
245 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

University of Ibadan Journal of

Science and Logics in ICT

Research (UIJSLICTR)
ISSN: 2714-3627

A Journal of the Faculty of Computing, University of Ibadan, Ibadan, Nigeria

Volume 15 No. 1, September 2025

journals.ui.edu.ng/uijslictr

http://uijslictr.org.ng/

uijslictr@gmail.com

246 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

A Zero Trust Hybrid Machine Learning Algorithms for Threat Detection and

Prevention with Explainable Threat Intelligence.

1 Timadi M. E. and 2Obasi E.C.M.
1,2Department of Computer Science and Informatics, Federal University, Otuoke, Bayelsa State.
timadimatiel@gmail.com, obasiec@fuotuoke.edu.ng.

1 https://orcid.org/0009-0002-4419-2385, 2https://orcid.org/0009-0001-1513-9887

Abstract

This study presents a dual-model intelligent cybersecurity framework integrating Malware Detection and SQL

Injection Detection to enhance automated threat identification and prevention. For malware detection, a Random

Forest classifier was employed to analyze users activities. The model achieved an accuracy of 99.13%, precision

of 98.52%, and recall of 98.56%, demonstrating exceptional reliability in differentiating malicious from benign

files. The ROC curve (AUC = 0.9994) and Precision–Recall curve confirmed the model’s high discriminative

power, while LIME and Permutation Feature Importance analyses provided interpretability, revealing that

features like MajorSubsystemVersion and SectionsMeanEntropy strongly influence classification outcomes. For

SQL injection detection, a feedforward neural network (FFNN) with two dense layers (32 and 64 neurons) was

implemented using three handcrafted features—query length, punctuation, and SQL keywords. The model

achieved an accuracy of 99.73%, precision of 99.7%, recall of 99.95%, and F1-score of 99.8%, indicating near-

perfect discrimination between malicious and benign queries. The ROC (AUC = 1.00) and Precision–Recall

curves further confirmed its robustness. LIME explanations provided local interpretability by highlighting

influential query attributes driving predictions. A real-time detection dashboard continuously validates every

access attempt—file uploads or SQL queries—using both models in parallel. Malicious inputs are instantly

flagged and blocked, ensuring proactive protection. Overall, the proposed framework combines high detection

accuracy with explainable artificial intelligence (XAI) techniques, providing both transparency and reliability

for modern cybersecurity defense systems.

Keywords: Machine Learning, Cybersecurity, Malware Detection, SQL Injection, Explainable Artificial

Intelligence (XAI), Random Forest, Neural Network

1. Introduction

In the era of digital transformation, cyber threats

have become increasingly sophisticated, posing

significant risks to organizations across various

sectors. Traditional security paradigms often fall

short in defending against these advanced

threats due to their inherently reactive nature. In

the realm of cybersecurity, hybrid machine

learning models have emerged as pivotal tools

for effectively detecting and preventing cyber

threats. The integration of these models with the

Zero Trust security architecture represents a

transformative approach in handling

sophisticated cyber threats. Zero Trust operates

on the principle of "never trust, always verify,"

challenging the vulnerabilities inherent in

traditional security postures by ensuring

comprehensive authentication and authorization

for every access request within a network[14].

This paper presents a novel hybrid machine

learning approach combining the strengths of

Random Forest and Feed-Forward Neural

Networks to address the challenges of malware

and SQL injection detection, respectively.

Random Forest, known for its robust ensemble

learning capability, excels in malware detection

by improving accuracy through its ability to

handle large datasets and provide insights

through decision tree-based structures [17].

Meanwhile, the Feed-Forward Neural Network,

noted for its proficiency in uncovering complex

patterns, enhances SQL injection detection,

tackling one of the most prevalent

vulnerabilities in cybersecurity [4].

Beyond detection, the explainability of these

models is enhanced using Local Interpretable

Model-Agnostic Explanations (LIME), which

Timadi M. E. and Obasi E. C. M. (2025). A Zero Trust

Hybrid Machine Learning Algorithms for Threat Detection

and Prevention with Explainable Threat Intelligence.

University of Ibadan Journal of Science and Logics in ICT

Research (UIJSLICTR), Vol. 15 No. 1, pp. 246 – 261

©U IJSLICTR Vol. 15, No. 1, September 2025

mailto:timadimatiel@gmail.com
mailto:obasiec@fuotuoke.edu.ng
https://orcid.org/0009-0002-4419-2385
https://orcid.org/0009-0001-1513-9887

247 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

provides interpretability to machine learning

models by approximating them with simpler

models for better human comprehension [12].

This aspect is critical as it aligns with the

necessity for transparency and trustworthiness

in AI-driven cybersecurity systems, allowing

security teams to understand and trust the

decisions made by automated systems [15].

The synthesis of Zero Trust principles with

explainable hybrid machine learning models

represents a comprehensive strategy to mitigate

ever-evolving cyber threats. By prioritizing

endogenous verification and leveraging

explainable AI, this study aims to lay a

foundation for enhancing threat detection and

prevention strategies that are both robust and

transparent.

2. Malware Attacks and SQL Injection

Attacks

Cyber threats have become increasingly

sophisticated, posing significant risks to

organizations across various sectors. Many

reseechers have employed machine learning

algorithms to mitigate the effects of cyber

threats. Nnodi and Obasi [20] researched on

Leveraging Artificial Intelligence for Detecting

Insider Threats in Corporate Networks. Their

system helps to identify abnormal user activities

and flags suspicious activities in real time,

providing an early warning sign for potential

breaches. Obasi and Nlerum [21] worked on

Intrusion Detection System for Structured

Query Language Injection Attack in E-

Commerce Database. Their system introduces a

filter layer specifically designed to verify user

inputs and mitigate known SQL injection

threats, thereby enhancing the security of e-

commerce platforms.

Timadi and Obasi [25] researched Integrating

Zero-Trust Architecture with Deep Learning

Algorithm to prevent structured query Language

injection attack in cloud database. Their
research contributes to the development of

robust security measures for cloud databases,

safeguarding sensitive information and

protecting against costly data breaches. Ayush

et al. [6] investigated a "Deep Learning

Approach for Detection of SQL Injection

Attacks Using Convolutional Neural Networks."

The authors scrutinized the performance of an

array of machine learning algorithms, which

included Naive Bayes, Decision Trees, Support

Vector Machines, and K-nearest neighbors.

Malware attacks and SQL injection attacks

represent significant challenges in cybersecurity,

with both having distinct mechanisms and

impacts, but similar implications on data

integrity, confidentiality, and accessibility.

Malware, a broad term for malicious software,

includes a variety of hostile or intrusive

software types like viruses, worms, Trojans,

ransomware, and spyware. These programs are

designed to damage or disrupt systems, steal

sensitive data, or gain unauthorized access to

networks.

The proliferation of malware has seen an

upward trend due to the increasing

sophistication of attack methods, where modern

malware often evades traditional detection

mechanisms through techniques like

polymorphism and encryption [7]. The impact

of malware attacks can be severe, leading to

significant financial losses, data breaches, and

operational disruptions. Important defense

mechanisms against malware include employing

advanced machine learning and deep learning

models for anomaly detection, which can adapt

to new malware signatures and behaviors that

traditional signature-based methods might miss

[26].

SQL injection attacks (SQLI), on the other hand,

primarily target web applications by

manipulating improperly sanitized SQL code to

execute arbitrary queries on a database [4]. This

type of attack can result in unauthorized data

access, data loss, or modification, severely

compromising the application's security and its

users' data. SQLI is particularly damaging due

to its potential to exploit any application that

inputs user data directly into SQL queries

without proper sanitization or validation [16].

Effective prevention of SQL injection attacks

involves the use of parameterized queries,

stored procedures, and rigorous input validation.

Additionally, machine learning models,

including methods like CNN-BiLSTM for SQLI

detection, have demonstrated significant

performance improvements in accurately

identifying potential SQLI threats in web

systems [9].

Both malware and SQL injection attacks

necessitate a proactive and layered defense

strategy that incorporates both technological and

248 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

procedural measures to ensure comprehensive

protection against ever-evolving cyber threats

[3].

2.1. Application of Machine Learing

Algorithms to Mitigate Malware Attacks

and SQL Attacks.

The application of machine learning algorithms

in mitigating malware and SQL injection attacks

represents a dynamic evolution in cybersecurity

practices. These algorithms enhance threat

detection, improve response times, and adapt to

emerging threats more effectively than

traditional methods.

For malware detection, machine learning offers

several robust approaches. Deep learning

models such as Deep Neural Networks (DNN)

have shown remarkable success in identifying

malware signatures and behaviors. DNNs are

particularly beneficial due to their ability to

handle large amounts of unstructured data and

detect hidden patterns within datasets [8].

Furthermore, machine learning can be used to

develop predictive models that identify potential

malware attacks by learning from previous

instances, thus enhancing proactive defense

mechanisms within organizations [10].

In the realm of SQL injection attacks, machine

learning again proves indispensable. Various

algorithms, including Support Vector Machines

(SVM), Convolutional Neural Networks (CNN),

and Long Short-Term Memory (LSTM), have

been used to effectively detect SQL injection

attempts by analyzing patterns within SQL

queries. For instance, a hybrid CNN-BiLSTM

model has demonstrated significant accuracy in

discriminating between legitimate and malicious

SQL requests, showcasing its superiority

compared to traditional detection methods [9].

Stephan [24] examined "SQL Injection and Its

Detection Using Machine Learning Algorithms

and BERT." The manuscript advocates for the

employment of machine learning strategies to

augment the detection capabilities for SQL

Injection attacks.

 Abdalla et al. [1] engaged in research titled "An

Efficient Model to Detect and Prevent SQL

Injection Attack." They propose a model

designed to detect and prevent SQL injection

attacks, which employs runtime validation to

ascertain the occurrence of such threats.

Another approach employs a Probabilistic

Neural Network (PNN), which excels in

detecting novel SQL injection patterns by

utilizing an optimized feature selection process

and high-dimensional data analysis [3]. Obasi

and Nlerum [22] developed a model for the

Detection and Prevention of Backdoor Attacks

using CNN with Federated Learning. Their

model achieved an accuracy of 99.99% for

training and 99.98 for validation. Hao et al. [13]

conducted a study on the implementation and

research of Deep Learning-Based Detection

Technology for SQL Injection. Their research

introduces a pioneering SQL injection attack

detection strategy that leverages the capabilities

of an enhanced TextCNN and Long Short-Term

Memory (LSTM) networks, thereby

significantly improving the recognition rate of

SQL injection attacks while concurrently

minimizing both false positive and false

negative rates.

Maha et al. [18] investigated a Deep Learning

Architecture for the Detection of SQL Injection

Attacks Utilizing a Recurrent Neural Network

Autoencoder Model. Their research proposes a

novel architecture aimed at identifying SQL

injection attacks through the application of a

recurrent neural network autoencoder,

exhibiting its efficacy in detecting SQL

injection attacks with a superior level of

accuracy relative to the alternative models

analyzed in the research. Majid [19] advanced

the field by proposing deep learning

methodologies for SQL injection detection,

specifically assessing Artificial Neural

Networks (ANNs), Convolutional Neural

Networks (CNNs), and Recurrent Neural

Networks (RNNs). His investigation critically

appraises the performance metrics of these three

predominant neural network configurations for

SQL injection attack detection, revealing that

the Convolutional Neural Network consistently

outperforms the others across nearly all

evaluated metrics.

Ahmed et al. [2] conducted an investigation into

a Multi-Phase Algorithmic Framework aimed at

mitigating SQL Injection Attacks through the

utilization of advanced Machine Learning and

Deep Learning methodologies to bolster real-

time Database security.

These machine learning models are not just

limited to detecting known threats; they are also

capable of identifying zero-day exploits and

249 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

sophisticated multi-vector attacks thanks to their

adaptability and capacity for continuous

learning. The deployment of these algorithms

involves collecting data from network traffic,

applying feature extraction techniques, and

training classifiers that can act autonomously to

detect anomalies indicative of a cyber threat

[23].

Overall, integrating machine learning

algorithms into cybersecurity frameworks

enhances an organization's ability to mitigate

threats while reducing the reliance on manual

interventions. By leveraging the strengths of

these advanced algorithms, organizations can

ensure more resilient and adaptive cybersecurity

defenses amidst an ever-evolving threat

landscape.

2.2. Knowledge Gaps Addressed by the

Research

This study advances cybersecurity research by

demonstrating the practical fusion of Zero Trust

principles (authentication, authorization, least-

privilege access) with hybrid machine learning

algorithms for threat prevention. While previous

studies focused either on Zero Trust policy

enforcement or isolated ML detection models,

this work bridges both, providing a multi-

layered defense mechanism that authenticates

every transaction and validates it using

intelligent anomaly detection.

Unlike prior works that treat malware and SQL

injection as separate research problems, this

study presents a unified architecture capable of

handling both malware detection and SQL

injection attack prediction. By combining

Random Forest (for structured binary features)

and Feedforward Neural Network (for semantic

SQL payload analysis), the research addresses

the gap in cross-domain hybridization for

cybersecurity threat modeling.

This research contributes new knowledge on

how interpretability tools (LIME and

Permutation Importance) can be systematically

integrated into security models to make black-

box predictions explainable. It demonstrates that

interpretable outputs help identify critical threat

indicators — such as high entropy in PE file

sections or abnormal punctuation ratios in SQL

queries — thereby enhancing both analyst trust

and regulatory accountability in AI-driven

systems. By integrating interpretability without

significant accuracy loss, this study offers

insight into how XAI methods can be used

without compromising model performance.

It addresses a key challenge in cybersecurity AI,

ensuring that high-performing models remain

transparent and auditable.

3. Methodology

This research adopted a machine learning–

driven approach to detect malicious software

(malware) and to identify SQL injection (SQLi)

queries, supported by explainable artificial

intelligence (XAI) methods for interpretability.

as shown in Figure 1. For malware detection,a

dataset with binary target variable labeled as

legitimate (1 = legitimate, 0 = malicious). Non-

numeric and irrelevant attributes were discarded.

An ExtraTreesClassifier was employed to

perform feature importance ranking, after which

SelectFromModel reduced the dimensionality

by retaining only significant predictors. A

RandomForestClassifier with 50 estimators and

a maximum depth of 10 was trained using an

80/20 train-test split.

For SQL injection, four datasets (sql.csv,

sqli.csv, username.csv, password.csv) were

integrated. Non-malicious queries (legitimate

SQL statements, usernames, and passwords)

were merged and labeled as non-sqli, while

malicious queries were labeled as sqli. Three

handcrafted features were generated:

1 . Length: the character length of the query.

2. Punctuation count: frequency of special

symbols such as ', ;, --.

3. Keyword count: number of SQL-related

keywords (e.g., drop, insert, select).

The numeric features were scaled using

StandardScaler, and categorical labels were

encoded using LabelEncoder.

A TensorFlow feedforward neural network with

two hidden layers (32 and 64 units, ReLU

activation) and one output unit (binary

classification) was trained for 20 epochs using

the Adam optimizer and binary cross-entropy

loss. Model performance was evaluated using

the following metrics:

1. Accuracy, Precision, Recall, and F1-score.

2. Confusion Matrix.

3. Precision–Recall Curve (PRC).

250 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

4. Receiver Operating Characteristic (ROC)

Curve and Area Under the Curve (AUC).

To address the black-box nature of ML models,

explainability was incorporated. Permutation

feature importance was applied to rank the most

influential features in the Random Forest

classifier. LIME Tabular Explainer was

employed to interpret individual predictions in

both malware and SQLi detection models,

showing how feature values contributed to a

given classification outcome.

The integration of these models into a zero-trust

cloud database security architecture ensures that

unauthorized access is blocked, malicious

activity is flagged, and sensitive data remains

encrypted both in transit and at rest.

Figure 1 illustrates a Zero Trust Hybrid

Machine Learning architecture that integrates

machine learning (ML), explainable AI (XAI),

and Zero-Trust security principles to detect and

mitigate malware and SQL injection attacks

while ensuring secure user access to cloud

resources. The system starts with a collection of

labeled data containing samples of normal

(benign) and malicious activities. The dataset is

divided into Train Data which is used to train

the ML models and Test Data which is used to

validate model performance. Before model

training, data is cleaned, normalized, and

transformed into a suitable format for the

learning algorithms. This step ensures better

accuracy and efficiency during model training.

Two separate models were trained for different

types of attack detection.

Random Forest Classifier (RFC) was trained to

detects malware attacks. Feed Forward Neural

Network (FFNN) was trained detects SQL

injection attacks. The outputs were further

interpreted using XAI (Explainable AI) to

provide transparency, explaining why a request

was classified as malicious or safe. When a

user’s request is made (e.g., accessing a

database or application), it passes through Zero-

Trust Principles which enforces “Never trust,

always verify.” Each access request is

authenticated, authorized, and validated by the

ML models before being granted. Encryption

Module ensures data confidentiality and

integrity, both in transit and at rest. Based on

ML predictions and Zero-Trust checks, access

was denied for SQL attack, granted for non-

SQL attack, denied for Malware (Malign), and

granted for Malware (Benign).

Figure 1: Architecture of the Zero Trust Hybrid Machine Learning Model with Explainable

Threat Intelligence

251 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

The architecture demonstrates a secure,

intelligent, and explainable cybersecurity

framework where ML algorithms detects

threats, XAI provides transparency, Zero-Trust

enforces strict access control, and Encryption

ensures data security.

4. Results and Discussion

4.1. Results

The evaluation demonstrates that both models

achieved exceptional performance in their

respective domains. For Malware Detection, the

Random Forest classifier’s high precision and

recall indicate strong resilience to false positives

and false negatives. Features such as high

entropy in PE file sections and unusual

subsystem versions emerged as strong indicators

of malware, aligning with known obfuscation

and packing strategies. Legitimate files with

large version information sizes acted as counter-

balancing features, reducing overfitting. For

SQL Injection Detection, The neural network

exhibited near-perfect classification accuracy,

demonstrating that simple yet well-chosen

handcrafted features can effectively

discriminate between malicious and benign

queries. The high recall score is particularly

significant in cybersecurity, where undetected

attacks can compromise entire systems.

Both models shows continuous verification in

which every access attempt (SQL query or file

upload) undergoes validation, regardless of

prior authentication as seen in figure 2. The

dashboard displays two real-time detection

panels: The Malware Detection Panel is on the

Left. The Orange/Yellow (Malicious Hashes)

represents data or file hashes that the Random

Forest classifier has flagged as malicious. The

Green (Normal Hashes) represents safe/benign

hashes identified by the classifier. The

interwoven color bands suggest continuous

scanning, where every new hash is immediately

analyzed. Malicious samples were differentiated

from normal ones in real time, preventing

malware execution or infiltration. SQL Injection

Detection Panel is on the Right. Yellow (SQL

Injection Attempts) queries were detected as

malicious (SQLi). Blue/Green (Normal Queries)

queries were deemed safe. Similar to malware

detection, every SQL query is tokenized, passed

to the FFNN, and instantly classified. Normal

queries (e.g., SELECT * FROM employees

WHERE id=5) remain unblocked, while

malicious payloads are denied.

Figure 2: Malware and SQL Detection for Malign and Benign Queries

252 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

For malware detection, the Receiver Operating

Characteristic (ROC) Curve in figure 3 shows

how well the classifier distinguishes between

classes (malware vs. benign), and the AUC (Area

Under the Curve) score summarizes its overall

performance. Accuracy measures the proportion

of total predictions (both benign and malware)

that the model classified correctly. With 99.13%,

the model is very effective at distinguishing

malware from benign files. Figure 4 shows the

Precision-Recall curve. Recall measures the

ability of the model to correctly detect actual

malware samples. A 98.56% recall recorded

means the model detected almost all malware

samples, with very few missed (false negatives).

This is critical in cybersecurity: missing a

malware (false negative) can be more dangerous

than mistakenly flagging a benign file. Precision

measures how many of the samples predicted as

malware were actually malware. A 98.52%

precision means that when the model flags a file

as malware, it is almost always correct. False

alarms (false positives) are very low. The ROC

curve plots the tradeoff between the True

Positive Rate (Recall) and False Positive Rate at

various thresholds. The AUC (Area Under

Curve) is 0.9994 which is nearly perfect. This

shows that the model separates malware from

benign files with extremely high discriminative

power.

Figure 3: Receiver Operating Characteristics (ROC) Curve

Figure 4: Precision-Recall Curve

253 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

The confusion matrix in Figure 5 provides a clear

summary of the classification results of the

RandomForestClassifier for malware detection.

A total of 19,222 malicious files were correctly

identified as malicious (True Positives), while

123 malicious files were wrongly classified as

legitimate (False Negatives). Similarly, 8,144

legitimate files were correctly predicted as

legitimate (True Negatives), whereas 121

legitimate files were misclassified as malicious

(False Positives).

From these results, the model achieved an overall

accuracy of 99.13%, meaning that the majority of

predictions were correct.

Accuracy = (TP+TN) / (TP + TN +FP + FN) =

(19222+8144) / (19222 + 8144 + 121 + 123)

=99.13%

The recall value of 98.56% indicates that the

model successfully detected almost all malware

samples, with very few missed.

Recall = TP / (TP + FN) = 19222 / (19222 + 123)

= 98.56%

The precision value of 98.52% shows that when

the model flagged a file as malicious, it was

almost always correct, with very few false

alarms.

Precision = TP / (TP +FP) = 19222 + (19222 +

121) = 98.52%

The ROC curve complements these results by

showing an Area Under the Curve (AUC) of

0.9994, which suggests that the model has an

excellent ability to distinguish between malicious

and legitimate files across different thresholds.

The Precision–Recall curve also remains close to

the upper-right corner, confirming that the model

maintains both high precision and high recall

even in the presence of possible class imbalance.

The confusion matrix, ROC curve, and

Precision–Recall curve together demonstrate that

the proposed model is highly effective in

detecting malware, with minimal false positives

and false negatives. However, the presence of

123 false negatives indicates that some malicious

files were missed, which in cybersecurity

contexts could pose significant risks.

Figure 6 shows the LIME explanations for an

individual prediction for Malware detection. The

chart is a Local Interpretable Model-agnostic

Explanations (LIME) visualization, which

explains the predictions of the machine learning

model implemented in the

`PE_xai_with_metrics.py` code for a specific

instance. The model is a

`RandomForestClassifier` trained on a dataset to

classify PE (Portable Executable) files as either

"Malicious" or "Legitimate." LIME approximates

the model's behavior locally around a single data

point using a simpler, interpretable model (e.g., a

linear model) and highlights the features that

most influence the prediction.

Figure 5: Confusion Matrix of the Random Forest Model

254 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

The model predicts a 71% probability of

"Malicious" and 29% probability of "Legitimate"

for the analyzed file, indicating it is flagged as

likely malicious. The central section shows the

decision pathway with features that contributed

to the classification. Features highlighted in blue

(left) push the decision toward "Malicious".

Features in orange (right) push toward

"Legitimate". The importance of each feature is

visually proportional to its horizontal bar.

Features such as MajorSubsystemVersion,

Subsystem, SectionsMinEntropy, Machine,

DLLCharacteristics, Characteristics, and

ImageBase all contributed to the "Malicious"

outcome. Features such as

SizeOfOptionalHeader, SectionsMaxEntropy,

ResourcesMaxEntropy, and

VersionInformationSize provided some evidence

toward "Legitimate" but with less influence.

Figure 7 shows a bar chart titled "Permutation

Feature Importance (Global)". This plot is a

global explanation of the model, meaning it

shows which features were most important to the

model's overall performance. The length of each

bar represents the average decrease in the

model's accuracy when that feature's values are

randomly shuffled. A longer bar indicates a more

important feature. The MajorSystemVersion

feature has the highest permutation importance,

indicating it's the most critical feature for your

model's predictions. The model's accuracy would

drop the most if MajorSystemVersion values

were randomized. This suggests that the size of

the executable file is a very strong predictor of

whether it's malicious or legitimate.

ResourcesMinEntropy and SectionsMeanEntropy

are also quite important, while DllCharacteristics

is the least important of the listed features. The

LIME explainer indicates the model’s 71%

"Malicious" prediction is driven by high values

of `MajorSubsystemVersion`,

`SectionsMaxEntropy`, and

`SizeOfOptionalHeader`, with

`VersionInformationSize` and

`ResourcesMaxEntropy` providing some

counterevidence toward "Legitimate."

This aligns with the `RandomForestClassifier`’s

feature importance and the code’s feature

selection process.

Figure 6: LIME explanations for an individual prediction for Malware detection

255 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

Figure 7: Permutation Feature Importance

For the SQL detection, labels were binary

encoded to distinguish between malicious SQLi

queries and non-SQLi queries (which include

regular SQL, usernames, and passwords). The

label column was label-encoded, turning

categories into numeric values. Numerical

features (Length, punctuation, keyword) were

standardized using StandardScaler for

normalized input to the model. A simple

feedforward neural network was built using

TensorFlow: Input layer for three features, Two

hidden fully connected (Dense) layers with

ReLU activation (32 and 64 units), Output layer

with one unit (binary output logits). Figure 8

shows the Precision–Recall (PR) curve which

visually summarizes our model’s ability to

balance between precision (avoiding false

positives) and recall (avoiding false negatives)

for SQL injection detection. The X-axis (Recall)

measures how many actual positive cases (SQL

injection attacks) were correctly identified. A

higher value (closer to 1) means the model

misses fewer attacks. Y-axis (Precision)

measures how many predicted positive cases

were actually correct. A higher value (closer to

1) means the model makes fewer false alarms.
The curve is almost flat near Precision = 1.0,

meaning your model maintains very high

precision across nearly all recall levels. The

overall shape (a sharp upper-right curve)

indicates excellent model performance, nearly

perfect discrimination between attack and non-

attack cases.

Figure 8: Precision-Recall Curve

256 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

Figure 9 shows the Receiver Operating

Characteristic (ROC) Curve, a key performance

visualization for binary classifiers like our SQL

injection detection model. The X-axis (False

Positive Rate – FPR) shows the fraction of

normal (non-sqli) samples incorrectly classified

as attack,

Figure 10 shows the confusion matrix which is

used to evaluate the performance of a machine

learning model for SQL injection (SQLi) attack

detection. The model classifies inputs into two

categories: SQLi (attack) and Non-SQLi (normal

or benign traffic) with 385 samples correctly

identified as non-SQLi , 6 samples of non-SQLi

incorrectly predicted as SQLi, 1 SQLi sample

incorrectly predicted as non-SQLi, and 2186

SQLi samples correctly identified.

Figure 9: Receiver Operating Characteristic (ROC) Curve

Figure 10: Confusion Matrix of the Model

257 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

The model achieved an overall accuracy of

99.73%, meaning that the majority of predictions

were correct.

Accuracy = (TP+TN) / (TP + TN +FP + FN) =

(2186+385) / (2186 + 385 + 6 + 1) =99.73%

The recall value of 99.95% was achieved by the

model indicating that the model successfully

detected almost all SQLi attacks, missing only

one.

Recall = TP / (TP + FN) = 2186 / (2186 + 1) =

99.95%

The precision value of 99.7% was obtained

showing that when the model predicted SQLi, it

was 99.7% accurate.

Precision = TP / (TP +FP) = 2186 + (2186 + 6) =

99.7%

F1 score of 99.8% was achieved as follows:

F1 Score = 2 * (Precision * Recall) / (Precision +

Recall) = 99.8%. This shows excellent balance

between identifying attacks and minimizing false

alarms

The model integrated LIME to explain model

predictions locally as shown in Figure 11.Local

Interpretable Model-agnostic Explanations

(LIME) visualization explains the model's

prediction for a specific input query by

approximating its behavior locally with a simpler

model. The visualization is divided into two main

sections:

i. Prediction Probabilities: Displays the

model's confidence scores for the two

classes: "non-sqli" and "sqli." with 0%

probability for non-sqli and 100%

probability for sqli. This indicates the

model is fully confident that the input

query is an SQL injection ("sqli").

ii. Feature Importance: Lists the features

and their contributions to the "sqli"

prediction, with thresholds and values

indicating their impact.

Features are derived from the SQL injection

dataset and processed by the leng, cal_puncndop,

and cal_keyword functions in the code. A

wrapper function converts Keras model output

logits to probability arrays compatible with

LIME. The LIME explainer was initialized with

training data and feature names. The model

attempts to explain an instance that the model

misclassifies. If none found, it explains a random

instance.

Figure 11: LIME Explainer

258 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

4.2. Discussion of Results

The evaluation results demonstrate that both

models—Random Forest (for malware detection)

and Feedforward Neural Network (for SQL

Injection detection)—achieved exceptional

classification performance in their respective

domains. The two models operate in a continuous

verification framework where every data access

attempt, either in the form of a Portable

Executable (PE) file upload or an SQL query, is

verified in real-time before execution. This

approach aligns with modern Zero Trust security

architecture, ensuring that no data transaction is

trusted by default, thereby providing a proactive

defense mechanism against cyberattacks.

The visual analytics dashboard (Figure 2)

effectively showcases this operational flow,

distinguishing between benign and malicious

traffic through color-coded panels. The real-time

color transitions (yellow/orange for malicious and

green/blue for benign) validate that detection

occurs instantaneously—malware is blocked

prior to execution and SQL injection attempts are

denied before compromising the database. This

dual-model structure therefore represents an

intelligent intrusion prevention system combining

static malware analysis with real-time web input

sanitization. The Random Forest classifier

achieved an overall accuracy of 99.13%,

demonstrating superior predictive capacity and

robustness. The AUC score of 0.9994 from the

ROC curve indicates the model’s nearly perfect

discriminative ability between malware and

benign files across varying thresholds. Similarly,

the Precision (98.52%) and Recall (98.56%)

metrics reinforce that the classifier not only

detects nearly all malware samples but also

produces minimal false alarms—an essential

quality in security environments where false

positives can lead to unnecessary quarantining of

legitimate files or service disruptions.

The Precision–Recall curve (Figure 4) remaining

close to the upper-right corner further confirms

the balance between sensitivity and specificity.

The high recall score suggests that the model

rarely misses malware, while the high precision

indicates that almost all flagged files are indeed

malicious. This tradeoff balance is crucial in

threat detection, as a single false negative could

result in system compromise, data exfiltration, or

persistent infiltration. From the confusion matrix

(Figure 5), out of 27,610 total samples, 19,222

malicious files were correctly classified (True

Positives), while only 123 were missed (False

Negatives). Similarly, 8,144 legitimate files were

correctly identified (True Negatives) with 121

false positives. These numbers reinforce the

model’s reliability and operational readiness.

However, the 123 false negatives represent

undetected malware instances—critical in

cybersecurity since undetected threats may later

propagate or evolve. This emphasizes the need

for complementary defenses, such as behavioral

monitoring or sandboxing, to address any residual

blind spots. The integration of Explainable

Artificial Intelligence (XAI) techniques—LIME

and Permutation Feature Importance—provides

interpretability to the otherwise opaque Random

Forest model.

The LIME explanation (Figure 6) revealed that

features such as MajorSubsystemVersion,

Subsystem, SectionsMinEntropy, and Machine

were strong indicators of maliciousness. High

entropy values in PE sections often indicate

packed or obfuscated code—a typical trait in

malware that attempts to evade signature-based

detection.

Conversely, features like VersionInformationSize

and ResourcesMaxEntropy pushed predictions

toward "Legitimate," suggesting that large and

consistent metadata structures are typical of

authentic, well-compiled applications.

The Permutation Feature Importance (Figure 7)

confirmed MajorSystemVersion as the most

influential feature globally, followed by

ResourcesMinEntropy and SectionsMeanEntropy.

This correspondence between local (LIME) and

global (Permutation) interpretability strengthens

confidence in the model’s internal logic.

Importantly, such insights enable security

analysts to understand why specific files are

flagged, supporting traceability and regulatory

compliance. The malware detection model’s high

performance suggests it can effectively replace or

complement traditional signature-based antivirus

systems. While conventional methods rely on

known hash patterns, this model identifies

structural and statistical anomalies in PE files,

making it resilient against zero-day attacks and

metamorphic malware. The combination of

entropy and subsystem analysis provides a more

generalized detection mechanism adaptable to

unseen threats.

The Feedforward Neural Network (FFNN) used

for SQL Injection detection was trained on

engineered features—query length, punctuation

259 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

density, and SQL keyword frequency—

standardized through StandardScaler. Despite the

model’s simplicity, it achieved remarkable

performance metrics: Accuracy: 99.73%,

Precision: 99.7%, Recall: 99.95%, F1-Score:

99.8%

These metrics indicate near-perfect classification

capability. The model’s Recall of 99.95% means

almost every SQL injection attempt was correctly

detected, missing only one attack in the entire

dataset. Such reliability is crucial since a single

undetected SQLi vulnerability can expose entire

databases to unauthorized data retrieval or

corruption. Figures 8 and 9 depict both the

Precision–Recall and ROC curves for the SQLi

detection model. The PR curve maintains a

precision value near 1.0 across all recall levels,

confirming consistent accuracy even under varied

decision thresholds. The ROC curve further

demonstrates a strong separation between

positive (attack) and negative (benign) samples,

reinforcing the model’s excellent True Positive

Rate and minimal False Positive Rate. These

outcomes suggest the FFNN efficiently

generalizes from its training data, avoiding

overfitting while maintaining operational

reliability in live environments.

The confusion matrix (Figure 10) shows: True

Positives (TP): 2186; True Negatives (TN): 385;

False Positives (FP): 6; False Negatives (FN): 1.
This distribution underscores that the classifier

rarely misclassifies benign queries as attacks

(minimizing user disruption) and almost never

misses actual SQLi attempts. The combination of

a near-zero false negative rate and a low false

positive count reflects high precision with

operational trustworthiness—key for automated

intrusion detection systems (IDS) that run

continuously in production environments.

The LIME visualization (Figure 11) illustrates

how the neural network’s decisions are grounded

in interpretable feature contributions. For

example, a query may be flagged as SQLi due to

high keyword frequency (e.g., use of “UNION,”

“SELECT,” or “DROP”), excessive punctuation,

or anomalous query length. The model’s 100%

confidence in predicting a malicious query

indicates a clear separation in feature space

between normal and attack samples. Such

interpretability enhances analyst trust and

supports model debugging, auditing, and

compliance verification.

Table 1 shows the comparative analysis of both

models.

Table 1: Comparative Analysis of RF Model

and FFNN Model

Matrics Malware

Detection

(Random Forest)

SQL Injection

Detection

(FFNN)

Accuracy 99.13% 99.73%

Precision 98.52% 99.7%

Recall 98.56% 99.95%

F1 Score 98.54% 99.8%

AUC 0.9994 1.0

Table 1 shows that the Neural Network slightly

outperforms the Random Forest, likely due to the

simplicity and distinctiveness of SQL injection

features. The Random Forest still performs

exceptionally well despite dealing with more

complex and heterogeneous malware data.

Both models demonstrate low error rates, strong

generalization, and high interpretability when

enhanced with XAI methods.

5. Conclusion

The study demonstrates the successful application

of machine learning and explainable AI in

enhancing cybersecurity defenses. The Random

Forest model effectively distinguishes malware

from legitimate PE files with strong

interpretability, while the Feedforward Neural

Network delivers near-perfect performance in

identifying SQL injection attacks. Together, they

provide a robust, interpretable, and automated

framework capable of supporting real-time

security validation across multiple threat vectors.

References

1. Abdalla, H., Eltyeb, S. A., Elsamani, A., Ali, E., &

Abdallah, R. E. (2022). An efficient model to

detect and prevent SQL injection attack.

https://doi.org/10.54388/jkues.v1i2.141

2. Ahmed, A. A., Atta, B., & Stahl, F. T. (2022).

Multi-phase algorithmic framework to prevent

SQL injection attacks using improved machine

learning and deep learning to enhance database

security in real-time.

https://doi.org/10.1109/SIN56466.2022.9970504

3. Alarfaj, F. K., & Khan, N. A. (2023). Enhancing the

performance of SQL injection attack detection

through probabilistic neural networks. Applied

260 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

Sciences, 13(7), 4365.

https://doi.org/10.3390/app13074365

4. Alghawazi, M., Alarifi, S., & Alghazzawi, D.

(2022). Detection of SQL injection attack using

machine learning techniques: A systematic

literature review. Journal of Cybersecurity and

Privacy, 2(4), 764–777.

https://doi.org/10.3390/jcp2040039

5. Alshammari, M. (2023). Deep learning approaches

to SQL injection detection: Evaluating ANNs,

CNNs, and RNNs.

https://doi.org/10.1117/12.3012620

6. Ayush, F., Manav, H., Henil, V., Priyank, M., &

Deepa, K. (2022). A deep learning approach for

detection of SQL injection attacks using

convolutional neural networks. 293–304.

https://doi.org/10.1007/978-981-16-6285-0_24

7. Bijitha, C. V., & Nath, H. V. (2021). On the

effectiveness of image processing based malware

detection techniques. Cybernetics and Systems,

ahead-of-print(ahead-of-print), 615–640.

https://doi.org/10.1080/01969722.2021.2020471

8. Chaudhary, H., Shah, P., Detroja, A., & Prajapati, P.

(2020). A review of various challenges in

cybersecurity using artificial intelligence. 829–836.

https://doi.org/10.1109/iciss49785.2020.9316003

9. Gandhi, N., Mishra, S., Doshi, N., Patel, J., &

Sisodiya, R. (2021). A CNN-BiLSTM based

approach for detection of SQL injection attacks.

378–383.

https://doi.org/10.1109/iccike51210.2021.9410675

10. Gorment, N. Z., Selamat, A., Cheng, L. K., &

Krejcar, O. (2023). Machine learning algorithm for

malware detection: Taxonomy, current challenges,

and future directions. IEEE Access, 11, 141045–

141089.

https://doi.org/10.1109/access.2023.3256979

11. Gorgulu, A., & Kakisim, (2024). A deep learning

approach based on multi-view consensus for SQL

injection detection. International Journal of

Information Security.

https://doi.org/10.1007/s10207-023-00791-y

12. Hasan, M. M. (2024). Understanding model

predictions: A comparative analysis of SHAP and

LIME on various ML algorithms. Journal of

Scientific and Technological Research, 5(1), 17–

26. https://doi.org/10.59738/jstr.v5i1.23(17-

26).eaqr5800

13. Hao, S., Yuejin, D., & Qi, L. (2023). Deep

learning-based detection technology for SQL

injection research and implementation. Applied

Sciences. https://doi.org/10.3390/app13169466

14. Kaur, J., Miah, M., Hasan, S., Goffer, M.,

Barikdar, C., Orthi, S., & Hassan, J. (2024).

Advanced cyber threats and cybersecurity

innovation – Strategic approaches and emerging

solutions. Journal of Computer Science and

Technology Studies, 5(3), 112–121.

https://doi.org/10.32996/jcsts.2023.5.3.9

15. Korade, D. (2024). Unlocking machine learning

model decisions: A comparative analysis of LIME

and SHAP for enhanced interpretability. Journal of

Electrical Systems, 20(2s), 598–613.

https://doi.org/10.52783/jes.1480

16. Kumar, P., & Pateriya, R. K. (2012). A survey on

SQL injection attacks, detection and prevention

techniques. 1–5.

https://doi.org/10.1109/icccnt.2012.6396096

17. Li, Z., Zhu, H., Liu, H., Song, J., & Cheng, Q.

(2024). Comprehensive evaluation of Mal-API-

2019 dataset by machine learning in malware

detection. International Journal of Computer

Science and Information Technology, 2(1), 1–9.

https://doi.org/10.62051/ijcsit.v2n1.01

18. Maha, A., Daniyal, M., Alghazzawi, D., & Alarifi,

S. (2023). Deep learning architecture for detecting

SQL injection attacks based on RNN autoencoder

model. Mathematics.

https://doi.org/10.3390/math11153286

19. Majid, Alshammari. (2023). 6. Deep learning

approaches to SQL injection detection: evaluating

ANNs, CNNs, and RNNs. doi:

10.1117/12.3012620.

20. Nnodi, J. T., & Obasi, E. C. M. (2025). Leveraging

artificial intelligence for detecting insider threats in

corporate networks. University of Ibadan Journal

of Science and Logics in ICT Research, 13(1),

130–144.

21. Obasi, E., & Nlerum, P. (2020). Intrusion detection

system for structured query language injection

attack in e-commerce database. International

Journal of Scientific and Research Publications,

10(8), 446–453.

https://doi.org/10.29322/IJSRP.10.08.2020.P10455

22. Obasi, E. C. M., & Nlerum, P. A. (2023). A model

for the detection and prevention of backdoor

attacks using CNN with federated learning.

University of Ibadan Journal of Science and Logics

in ICT Research, 10(1), 9–21.

23. S, V., Taneem, A., Thoutam, S. Y., Apuri, S., &

Md, S. W. (2024). Research on SQL injection

attacks using word embedding techniques and

machine learning. Journal of Sensors, IoT &

https://doi.org/10.3390/math11153286

261 UIJSLICTR Vol. 15 No. 1 Sept., 2025 ISSN: 2714-3627

Health Sciences, 2(1), 55–64.

https://doi.org/10.69996/jsihs.2024005

24. Stephan, L. (2023). SQL injection and its detection

using machine learning algorithms and BERT.

Lecture Notes in Computer Science, 3–16.

https://doi.org/10.1007/978-3-031-28975-0_1

25. Timadi, M. E., & Obasi, E. C. M. (2025).

Integrating zero-trust architecture with deep

learning algorithm to prevent structured query

language injection attack in cloud database.

University of Ibadan Journal of Science and Logics

in ICT Research, 13(1), 52–62.

26. Yan, S., Ren, J., Sun, L., Yu, Q., Wang, W., &

Zhang, W. (2023). A survey of adversarial attack

and defense methods for malware classification in

cyber security. IEEE Communications Surveys &

Tutorials, 25(1), 467–496.

https://doi.org/10.1109/comst.2022.3225137.

