layered defense
strategy that incorporates both technological and
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procedural measures to ensure comprehensive
protection against ever-evolving cyber threats

[3].

2.1. Application of Machine Learing
Algorithms to Mitigate Malware Attacks
and SQL Attacks.

The application of machine learning algorithms
in mitigating malware and SQL injection attacks
represents a dynamic evolution in cybersecurity
practices. These algorithms enhance threat
detection, improve response times, and adapt to
emerging threats more effectively than
traditional methods.

For malware detection, machine learning offers
several robust approaches. Deep learning
models such as Deep Neural Networks (DNN)
have shown remarkable success in identifying
malware signatures and behaviors. DNNs are
particularly beneficial due to their ability to
handle large amounts of unstructured data and
detect hidden patterns within datasets [8].
Furthermore, machine learning can be used to
develop predictive models that identify potential
malware attacks by learning from previous
instances, thus enhancing proactive defense
mechanisms within organizations [10].

In the realm of SQL injection attacks, machine
learning again proves indispensable. Various
algorithms, including Support Vector Machines
(SVM), Convolutional Neural Networks (CNN),
and Long Short-Term Memory (LSTM), have
been used to effectively detect SQL injection
attempts by analyzing patterns within SQL
queries. For instance, a hybrid CNN-BILSTM
model has demonstrated significant accuracy in
discriminating between legitimate and malicious
SQL requests, showcasing its superiority
compared to traditional detection methods [9].
Stephan [24] examined "SQL Injection and Its
Detection Using Machine Learning Algorithms
and BERT." The manuscript advocates for the
employment of machine learning strategies to
augment the detection capabilities for SQL
Injection attacks.

Abdalla et al. [1] engaged in research titled "An
Efficient Model to Detect and Prevent SQL
Injection Attack.” They propose a model
designed to detect and prevent SQL injection
attacks, which employs runtime validation to
ascertain the occurrence of such threats.
Another approach employs a Probabilistic

Neural Network (PNN), which excels in
detecting novel SQL injection patterns by
utilizing an optimized feature selection process
and high-dimensional data analysis [3]. Obasi
and Nlerum [22] developed a model for the
Detection and Prevention of Backdoor Attacks
using CNN with Federated Learning. Their
model achieved an accuracy of 99.99% for
training and 99.98 for validation. Hao et al. [13]
conducted a study on the implementation and
research of Deep Learning-Based Detection
Technology for SQL Injection. Their research
introduces a pioneering SQL injection attack
detection strategy that leverages the capabilities
of an enhanced TextCNN and Long Short-Term
Memory (LSTM) networks, thereby
significantly improving the recognition rate of
SQL injection attacks while concurrently
minimizing both false positive and false
negative rates.

Maha et al. [18] investigated a Deep Learning
Architecture for the Detection of SQL Injection
Attacks Utilizing a Recurrent Neural Network
Autoencoder Model. Their research proposes a
novel architecture aimed at identifying SQL
injection attacks through the application of a
recurrent  neural  network  autoencoder,
exhibiting its efficacy in detecting SQL
injection attacks with a superior level of
accuracy relative to the alternative models
analyzed in the research. Majid [19] advanced
the field by proposing deep learning
methodologies for SQL injection detection,
specifically  assessing  Artificial  Neural
Networks (ANNs), Convolutional Neural
Networks (CNNs), and Recurrent Neural
Networks (RNNs). His investigation critically
appraises the performance metrics of these three
predominant neural network configurations for
SQL injection attack detection, revealing that
the Convolutional Neural Network consistently
outperforms the others across nearly all
evaluated metrics.

Ahmed et al. [2] conducted an investigation into
a Multi-Phase Algorithmic Framework aimed at
mitigating SQL Injection Attacks through the
utilization of advanced Machine Learning and
Deep Learning methodologies to bolster real-
time Database security.

These machine learning models are not just
limited to detecting known threats; they are also
capable of identifying zero-day exploits and
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sophisticated multi-vector attacks thanks to their
adaptability and capacity for continuous
learning. The deployment of these algorithms
involves collecting data from network traffic,
applying feature extraction techniques, and
training classifiers that can act autonomously to
detect anomalies indicative of a cyber threat
[23].

Overall, integrating ~ machine  learning
algorithms into  cybersecurity frameworks
enhances an organization's ability to mitigate
threats while reducing the reliance on manual
interventions. By leveraging the strengths of
these advanced algorithms, organizations can
ensure more resilient and adaptive cybersecurity
defenses amidst an ever-evolving threat
landscape.

2.2. Knowledge Gaps Addressed by the
Research

This study advances cybersecurity research by
demonstrating the practical fusion of Zero Trust
principles (authentication, authorization, least-
privilege access) with hybrid machine learning
algorithms for threat prevention. While previous
studies focused either on Zero Trust policy
enforcement or isolated ML detection models,
this work bridges both, providing a multi-
layered defense mechanism that authenticates
every transaction and validates it using
intelligent anomaly detection.

Unlike prior works that treat malware and SQL
injection as separate research problems, this
study presents a unified architecture capable of
handling both malware detection and SQL
injection attack prediction. By combining
Random Forest (for structured binary features)
and Feedforward Neural Network (for semantic
SQL payload analysis), the research addresses
the gap in cross-domain hybridization for
cybersecurity threat modeling.

This research contributes new knowledge on
how interpretability tools (LIME and
Permutation Importance) can be systematically
integrated into security models to make black-
box predictions explainable. It demonstrates that
interpretable outputs help identify critical threat
indicators — such as high entropy in PE file
sections or abnormal punctuation ratios in SQL
queries — thereby enhancing both analyst trust
and regulatory accountability in Al-driven
systems. By integrating interpretability without

significant accuracy loss, this study offers
insight into how XAl methods can be used
without compromising model performance.
It addresses a key challenge in cybersecurity Al,
ensuring that high-performing models remain
transparent and auditable.

3. Methodology

This research adopted a machine learning—
driven approach to detect malicious software
(malware) and to identify SQL injection (SQLI)
queries, supported by explainable artificial
intelligence (XAI) methods for interpretability.
as shown in Figure 1. For malware detection,a
dataset with binary target variable labeled as
legitimate (1 = legitimate, 0 = malicious). Non-
numeric and irrelevant attributes were discarded.
An ExtraTreesClassifier was employed to
perform feature importance ranking, after which
SelectFromModel reduced the dimensionality
by retaining only significant predictors. A
RandomForestClassifier with 50 estimators and
a maximum depth of 10 was trained using an
80/20 train-test split.

For SQL injection, four datasets (sql.csv,
sgli.csv, username.csv, password.csv) were
integrated. Non-malicious queries (legitimate
SQL statements, usernames, and passwords)
were merged and labeled as non-sgli, while
malicious queries were labeled as sqli. Three
handcrafted features were generated:

1. Length: the character length of the query.

2. Punctuation count: frequency of special
symbols such as ', ;, --

3. Keyword count: number of SQL-related
keywords (e.g., drop, insert, select).

The numeric features were scaled using
StandardScaler, and categorical labels were
encoded using LabelEncoder.

A TensorFlow feedforward neural network with
two hidden layers (32 and 64 units, ReLU
activation) and one output unit (binary
classification) was trained for 20 epochs using
the Adam optimizer and binary cross-entropy
loss. Model performance was evaluated using
the following metrics:

1. Accuracy, Precision, Recall, and F1-score.
2. Confusion Matrix.
3. Precision—Recall Curve (PRC).
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4. Receiver Operating Characteristic (ROC)
Curve and Area Under the Curve (AUC).

To address the black-box nature of ML models,
explainability was incorporated. Permutation
feature importance was applied to rank the most
influential features in the Random Forest
classifier. LIME Tabular Explainer was
employed to interpret individual predictions in
both malware and SQLi detection models,
showing how feature values contributed to a
given classification outcome.

The integration of these models into a zero-trust
cloud database security architecture ensures that
unauthorized access is blocked, malicious
activity is flagged, and sensitive data remains
encrypted both in transit and at rest.

Figure 1 illustrates a Zero Trust Hybrid
Machine Learning architecture that integrates
machine learning (ML), explainable Al (XAl),
and Zero-Trust security principles to detect and
mitigate malware and SQL injection attacks
while ensuring secure user access to cloud
resources. The system starts with a collection of
labeled data containing samples of normal
(benign) and malicious activities. The dataset is
divided into Train Data which is used to train

Data Preprocessing

the ML models and Test Data which is used to
validate model performance. Before model
training, data is cleaned, normalized, and
transformed into a suitable format for the
learning algorithms. This step ensures better
accuracy and efficiency during model training.
Two separate models were trained for different
types of attack detection.

Random Forest Classifier (RFC) was trained to
detects malware attacks. Feed Forward Neural
Network (FFNN) was trained detects SQL
injection attacks. The outputs were further
interpreted using XAl (Explainable Al) to
provide transparency, explaining why a request
was classified as malicious or safe. When a
user’s request is made (e.g., accessing a
database or application), it passes through Zero-
Trust Principles which enforces “Never trust,
always verify.” Each access request is
authenticated, authorized, and validated by the
ML models before being granted. Encryption
Module ensures data confidentiality and
integrity, both in transit and at rest. Based on
ML predictions and Zero-Trust checks, access
was denied for SQL attack, granted for non-
SQL attack, denied for Malware (Malign), and
granted for Malware (Benign).

Train with
RFC(Malwate Attack)

4 e :
] Model Output{RF)
Dataset L7 » | Model Output{FFNM)
Train with Feed
Forward Neural
Test Data Network (SQL aftack
detection)
——p  Users’ Request
‘ v
Zero-Trust 1 Acress o )
Principles Mon-SQL Attack SOL Attack Malware Malware{Benign)
Enforcement (Malign)
¥
i fccess Ac Denied Acce;; Denied
—Access r— Granted cess Lent Access Granted
]
Encryption/Decryption <

(Data in Transit and at
Test)

Figure 1: Architecture of the Zero Trust Hybrid Machine Learning Model with Explainable

Threat Intelligence
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The architecture demonstrates a secure,
intelligent, and explainable cybersecurity
framework where ML algorithms detects
threats, XAl provides transparency, Zero-Trust
enforces strict access control, and Encryption
ensures data security.

4. Results and Discussion

4.1. Results

The evaluation demonstrates that both models
achieved exceptional performance in their
respective domains. For Malware Detection, the
Random Forest classifier’s high precision and
recall indicate strong resilience to false positives
and false negatives. Features such as high
entropy in PE file sections and unusual
subsystem versions emerged as strong indicators
of malware, aligning with known obfuscation
and packing strategies. Legitimate files with
large version information sizes acted as counter-
balancing features, reducing overfitting. For
SQL Injection Detection, The neural network
exhibited near-perfect classification accuracy,
demonstrating that simple yet well-chosen
handcrafted features can effectively
discriminate between malicious and benign
queries. The high recall score is particularly

Malware Detection
I Maicious Hashes (] Nomal Hashes
10
e
08
07 ,
061 = RIS 2 Ml M0
05—+ = f 18
04— = - 1t

03
12+
01

0

significant in cybersecurity, where undetected
attacks can compromise entire systems.

Both models shows continuous verification in
which every access attempt (SQL query or file
upload) undergoes validation, regardless of
prior authentication as seen in figure 2. The
dashboard displays two real-time detection
panels: The Malware Detection Panel is on the
Left. The Orange/Yellow (Malicious Hashes)
represents data or file hashes that the Random
Forest classifier has flagged as malicious. The
Green (Normal Hashes) represents safe/benign
hashes identified by the classifier. The
interwoven color bands suggest continuous
scanning, where every new hash is immediately
analyzed. Malicious samples were differentiated
from normal ones in real time, preventing
malware execution or infiltration. SQL Injection
Detection Panel is on the Right. Yellow (SQL
Injection Attempts) queries were detected as
malicious (SQLi). Blue/Green (Normal Queries)
queries were deemed safe. Similar to malware
detection, every SQL query is tokenized, passed
to the FFNN, and instantly classified. Normal
queries (e.g., SELECT * FROM employees
WHERE id=5) remain unblocked, while
malicious payloads are denied.

SQL Injection Detection

Start ~ Stop

Generated query: ZOWyqUF2GI' OR '1°="1 - SQL Injection

Figure 2: Malware and SQL Detection for Malign and Benign Queries
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For malware detection, the Receiver Operating
Characteristic (ROC) Curve in figure 3 shows
how well the classifier distinguishes between
classes (malware vs. benign), and the AUC (Area
Under the Curve) score summarizes its overall
performance. Accuracy measures the proportion
of total predictions (both benign and malware)
that the model classified correctly. With 99.13%,
the model is very effective at distinguishing
malware from benign files. Figure 4 shows the
Precision-Recall curve. Recall measures the
ability of the model to correctly detect actual
malware samples. A 98.56% recall recorded
means the model detected almost all malware
samples, with very few missed (false negatives).

Receiver Operating

This is critical in cybersecurity: missing a
malware (false negative) can be more dangerous
than mistakenly flagging a benign file. Precision
measures how many of the samples predicted as
malware were actually malware. A 98.52%
precision means that when the model flags a file
as malware, it is almost always correct. False
alarms (false positives) are very low. The ROC
curve plots the tradeoff between the True
Positive Rate (Recall) and False Positive Rate at
various thresholds. The AUC (Area Under
Curve) is 0.9994 which is nearly perfect. This
shows that the model separates malware from
benign files with extremely high discriminative
power.

Characteristic (ROC) Curve

o
a o6 -
as -
= -
= -
-
& -
= -
= o4 -
-
-
-
-
-
-
-
-
0.2 -
-
_’1""
- AOC curve (AUC = 09994
oo T .
0.0 0.2 0. o o.8 1.0

Failse Positive Rate

Figure 3: Receiver Operating Characteristics (ROC) Curve

Precision-Recall Curve

Precision

Recall

Figure 4: Precision-Recall Curve
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The confusion matrix in Figure 5 provides a clear
summary of the classification results of the
RandomForestClassifier for malware detection.
A total of 19,222 malicious files were correctly
identified as malicious (True Positives), while
123 malicious files were wrongly classified as
legitimate (False Negatives). Similarly, 8,144
legitimate files were correctly predicted as
legitimate (True Negatives), whereas 121
legitimate files were misclassified as malicious
(False Positives).

From these results, the model achieved an overall
accuracy of 99.13%, meaning that the majority of
predictions were correct.

Accuracy = (TP+TN) / (TP + TN +FP + FN) =
(19222+8144) | (19222 + 8144 + 121 + 123)
=99.13%

The recall value of 98.56% indicates that the
model successfully detected almost all malware
samples, with very few missed.

Recall = TP / (TP + FN) = 19222 / (19222 + 123)
= 98.56%

The precision value of 98.52% shows that when
the model flagged a file as malicious, it was
almost always correct, with very few false
alarms.

Precision = TP / (TP +FP) = 19222 + (19222 +
121) = 98.52%

The ROC curve complements these results by
showing an Area Under the Curve (AUC) of
0.9994, which suggests that the model has an
excellent ability to distinguish between malicious
and legitimate files across different thresholds.
The Precision—Recall curve also remains close to
the upper-right corner, confirming that the model
maintains both high precision and high recall
even in the presence of possible class imbalance.

The confusion matrix, ROC curve, and
Precision—Recall curve together demonstrate that
the proposed model is highly effective in
detecting malware, with minimal false positives
and false negatives. However, the presence of
123 false negatives indicates that some malicious
files were missed, which in cybersecurity
contexts could pose significant risks.

Figure 6 shows the LIME explanations for an
individual prediction for Malware detection. The
chart is a Local Interpretable Model-agnostic
Explanations (LIME) visualization, which
explains the predictions of the machine learning

model implemented in the
"PE_xai_with_metrics.py” code for a specific
instance. The model is a

"RandomForestClassifier” trained on a dataset to
classify PE (Portable Executable) files as either
"Malicious" or "Legitimate." LIME approximates
the model's behavior locally around a single data
point using a simpler, interpretable model (e.g., a
linear model) and highlights the features that
most influence the prediction.

Confusion Matrix

Malicious

True Label

Legitimate | 121

17500

15000

123

12500

F 10000

- 7500

8144 - 5000

F 2500

T
Malicious

Legitimate

Predicted Label

Figure 5: Confusion Matrix of the Random Forest Model
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The model predicts a 71% probability of
"Malicious" and 29% probability of "Legitimate"
for the analyzed file, indicating it is flagged as
likely malicious. The central section shows the
decision pathway with features that contributed
to the classification. Features highlighted in blue
(left) push the decision toward "Malicious".
Features in orange (right) push toward
"Legitimate”. The importance of each feature is
visually proportional to its horizontal bar.
Features such as MajorSubsystemVersion,
Subsystem,  SectionsMinEntropy,  Machine,
DLLCharacteristics, Characteristics, and
ImageBase all contributed to the "Malicious"
outcome. Features such as
SizeOfOptionalHeader, SectionsMaxEntropy,
ResourcesMaxEntropy, and
VersionInformationSize provided some evidence
toward "Legitimate” but with less influence.

Figure 7 shows a bar chart titled "Permutation
Feature Importance (Global)". This plot is a
global explanation of the model, meaning it
shows which features were most important to the
model's overall performance. The length of each
bar represents the average decrease in the
model's accuracy when that feature's values are

randomly shuffled. A longer bar indicates a more
important feature. The MajorSystemVersion
feature has the highest permutation importance,
indicating it's the most critical feature for your
model's predictions. The model's accuracy would
drop the most if MajorSystemVersion values
were randomized. This suggests that the size of
the executable file is a very strong predictor of
whether it's malicious or legitimate.

ResourcesMinEntropy and SectionsMeanEntropy
are also quite important, while DIICharacteristics
is the least important of the listed features. The
LIME explainer indicates the model’s 71%
"Malicious" prediction is driven by high values
of "MajorSubsystemVersion®,

“SectionsMaxEntropy, and
“SizeOfOptionalHeader", with
“VersionInformationSize™ and
"ResourcesMaxEntropy” providing some
counterevidence toward "Legitimate."”

This aligns with the 'RandomForestClassifier'’s
feature importance and the code’s feature
selection process.

Malicious
MajorSubsystem...

Frediction probobilities

Malicous
Legitimate

Subsystem <= 200

Mochine <= 224.00

]l h-ﬂr&:teristi;:s
i

Characteristics <=...

400 < Image 3«:59
W

4100 < SectionsM..
0

3.32 < MajorOpera...
0

ResourcesMinEntr..

15,00 < SectionsMi_
01

Feature Value

MajorSubsystemVersion
Subsystem

DICharocteristics
Chonocteristics

SectionshioxEntropy
MojorOpenotingSystemersion 5.38
curceshinEntropy
G A0 I{k®

ResourceshoxEnt..

fi-ilil.ﬂl?. < Versionln...
000

Figure 6: LIME explanations for an individual prediction for Malware detection
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Permutation Feature Importance (Global)

MajorSubsystemversion 4
ResourcesMinEntropy -
SectionsMeanEntropy -

versioninformationSize -

ImageBase

Machine -
SizeOfOptionalHeader +
MajorOperatingSystemversion
SectionsMinEntropy 4
SectionsMaxEntropy -
Subsystem -
ResourcesMaxEntropy -

Characteristics

DlICharacteristics o

0.0;‘)00 0.0625 0.0650

0.0E)?S

0.0‘100 0.0i25 O.GELSD 0.0:175

Permutation Importance

Figure 7: Permutation Feature Importance

For the SQL detection, labels were binary
encoded to distinguish between malicious SQL.i
gueries and non-SQLi queries (which include
regular SQL, usernames, and passwords). The
label column was label-encoded, turning
categories into numeric values. Numerical
features (Length, punctuation, keyword) were
standardized using StandardScaler  for
normalized input to the model. A simple
feedforward neural network was built using
TensorFlow: Input layer for three features, Two
hidden fully connected (Dense) layers with
ReLU activation (32 and 64 units), Output layer
with one unit (binary output logits). Figure 8
shows the Precision—Recall (PR) curve which
visually summarizes our model’s ability to
balance between precision (avoiding false

positives) and recall (avoiding false negatives)
for SQL injection detection. The X-axis (Recall)
measures how many actual positive cases (SQL
injection attacks) were correctly identified. A
higher value (closer to 1) means the model
misses fewer attacks. Y-axis (Precision)
measures how many predicted positive cases
were actually correct. A higher value (closer to
1) means the model makes fewer false alarms.
The curve is almost flat near Precision = 1.0,
meaning your model maintains very high
precision across nearly all recall levels. The
overall shape (a sharp upper-right curve)
indicates excellent model performance, nearly
perfect discrimination between attack and non-
attack cases.

Precision-Recall Curve

1.00

-

0.98

0.96

0.94 1

0.292 4

Precision

0.90

0.88

0.86

Recall

1.0

Figure 8: Precision-Recall Curve
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Figure 9 shows the Receiver Operating
Characteristic (ROC) Curve, a key performance
visualization for binary classifiers like our SQL
injection detection model. The X-axis (False
Positive Rate — FPR) shows the fraction of
normal (non-sgli) samples incorrectly classified
as attack,

Figure 10 shows the confusion matrix which is
used to evaluate the performance of a machine

learning model for SQL injection (SQLIi) attack
detection. The model classifies inputs into two
categories: SQL.i (attack) and Non-SQLi (normal
or benign traffic) with 385 samples correctly
identified as non-SQLi , 6 samples of non-SQLIi
incorrectly predicted as SQLi, 1 SQLi sample
incorrectly predicted as non-SQLi, and 2186
SQLi samples correctly identified.

Receiver Operating Characteristic (ROC) Curve
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Figure 10: Confusion Matrix of the Model
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The model achieved an overall accuracy of
99.73%, meaning that the majority of predictions
were correct.

Accuracy = (TP+TN) / (TP + TN +FP + FN) =
(2186+385) / (2186 + 385 + 6 + 1) =99.73%

The recall value of 99.95% was achieved by the
model indicating that the model successfully
detected almost all SQL.i attacks, missing only
one.

Recall = TP / (TP + FN) = 2186 / (2186 + 1) =
99.95%

The precision value of 99.7% was obtained
showing that when the model predicted SQLI, it
was 99.7% accurate.

Precision = TP / (TP +FP) = 2186 + (2186 + 6) =
99.7%

F1 score of 99.8% was achieved as follows:

F1 Score = 2 * (Precision * Recall) / (Precision +
Recall) = 99.8%. This shows excellent balance
between identifying attacks and minimizing false
alarms

The model integrated LIME to explain model
predictions locally as shown in Figure 11.Local

v Do @ ¥ Qo $co0 ¥da Qo i E w

C  (Fie C/Users/AL-WASI/Desktop/cloud/lime_explanation.html

Interpretable  Model-agnostic ~ Explanations
(LIME) visualization explains the model's
prediction for a specific input query by
approximating its behavior locally with a simpler
model. The visualization is divided into two main
sections:

i. Prediction Probabilities: Displays the
model's confidence scores for the two
classes: "non-sqli" and "sgli." with 0%
probability for non-sgli and 100%
probability for sgli. This indicates the
model is fully confident that the input
query is an SQL injection ("sqli").

ii. Feature Importance: Lists the features
and their contributions to the "sqli"
prediction, with thresholds and values
indicating their impact.

Features are derived from the SQL injection
dataset and processed by the leng, cal_puncndop,
and cal_keyword functions in the code. A
wrapper function converts Keras model output
logits to probability arrays compatible with
LIME. The LIME explainer was initialized with
training data and feature names. The model
attempts to explain an instance that the model
misclassifies. If none found, it explains a random
instance.
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Figure 11: LIME Explainer
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4.2. Discussion of Results

The evaluation results demonstrate that both
models—Random Forest (for malware detection)
and Feedforward Neural Network (for SQL
Injection  detection)—achieved  exceptional
classification performance in their respective
domains. The two models operate in a continuous
verification framework where every data access
attempt, either in the form of a Portable
Executable (PE) file upload or an SQL query, is
verified in real-time before execution. This
approach aligns with modern Zero Trust security
architecture, ensuring that no data transaction is
trusted by default, thereby providing a proactive
defense mechanism against cyberattacks.

The visual analytics dashboard (Figure 2)
effectively showcases this operational flow,
distinguishing between benign and malicious
traffic through color-coded panels. The real-time
color transitions (yellow/orange for malicious and
green/blue for benign) validate that detection
occurs instantaneously—malware is blocked
prior to execution and SQL injection attempts are
denied before compromising the database. This
dual-model structure therefore represents an
intelligent intrusion prevention system combining
static malware analysis with real-time web input
sanitization. The Random Forest classifier
achieved an overall accuracy of 99.13%,
demonstrating superior predictive capacity and
robustness. The AUC score of 0.9994 from the
ROC curve indicates the model’s nearly perfect
discriminative ability between malware and
benign files across varying thresholds. Similarly,
the Precision (98.52%) and Recall (98.56%)
metrics reinforce that the classifier not only
detects nearly all malware samples but also
produces minimal false alarms—an essential
guality in security environments where false
positives can lead to unnecessary quarantining of
legitimate files or service disruptions.

The Precision—Recall curve (Figure 4) remaining
close to the upper-right corner further confirms
the balance between sensitivity and specificity.
The high recall score suggests that the model
rarely misses malware, while the high precision
indicates that almost all flagged files are indeed
malicious. This tradeoff balance is crucial in
threat detection, as a single false negative could
result in system compromise, data exfiltration, or
persistent infiltration. From the confusion matrix
(Figure 5), out of 27,610 total samples, 19,222
malicious files were correctly classified (True
Positives), while only 123 were missed (False

Negatives). Similarly, 8,144 legitimate files were
correctly identified (True Negatives) with 121
false positives. These numbers reinforce the
model’s reliability and operational readiness.
However, the 123 false negatives represent
undetected malware instances—critical in
cybersecurity since undetected threats may later
propagate or evolve. This emphasizes the need
for complementary defenses, such as behavioral
monitoring or sandboxing, to address any residual
blind spots. The integration of Explainable
Artificial Intelligence (XAIl) techniques—LIME
and Permutation Feature Importance—provides
interpretability to the otherwise opaque Random
Forest model.

The LIME explanation (Figure 6) revealed that
features such as MajorSubsystemVersion,
Subsystem, SectionsMinEntropy, and Machine
were strong indicators of maliciousness. High
entropy values in PE sections often indicate
packed or obfuscated code—a typical trait in
malware that attempts to evade signature-based
detection.

Conversely, features like VersionInformationSize
and ResourcesMaxEntropy pushed predictions
toward "Legitimate," suggesting that large and
consistent metadata structures are typical of
authentic, well-compiled applications.

The Permutation Feature Importance (Figure 7)
confirmed MajorSystemVersion as the most
influential ~ feature globally, followed by
ResourcesMinEntropy and SectionsMeanEntropy.
This correspondence between local (LIME) and
global (Permutation) interpretability strengthens
confidence in the model’s internal logic.
Importantly, such insights enable security
analysts to understand why specific files are
flagged, supporting traceability and regulatory
compliance. The malware detection model’s high
performance suggests it can effectively replace or
complement traditional signature-based antivirus
systems. While conventional methods rely on
known hash patterns, this model identifies
structural and statistical anomalies in PE files,
making it resilient against zero-day attacks and
metamorphic malware. The combination of
entropy and subsystem analysis provides a more
generalized detection mechanism adaptable to
unseen threats.

The Feedforward Neural Network (FFNN) used
for SQL Injection detection was trained on
engineered features—query length, punctuation
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density, and SQL keyword frequency—
standardized through StandardScaler. Despite the
model’s simplicity, it achieved remarkable
performance  metrics:  Accuracy:  99.73%,
Precision: 99.7%, Recall: 99.95%, F1-Score:
99.8%

These metrics indicate near-perfect classification
capability. The model’s Recall of 99.95% means
almost every SQL injection attempt was correctly
detected, missing only one attack in the entire
dataset. Such reliability is crucial since a single
undetected SQLi vulnerability can expose entire
databases to unauthorized data retrieval or
corruption. Figures 8 and 9 depict both the
Precision—Recall and ROC curves for the SQLi
detection model. The PR curve maintains a
precision value near 1.0 across all recall levels,
confirming consistent accuracy even under varied
decision thresholds. The ROC curve further
demonstrates a strong separation between
positive (attack) and negative (benign) samples,
reinforcing the model’s excellent True Positive
Rate and minimal False Positive Rate. These
outcomes suggest the FFNN efficiently
generalizes from its training data, avoiding
overfitting  while  maintaining  operational
reliability in live environments.

The confusion matrix (Figure 10) shows: True
Positives (TP): 2186; True Negatives (TN): 385;
False Positives (FP): 6; False Negatives (FN): 1.
This distribution underscores that the classifier
rarely misclassifies benign queries as attacks
(minimizing user disruption) and almost never
misses actual SQL.i attempts. The combination of
a near-zero false negative rate and a low false
positive count reflects high precision with
operational trustworthiness—key for automated
intrusion detection systems (IDS) that run
continuously in production environments.

The LIME visualization (Figure 11) illustrates
how the neural network’s decisions are grounded
in interpretable feature contributions. For
example, a query may be flagged as SQL.i due to
high keyword frequency (e.g., use of “UNION,”
“SELECT,” or “DROP”), excessive punctuation,
or anomalous query length. The model’s 100%
confidence in predicting a malicious query
indicates a clear separation in feature space
between normal and attack samples. Such
interpretability enhances analyst trust and
supports model debugging, auditing, and
compliance verification.

Table 1 shows the comparative analysis of both
models.

Table 1: Comparative Analysis of RF Model
and FFNN Model

Matrics | Malware SQL Injection
Detection Detection
(Random Forest) | (FFNN)

Accuracy | 99.13% 99.73%

Precision | 98.52% 99.7%

Recall 98.56% 99.95%

F1 Score | 98.54% 99.8%

AUC 0.9994 1.0

Table 1 shows that the Neural Network slightly
outperforms the Random Forest, likely due to the
simplicity and distinctiveness of SQL injection
features. The Random Forest still performs
exceptionally well despite dealing with more
complex and heterogeneous malware data.

Both models demonstrate low error rates, strong
generalization, and high interpretability when
enhanced with XAl methods.

5. Conclusion

The study demonstrates the successful application
of machine learning and explainable Al in
enhancing cybersecurity defenses. The Random
Forest model effectively distinguishes malware
from legitimate PE files with strong
interpretability, while the Feedforward Neural
Network delivers near-perfect performance in
identifying SQL injection attacks. Together, they
provide a robust, interpretable, and automated
framework capable of supporting real-time
security validation across multiple threat vectors.
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