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Abstract  

This study presents a dual-model intelligent cybersecurity framework integrating Malware Detection and SQL 

Injection Detection to enhance automated threat identification and prevention. For malware detection, a Random 

Forest classifier was employed to analyze users activities. The model achieved an accuracy of 99.13%, precision 

of 98.52%, and recall of 98.56%, demonstrating exceptional reliability in differentiating malicious from benign 

files. The ROC curve (AUC = 0.9994) and Precision–Recall curve confirmed the model’s high discriminative 

power, while LIME and Permutation Feature Importance analyses provided interpretability, revealing that 

features like MajorSubsystemVersion and SectionsMeanEntropy strongly influence classification outcomes. For 

SQL injection detection, a feedforward neural network (FFNN) with two dense layers (32 and 64 neurons) was 

implemented using three handcrafted features—query length, punctuation, and SQL keywords. The model 

achieved an accuracy of 99.73%, precision of 99.7%, recall of 99.95%, and F1-score of 99.8%, indicating near-

perfect discrimination between malicious and benign queries. The ROC (AUC = 1.00) and Precision–Recall 

curves further confirmed its robustness. LIME explanations provided local interpretability by highlighting 

influential query attributes driving predictions. A real-time detection dashboard continuously validates every 

access attempt—file uploads or SQL queries—using both models in parallel. Malicious inputs are instantly 

flagged and blocked, ensuring proactive protection. Overall, the proposed framework combines high detection 

accuracy with explainable artificial intelligence (XAI) techniques, providing both transparency and reliability 

for modern cybersecurity defense systems. 

 

Keywords: Machine Learning, Cybersecurity, Malware Detection, SQL Injection, Explainable Artificial 

Intelligence (XAI), Random Forest,  Neural Network 

1.   Introduction 

In the era of digital transformation, cyber threats 

have become increasingly sophisticated, posing 

significant risks to organizations across various 

sectors. Traditional security paradigms often fall 

short in defending against these advanced 

threats due to their inherently reactive nature. In 

the realm of cybersecurity, hybrid machine 

learning models have emerged as pivotal tools 

for effectively detecting and preventing cyber 

threats. The integration of these models with the 

Zero Trust security architecture represents a 

transformative approach in handling 

sophisticated cyber threats. Zero Trust operates 

on the principle of "never trust, always verify," 

challenging the vulnerabilities inherent in 

traditional security postures by ensuring 

comprehensive authentication and authorization 

for every access request within a network[14]. 

 

This paper presents a novel hybrid machine 

learning approach combining the strengths of 

Random Forest and Feed-Forward Neural 

Networks to address the challenges of malware 

and SQL injection detection, respectively. 

Random Forest, known for its robust ensemble 

learning capability, excels in malware detection 

by improving accuracy through its ability to 

handle large datasets and provide insights 

through decision tree-based structures [17]. 

Meanwhile, the Feed-Forward Neural Network, 

noted for its proficiency in uncovering complex 

patterns, enhances SQL injection detection, 

tackling one of the most prevalent 

vulnerabilities in cybersecurity [4]. 

 

Beyond detection, the explainability of these 

models is enhanced using Local Interpretable 

Model-Agnostic Explanations (LIME), which 
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provides interpretability to machine learning 

models by approximating them with simpler 

models for better human comprehension [12]. 

This aspect is critical as it aligns with the 

necessity for transparency and trustworthiness 

in AI-driven cybersecurity systems, allowing 

security teams to understand and trust the 

decisions made by automated systems [15]. 

 

The synthesis of Zero Trust principles with 

explainable hybrid machine learning models 

represents a comprehensive strategy to mitigate 

ever-evolving cyber threats. By prioritizing 

endogenous verification and leveraging 

explainable AI, this study aims to lay a 

foundation for enhancing threat detection and 

prevention strategies that are both robust and 

transparent. 

 

2.  Malware Attacks and SQL Injection 

Attacks 

Cyber threats have become increasingly 

sophisticated, posing significant risks to 

organizations across various sectors. Many 

reseechers have employed machine learning 

algorithms to mitigate the effects of cyber 

threats. Nnodi and Obasi [20] researched on 

Leveraging Artificial Intelligence for Detecting 

Insider Threats in Corporate Networks. Their 

system helps to identify abnormal user activities 

and flags suspicious activities in real time, 

providing an early warning sign for potential 

breaches. Obasi and Nlerum [21] worked on 

Intrusion Detection System for Structured 

Query Language Injection Attack in E-

Commerce Database. Their system introduces a 

filter layer specifically designed to verify user 

inputs and mitigate known SQL injection 

threats, thereby enhancing the security of e-

commerce platforms.  

 

Timadi and Obasi [25] researched Integrating 

Zero-Trust Architecture with Deep Learning 

Algorithm to prevent structured query Language 

injection attack in cloud database. Their 
research contributes to the development of 

robust security measures for cloud databases, 

safeguarding sensitive information and 

protecting against costly data breaches. Ayush 

et al. [6] investigated a "Deep Learning 

Approach for Detection of SQL Injection 

Attacks Using Convolutional Neural Networks." 

The authors scrutinized the performance of an 

array of machine learning algorithms, which 

included Naive Bayes, Decision Trees, Support 

Vector Machines, and K-nearest neighbors. 

Malware attacks and SQL injection attacks 

represent significant challenges in cybersecurity, 

with both having distinct mechanisms and 

impacts, but similar implications on data 

integrity, confidentiality, and accessibility. 

Malware, a broad term for malicious software, 

includes a variety of hostile or intrusive 

software types like viruses, worms, Trojans, 

ransomware, and spyware. These programs are 

designed to damage or disrupt systems, steal 

sensitive data, or gain unauthorized access to 

networks.  

 

The proliferation of malware has seen an 

upward trend due to the increasing 

sophistication of attack methods, where modern 

malware often evades traditional detection 

mechanisms through techniques like 

polymorphism and encryption [7]. The impact 

of malware attacks can be severe, leading to 

significant financial losses, data breaches, and 

operational disruptions. Important defense 

mechanisms against malware include employing 

advanced machine learning and deep learning 

models for anomaly detection, which can adapt 

to new malware signatures and behaviors that 

traditional signature-based methods might miss 

[26]. 

 

SQL injection attacks (SQLI), on the other hand, 

primarily target web applications by 

manipulating improperly sanitized SQL code to 

execute arbitrary queries on a database [4]. This 

type of attack can result in unauthorized data 

access, data loss, or modification, severely 

compromising the application's security and its 

users' data. SQLI is particularly damaging due 

to its potential to exploit any application that 

inputs user data directly into SQL queries 

without proper sanitization or validation [16]. 

Effective prevention of SQL injection attacks 

involves the use of parameterized queries, 

stored procedures, and rigorous input validation. 

Additionally, machine learning models, 

including methods like CNN-BiLSTM for SQLI 

detection, have demonstrated significant 

performance improvements in accurately 

identifying potential SQLI threats in web 

systems [9]. 

 

Both malware and SQL injection attacks 

necessitate a proactive and layered defense 

strategy that incorporates both technological and 
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procedural measures to ensure comprehensive 

protection against ever-evolving cyber threats 

[3]. 

 

2.1. Application of Machine Learing 

Algorithms to Mitigate Malware Attacks 

and SQL Attacks. 

The application of machine learning algorithms 

in mitigating malware and SQL injection attacks 

represents a dynamic evolution in cybersecurity 

practices. These algorithms enhance threat 

detection, improve response times, and adapt to 

emerging threats more effectively than 

traditional methods. 

 

For malware detection, machine learning offers 

several robust approaches. Deep learning 

models such as Deep Neural Networks (DNN) 

have shown remarkable success in identifying 

malware signatures and behaviors. DNNs are 

particularly beneficial due to their ability to 

handle large amounts of unstructured data and 

detect hidden patterns within datasets [8]. 

Furthermore, machine learning can be used to 

develop predictive models that identify potential 

malware attacks by learning from previous 

instances, thus enhancing proactive defense 

mechanisms within organizations [10]. 

 

In the realm of SQL injection attacks, machine 

learning again proves indispensable. Various 

algorithms, including Support Vector Machines 

(SVM), Convolutional Neural Networks (CNN), 

and Long Short-Term Memory (LSTM), have 

been used to effectively detect SQL injection 

attempts by analyzing patterns within SQL 

queries. For instance, a hybrid CNN-BiLSTM 

model has demonstrated significant accuracy in 

discriminating between legitimate and malicious 

SQL requests, showcasing its superiority 

compared to traditional detection methods [9]. 

Stephan [24] examined "SQL Injection and Its 

Detection Using Machine Learning Algorithms 

and BERT." The manuscript advocates for the 

employment of machine learning strategies to 

augment the detection capabilities for SQL 

Injection attacks. 

 

 Abdalla et al. [1] engaged in research titled "An 

Efficient Model to Detect and Prevent SQL 

Injection Attack." They propose a model 

designed to detect and prevent SQL injection 

attacks, which employs runtime validation to 

ascertain the occurrence of such threats.  

Another approach employs a Probabilistic 

Neural Network (PNN), which excels in 

detecting novel SQL injection patterns by 

utilizing an optimized feature selection process 

and high-dimensional data analysis [3]. Obasi 

and Nlerum [22] developed a model for the 

Detection and Prevention of Backdoor Attacks 

using CNN with Federated Learning. Their   

model   achieved   an   accuracy   of 99.99% for 

training and 99.98 for validation. Hao et al. [13] 

conducted a study on the implementation and 

research of Deep Learning-Based Detection 

Technology for SQL Injection. Their research 

introduces a pioneering SQL injection attack 

detection strategy that leverages the capabilities 

of an enhanced TextCNN and Long Short-Term 

Memory (LSTM) networks, thereby 

significantly improving the recognition rate of 

SQL injection attacks while concurrently 

minimizing both false positive and false 

negative rates.  

 

Maha et al. [18] investigated a Deep Learning 

Architecture for the Detection of SQL Injection 

Attacks Utilizing a Recurrent Neural Network 

Autoencoder Model. Their research proposes a 

novel architecture aimed at identifying SQL 

injection attacks through the application of a 

recurrent neural network autoencoder, 

exhibiting its efficacy in detecting SQL 

injection attacks with a superior level of 

accuracy relative to the alternative models 

analyzed in the research. Majid [19] advanced 

the field by proposing deep learning 

methodologies for SQL injection detection, 

specifically assessing Artificial Neural 

Networks (ANNs), Convolutional Neural 

Networks (CNNs), and Recurrent Neural 

Networks (RNNs). His investigation critically 

appraises the performance metrics of these three 

predominant neural network configurations for 

SQL injection attack detection, revealing that 

the Convolutional Neural Network consistently 

outperforms the others across nearly all 

evaluated metrics.  

 

Ahmed et al. [2] conducted an investigation into 

a Multi-Phase Algorithmic Framework aimed at 

mitigating SQL Injection Attacks through the 

utilization of advanced Machine Learning and 

Deep Learning methodologies to bolster real-

time Database security. 

 

These machine learning models are not just 

limited to detecting known threats; they are also 

capable of identifying zero-day exploits and 
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sophisticated multi-vector attacks thanks to their 

adaptability and capacity for continuous 

learning. The deployment of these algorithms 

involves collecting data from network traffic, 

applying feature extraction techniques, and 

training classifiers that can act autonomously to 

detect anomalies indicative of a cyber threat 

[23]. 

 

Overall, integrating machine learning 

algorithms into cybersecurity frameworks 

enhances an organization's ability to mitigate 

threats while reducing the reliance on manual 

interventions. By leveraging the strengths of 

these advanced algorithms, organizations can 

ensure more resilient and adaptive cybersecurity 

defenses amidst an ever-evolving threat 

landscape. 

 

2.2. Knowledge Gaps Addressed by the 

Research 

This study advances cybersecurity research by 

demonstrating the practical fusion of Zero Trust 

principles (authentication, authorization, least-

privilege access) with hybrid machine learning 

algorithms for threat prevention. While previous 

studies focused either on Zero Trust policy 

enforcement or isolated ML detection models, 

this work bridges both, providing a multi-

layered defense mechanism that authenticates 

every transaction and validates it using 

intelligent anomaly detection. 

 

Unlike prior works that treat malware and SQL 

injection as separate research problems, this 

study presents a unified architecture capable of 

handling both malware detection and SQL 

injection attack prediction. By combining 

Random Forest (for structured binary features) 

and Feedforward Neural Network (for semantic 

SQL payload analysis), the research addresses 

the gap in cross-domain hybridization for 

cybersecurity threat modeling. 

 

This research contributes new knowledge on 

how interpretability tools (LIME and 

Permutation Importance) can be systematically 

integrated into security models to make black-

box predictions explainable. It demonstrates that 

interpretable outputs help identify critical threat 

indicators — such as high entropy in PE file 

sections or abnormal punctuation ratios in SQL 

queries — thereby enhancing both analyst trust 

and regulatory accountability in AI-driven 

systems. By integrating interpretability without 

significant accuracy loss, this study offers 

insight into how XAI methods can be used 

without compromising model performance. 

It addresses a key challenge in cybersecurity AI, 

ensuring that high-performing models remain 

transparent and auditable. 

 

3. Methodology 

This research adopted a machine learning–

driven approach to detect malicious software 

(malware) and to identify SQL injection (SQLi) 

queries, supported by explainable artificial 

intelligence (XAI) methods for interpretability. 

as shown in Figure 1. For malware detection,a 

dataset with  binary target variable labeled as 

legitimate (1 = legitimate, 0 = malicious). Non-

numeric and irrelevant attributes were discarded. 

An ExtraTreesClassifier was employed to 

perform feature importance ranking, after which 

SelectFromModel reduced the dimensionality 

by retaining only significant predictors. A 

RandomForestClassifier with 50 estimators and 

a maximum depth of 10 was trained using an 

80/20 train-test split. 

 

For SQL injection, four datasets (sql.csv, 

sqli.csv, username.csv, password.csv) were 

integrated. Non-malicious queries (legitimate 

SQL statements, usernames, and passwords) 

were merged and labeled as non-sqli, while 

malicious queries were labeled as sqli. Three 

handcrafted features were generated: 

 

1 . Length: the character length of the query. 

2. Punctuation count: frequency of special 

symbols such as ', ;,  --. 

3. Keyword count: number of SQL-related 

keywords (e.g., drop, insert, select). 

 

The numeric features were scaled using 

StandardScaler, and categorical labels were 

encoded using LabelEncoder. 

 

A TensorFlow feedforward neural network with 

two hidden layers (32 and 64 units, ReLU 

activation) and one output unit (binary 

classification) was trained for 20 epochs using 

the Adam optimizer and binary cross-entropy 

loss. Model performance was evaluated using 

the following metrics: 

 

1. Accuracy, Precision, Recall, and F1-score. 

2. Confusion Matrix. 

3. Precision–Recall Curve (PRC). 
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4. Receiver Operating Characteristic (ROC) 

Curve and Area Under the Curve (AUC). 

 

To address the black-box nature of ML models, 

explainability was incorporated. Permutation 

feature importance was applied to rank the most 

influential features in the Random Forest 

classifier. LIME Tabular Explainer was 

employed to interpret individual predictions in 

both malware and SQLi detection models, 

showing how feature values contributed to a 

given classification outcome.  

 

The integration of these models into a zero-trust 

cloud database security architecture ensures that 

unauthorized access is blocked, malicious 

activity is flagged, and sensitive data remains 

encrypted both in transit and at rest. 

 

Figure 1 illustrates a Zero Trust Hybrid 

Machine Learning architecture that integrates 

machine learning (ML), explainable AI (XAI), 

and Zero-Trust security principles to detect and 

mitigate malware and SQL injection attacks 

while ensuring secure user access to cloud 

resources. The system starts with a collection of 

labeled data containing samples of normal 

(benign) and malicious activities. The dataset is 

divided into Train Data which is used to train 

the ML models and Test Data which is used to 

validate model performance. Before model 

training, data is cleaned, normalized, and 

transformed into a suitable format for the 

learning algorithms. This step ensures better 

accuracy and efficiency during model training. 

Two separate models were trained for different 

types of attack detection.  

 

Random Forest Classifier (RFC) was trained to 

detects malware attacks. Feed Forward Neural 

Network (FFNN) was trained detects SQL 

injection attacks. The outputs were further 

interpreted using XAI (Explainable AI) to 

provide transparency, explaining why a request 

was classified as malicious or safe. When a 

user’s request is made (e.g., accessing a 

database or application), it passes through Zero-

Trust Principles which enforces “Never trust, 

always verify.” Each access request is 

authenticated, authorized, and validated by the 

ML models before being granted. Encryption 

Module ensures data confidentiality and 

integrity, both in transit and at rest. Based on 

ML predictions and Zero-Trust checks, access 

was denied for SQL attack, granted for non-

SQL attack, denied for Malware (Malign), and 

granted for Malware (Benign). 

 

 
 

Figure 1: Architecture of the Zero Trust Hybrid Machine Learning Model with Explainable 

Threat Intelligence 
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The architecture demonstrates a secure, 

intelligent, and explainable cybersecurity 

framework where ML algorithms detects 

threats, XAI provides transparency, Zero-Trust 

enforces strict access control, and Encryption 

ensures data security. 

 

4. Results and Discussion 

 

4.1. Results 

The evaluation demonstrates that both models 

achieved exceptional performance in their 

respective domains. For Malware Detection, the 

Random Forest classifier’s high precision and 

recall indicate strong resilience to false positives 

and false negatives. Features such as high 

entropy in PE file sections and unusual 

subsystem versions emerged as strong indicators 

of malware, aligning with known obfuscation 

and packing strategies. Legitimate files with 

large version information sizes acted as counter-

balancing features, reducing overfitting. For 

SQL Injection Detection, The neural network 

exhibited near-perfect classification accuracy, 

demonstrating that simple yet well-chosen 

handcrafted features can effectively 

discriminate between malicious and benign 

queries. The high recall score is particularly 

significant in cybersecurity, where undetected 

attacks can compromise entire systems. 

Both models shows continuous verification in 

which every access attempt (SQL query or file 

upload) undergoes validation, regardless of 

prior authentication as seen in figure 2. The 

dashboard displays two real-time detection 

panels: The Malware Detection Panel is on the 

Left. The Orange/Yellow (Malicious Hashes) 

represents data or file hashes that the Random 

Forest classifier has flagged as malicious. The 

Green (Normal Hashes) represents safe/benign 

hashes identified by the classifier. The 

interwoven color bands suggest continuous 

scanning, where every new hash is immediately 

analyzed. Malicious samples were differentiated 

from normal ones in real time, preventing 

malware execution or infiltration. SQL Injection 

Detection Panel is on the Right. Yellow (SQL 

Injection Attempts) queries were detected as 

malicious (SQLi). Blue/Green (Normal Queries) 

queries were deemed safe. Similar to malware 

detection, every SQL query is tokenized, passed 

to the FFNN, and instantly classified. Normal 

queries (e.g., SELECT * FROM employees 

WHERE id=5) remain unblocked, while 

malicious payloads are denied. 

 

 

 

 

Figure 2: Malware and SQL Detection for Malign and Benign Queries 
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For malware detection, the Receiver Operating 

Characteristic (ROC) Curve in figure 3 shows 

how well the classifier distinguishes between 

classes (malware vs. benign), and the AUC (Area 

Under the Curve) score summarizes its overall 

performance. Accuracy measures the proportion 

of total predictions (both benign and malware) 

that the model classified correctly. With 99.13%, 

the model is very effective at distinguishing 

malware from benign files. Figure 4 shows the 

Precision-Recall curve. Recall measures the 

ability of the model to correctly detect actual 

malware samples. A 98.56% recall  recorded 

means the model detected almost all malware 

samples, with very few missed (false negatives). 

This is critical in cybersecurity: missing a 

malware (false negative) can be more dangerous 

than mistakenly flagging a benign file. Precision 

measures how many of the samples predicted as 

malware were actually malware. A 98.52% 

precision means that when the model flags a file 

as malware, it is almost always correct. False 

alarms (false positives) are very low. The ROC 

curve plots the tradeoff between the True 

Positive Rate (Recall) and False Positive Rate at 

various thresholds. The AUC (Area Under 

Curve) is 0.9994  which is nearly perfect. This 

shows that the model separates malware from 

benign files with extremely high discriminative 

power. 

 

 

 
Figure 3: Receiver Operating Characteristics (ROC) Curve 

 

 

 

 

 

Figure 4: Precision-Recall Curve 
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The confusion matrix in Figure 5 provides a clear 

summary of the classification results of the 

RandomForestClassifier for malware detection. 

A total of 19,222 malicious files were correctly 

identified as malicious (True Positives), while 

123 malicious files were wrongly classified as 

legitimate (False Negatives). Similarly, 8,144 

legitimate files were correctly predicted as 

legitimate (True Negatives), whereas 121 

legitimate files were misclassified as malicious 

(False Positives). 

 

From these results, the model achieved an overall 

accuracy of 99.13%, meaning that the majority of 

predictions were correct.  

 

Accuracy = (TP+TN) / (TP + TN +FP + FN) = 

(19222+8144) / (19222 + 8144 + 121 + 123) 

=99.13% 

 

The recall value of 98.56% indicates that the 

model successfully detected almost all malware 

samples, with very few missed.  

 

Recall = TP / (TP + FN) = 19222 / (19222 + 123) 

= 98.56% 

 

The precision value of 98.52% shows that when 

the model flagged a file as malicious, it was 

almost always correct, with very few false 

alarms. 

 

Precision = TP / (TP +FP) = 19222 + (19222 + 

121) = 98.52% 

 

The ROC curve complements these results by 

showing an Area Under the Curve (AUC) of 

0.9994, which suggests that the model has an 

excellent ability to distinguish between malicious 

and legitimate files across different thresholds. 

The Precision–Recall curve also remains close to 

the upper-right corner, confirming that the model 

maintains both high precision and high recall 

even in the presence of possible class imbalance.  

 

The confusion matrix, ROC curve, and 

Precision–Recall curve together demonstrate that 

the proposed model is highly effective in 

detecting malware, with minimal false positives 

and false negatives. However, the presence of 

123 false negatives indicates that some malicious 

files were missed, which in cybersecurity 

contexts could pose significant risks. 

 

Figure 6 shows the LIME explanations for an 

individual prediction for Malware detection. The 

chart is a Local Interpretable Model-agnostic 

Explanations (LIME) visualization, which 

explains the predictions of the machine learning 

model implemented in the 

`PE_xai_with_metrics.py` code for a specific 

instance. The model is a 

`RandomForestClassifier` trained on a dataset to 

classify PE (Portable Executable) files as either 

"Malicious" or "Legitimate." LIME approximates 

the model's behavior locally around a single data 

point using a simpler, interpretable model (e.g., a 

linear model) and highlights the features that 

most influence the prediction. 

 

 

Figure 5: Confusion Matrix of the Random Forest Model 
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The model predicts a 71% probability of 

"Malicious" and 29% probability of "Legitimate" 

for the analyzed file, indicating it is flagged as 

likely malicious. The central section shows the 

decision pathway with features that contributed 

to the classification. Features highlighted in blue 

(left) push the decision toward "Malicious". 

Features in orange (right) push toward 

"Legitimate". The importance of each feature is 

visually proportional to its horizontal bar. 

Features such as MajorSubsystemVersion, 

Subsystem, SectionsMinEntropy, Machine, 

DLLCharacteristics, Characteristics, and 

ImageBase all contributed to the "Malicious" 

outcome. Features such as 

SizeOfOptionalHeader, SectionsMaxEntropy, 

ResourcesMaxEntropy, and 

VersionInformationSize provided some evidence 

toward "Legitimate" but with less influence. 

 

Figure 7 shows a bar chart titled "Permutation 

Feature Importance (Global)". This plot is a 

global explanation of the model, meaning it 

shows which features were most important to the 

model's overall performance. The length of each 

bar represents the average decrease in the 

model's accuracy when that feature's values are 

randomly shuffled. A longer bar indicates a more 

important feature. The MajorSystemVersion 

feature has the highest permutation importance, 

indicating it's the most critical feature for your 

model's predictions. The model's accuracy would 

drop the most if MajorSystemVersion values 

were randomized. This suggests that the size of 

the executable file is a very strong predictor of 

whether it's malicious or legitimate.  

 

ResourcesMinEntropy and SectionsMeanEntropy 

are also quite important, while DllCharacteristics 

is the least important of the listed features. The 

LIME explainer indicates the model’s 71% 

"Malicious" prediction is driven by high values 

of `MajorSubsystemVersion`,  

 

`SectionsMaxEntropy`, and 

`SizeOfOptionalHeader`, with 

`VersionInformationSize` and 

`ResourcesMaxEntropy` providing some 

counterevidence toward "Legitimate."  

 

This aligns with the `RandomForestClassifier`’s 

feature importance and the code’s feature 

selection process. 

 

 

 
 

 

Figure 6: LIME explanations for an individual prediction for Malware detection 
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Figure 7: Permutation Feature Importance 

 

For the SQL detection, labels were binary 

encoded to distinguish between malicious SQLi 

queries and non-SQLi queries (which include 

regular SQL, usernames, and passwords). The 

label column was label-encoded, turning 

categories into numeric values. Numerical 

features (Length, punctuation, keyword) were 

standardized using StandardScaler for 

normalized input to the model. A simple 

feedforward neural network was built using 

TensorFlow: Input layer for three features, Two 

hidden fully connected (Dense) layers with 

ReLU activation (32 and 64 units), Output layer 

with one unit (binary output logits). Figure 8 

shows the Precision–Recall (PR) curve which 

visually summarizes our model’s ability to 

balance between precision (avoiding false 

positives) and recall (avoiding false negatives) 

for SQL injection detection. The X-axis (Recall) 

measures how many actual positive cases (SQL 

injection attacks) were correctly identified. A 

higher value (closer to 1) means the model 

misses fewer attacks. Y-axis (Precision) 

measures how many predicted positive cases 

were actually correct. A higher value (closer to 

1) means the model makes fewer false alarms. 
The curve is almost flat near Precision = 1.0, 

meaning your model maintains very high 

precision across nearly all recall levels. The 

overall shape (a sharp upper-right curve) 

indicates excellent model performance, nearly 

perfect discrimination between attack and non-

attack cases. 

 
 

Figure 8: Precision-Recall Curve 
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Figure 9 shows the Receiver Operating 

Characteristic (ROC) Curve, a key performance 

visualization for binary classifiers like our SQL 

injection detection model. The X-axis (False 

Positive Rate – FPR) shows the fraction of 

normal (non-sqli) samples incorrectly classified 

as attack, 

 

Figure 10 shows the confusion matrix which is 

used to evaluate the performance of a machine 

learning model for SQL injection (SQLi) attack 

detection. The model classifies inputs into two 

categories: SQLi (attack) and Non-SQLi (normal 

or benign traffic) with 385 samples correctly 

identified as non-SQLi , 6 samples of non-SQLi 

incorrectly predicted as SQLi,  1 SQLi sample 

incorrectly predicted as non-SQLi, and  2186 

SQLi samples correctly identified. 

 

 
Figure 9: Receiver Operating Characteristic (ROC) Curve 

 

 

 

 

Figure 10: Confusion Matrix of the Model 
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The model achieved an overall accuracy of 

99.73%, meaning that the majority of predictions 

were correct.  

 

Accuracy = (TP+TN) / (TP + TN +FP + FN) = 

(2186+385) / (2186 + 385 + 6 + 1) =99.73% 

 

The recall value of 99.95% was achieved by the 

model indicating that the model successfully 

detected almost all SQLi attacks, missing only 

one. 

Recall = TP / (TP + FN) = 2186 / (2186 + 1) = 

99.95% 

 

The precision value of 99.7% was obtained 

showing that when the model predicted SQLi, it 

was 99.7% accurate. 

Precision = TP / (TP +FP) = 2186 + (2186 + 6) = 

99.7% 

 

F1 score of 99.8% was achieved as follows:  

F1 Score = 2 * (Precision * Recall) / (Precision + 

Recall) = 99.8%. This shows excellent balance 

between identifying attacks and minimizing false 

alarms 

 

The model integrated LIME to explain model 

predictions locally as shown in Figure 11.Local 

Interpretable Model-agnostic Explanations 

(LIME) visualization explains the model's 

prediction for a specific input query by 

approximating its behavior locally with a simpler 

model. The visualization is divided into two main 

sections: 

i. Prediction Probabilities: Displays the 

model's confidence scores for the two 

classes: "non-sqli" and "sqli." with 0% 

probability for non-sqli and 100% 

probability for sqli. This indicates the 

model is fully confident that the input 

query is an SQL injection ("sqli"). 

ii. Feature Importance: Lists the features 

and their contributions to the "sqli" 

prediction, with thresholds and values 

indicating their impact. 

Features are derived from the SQL injection 

dataset and processed by the leng, cal_puncndop, 

and cal_keyword functions in the code. A 

wrapper function converts Keras model output 

logits to probability arrays compatible with 

LIME. The LIME explainer was initialized with 

training data and feature names. The model 

attempts to explain an instance that the model 

misclassifies. If none found, it explains a random 

instance. 

 

 

 
 

Figure 11: LIME Explainer 
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4.2. Discussion of Results 

The evaluation results demonstrate that both 

models—Random Forest (for malware detection) 

and Feedforward Neural Network (for SQL 

Injection detection)—achieved exceptional 

classification performance in their respective 

domains. The two models operate in a continuous 

verification framework where every data access 

attempt, either in the form of a Portable 

Executable (PE) file upload or an SQL query, is 

verified in real-time before execution. This 

approach aligns with modern Zero Trust security 

architecture, ensuring that no data transaction is 

trusted by default, thereby providing a proactive 

defense mechanism against cyberattacks. 

 

The visual analytics dashboard (Figure 2) 

effectively showcases this operational flow, 

distinguishing between benign and malicious 

traffic through color-coded panels. The real-time 

color transitions (yellow/orange for malicious and 

green/blue for benign) validate that detection 

occurs instantaneously—malware is blocked 

prior to execution and SQL injection attempts are 

denied before compromising the database. This 

dual-model structure therefore represents an 

intelligent intrusion prevention system combining 

static malware analysis with real-time web input 

sanitization. The Random Forest classifier 

achieved an overall accuracy of 99.13%, 

demonstrating superior predictive capacity and 

robustness. The AUC score of 0.9994 from the 

ROC curve indicates the model’s nearly perfect 

discriminative ability between malware and 

benign files across varying thresholds. Similarly, 

the Precision (98.52%) and Recall (98.56%) 

metrics reinforce that the classifier not only 

detects nearly all malware samples but also 

produces minimal false alarms—an essential 

quality in security environments where false 

positives can lead to unnecessary quarantining of 

legitimate files or service disruptions. 

 

The Precision–Recall curve (Figure 4) remaining 

close to the upper-right corner further confirms 

the balance between sensitivity and specificity. 

The high recall score suggests that the model 

rarely misses malware, while the high precision 

indicates that almost all flagged files are indeed 

malicious. This tradeoff balance is crucial in 

threat detection, as a single false negative could 

result in system compromise, data exfiltration, or 

persistent infiltration. From the confusion matrix 

(Figure 5), out of 27,610 total samples, 19,222 

malicious files were correctly classified (True 

Positives), while only 123 were missed (False 

Negatives). Similarly, 8,144 legitimate files were 

correctly identified (True Negatives) with 121 

false positives. These numbers reinforce the 

model’s reliability and operational readiness. 

However, the 123 false negatives represent 

undetected malware instances—critical in 

cybersecurity since undetected threats may later 

propagate or evolve. This emphasizes the need 

for complementary defenses, such as behavioral 

monitoring or sandboxing, to address any residual 

blind spots. The integration of Explainable 

Artificial Intelligence (XAI) techniques—LIME 

and Permutation Feature Importance—provides 

interpretability to the otherwise opaque Random 

Forest model. 

 

The LIME explanation (Figure 6) revealed that 

features such as MajorSubsystemVersion, 

Subsystem, SectionsMinEntropy, and Machine 

were strong indicators of maliciousness. High 

entropy values in PE sections often indicate 

packed or obfuscated code—a typical trait in 

malware that attempts to evade signature-based 

detection. 

 

Conversely, features like VersionInformationSize 

and ResourcesMaxEntropy pushed predictions 

toward "Legitimate," suggesting that large and 

consistent metadata structures are typical of 

authentic, well-compiled applications. 

 

The Permutation Feature Importance (Figure 7) 

confirmed MajorSystemVersion as the most 

influential feature globally, followed by 

ResourcesMinEntropy and SectionsMeanEntropy. 

This correspondence between local (LIME) and 

global (Permutation) interpretability strengthens 

confidence in the model’s internal logic. 

Importantly, such insights enable security 

analysts to understand why specific files are 

flagged, supporting traceability and regulatory 

compliance. The malware detection model’s high 

performance suggests it can effectively replace or 

complement traditional signature-based antivirus 

systems. While conventional methods rely on 

known hash patterns, this model identifies 

structural and statistical anomalies in PE files, 

making it resilient against zero-day attacks and 

metamorphic malware. The combination of 

entropy and subsystem analysis provides a more 

generalized detection mechanism adaptable to 

unseen threats. 

 

The Feedforward Neural Network (FFNN) used 

for SQL Injection detection was trained on 

engineered features—query length, punctuation 
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density, and SQL keyword frequency—

standardized through StandardScaler. Despite the 

model’s simplicity, it achieved remarkable 

performance metrics: Accuracy: 99.73%, 

Precision: 99.7%, Recall: 99.95%, F1-Score: 

99.8% 

 

These metrics indicate near-perfect classification 

capability. The model’s Recall of 99.95% means 

almost every SQL injection attempt was correctly 

detected, missing only one attack in the entire 

dataset. Such reliability is crucial since a single 

undetected SQLi vulnerability can expose entire 

databases to unauthorized data retrieval or 

corruption. Figures 8 and 9 depict both the 

Precision–Recall and ROC curves for the SQLi 

detection model. The PR curve maintains a 

precision value near 1.0 across all recall levels, 

confirming consistent accuracy even under varied 

decision thresholds. The ROC curve further 

demonstrates a strong separation between 

positive (attack) and negative (benign) samples, 

reinforcing the model’s excellent True Positive 

Rate and minimal False Positive Rate. These 

outcomes suggest the FFNN efficiently 

generalizes from its training data, avoiding 

overfitting while maintaining operational 

reliability in live environments.  
 

The confusion matrix (Figure 10) shows: True 

Positives (TP): 2186; True Negatives (TN): 385; 

False Positives (FP): 6; False Negatives (FN): 1. 
This distribution underscores that the classifier 

rarely misclassifies benign queries as attacks 

(minimizing user disruption) and almost never 

misses actual SQLi attempts. The combination of 

a near-zero false negative rate and a low false 

positive count reflects high precision with 

operational trustworthiness—key for automated 

intrusion detection systems (IDS) that run 

continuously in production environments. 

 

The LIME visualization (Figure 11) illustrates 

how the neural network’s decisions are grounded 

in interpretable feature contributions. For 

example, a query may be flagged as SQLi due to 

high keyword frequency (e.g., use of “UNION,” 

“SELECT,” or “DROP”), excessive punctuation, 

or anomalous query length. The model’s 100% 

confidence in predicting a malicious query 

indicates a clear separation in feature space 

between normal and attack samples. Such 

interpretability enhances analyst trust and 

supports model debugging, auditing, and 

compliance verification. 

Table 1 shows the comparative analysis of both 

models. 

 

Table 1: Comparative Analysis of RF Model 

and FFNN Model 

 

Matrics Malware 

Detection 

(Random Forest) 

SQL Injection 

Detection 

(FFNN) 

Accuracy 99.13% 99.73% 

Precision 98.52% 99.7% 

Recall 98.56% 99.95% 

F1 Score 98.54% 99.8% 

AUC 0.9994 1.0 

 

Table 1 shows that the Neural Network slightly 

outperforms the Random Forest, likely due to the 

simplicity and distinctiveness of SQL injection 

features. The Random Forest still performs 

exceptionally well despite dealing with more 

complex and heterogeneous malware data. 

 

Both models demonstrate low error rates, strong 

generalization, and high interpretability when 

enhanced with XAI methods. 

 

5. Conclusion 

 

The study demonstrates the successful application 

of machine learning and explainable AI in 

enhancing cybersecurity defenses. The Random 

Forest model effectively distinguishes malware 

from legitimate PE files with strong 

interpretability, while the Feedforward Neural 

Network delivers near-perfect performance in 

identifying SQL injection attacks. Together, they 

provide a robust, interpretable, and automated 

framework capable of supporting real-time 

security validation across multiple threat vectors. 
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