
67 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

Qualitative Comparative Analysis of Software Integration Testing

Techniques

Akinsola, J. E. T.1, Adeagbo, M. A.1, Abdul-Yakeen S. O. 1, Onipede, F. O.1, Yusuf A. A.2

1Department of Computer Sciences, First Technical University, KM 11, Ibadan – Lagos Expressway, Ibadan, Nigeria
2Department of Information and Communication Technology, Federal University of Petroleum Resources, Effurun,

Nigeria

*Corresponding Author’s Email: akinsolajet@gmail.com

Abstract

Software testing is one of the core processes in software engineering. There are different types of testing which

are unit testing, integration testing, system testing and acceptance testing. This study focusses on integration

testing, its advantages, disadvantages, areas of application, guidelines, tools and approaches to attain a quality

software. This study addressed the issue of determining which approach to use for a particular software project.

Explicit characteristics of each approach were elucidated. Comparative analysis was carried out to determine the

best and suitable approach of integration testing regarding a software project using twenty-six classification

characteristics. TESSY, FitNesse, Rational Integration Tester are examples of automated tools for software

integration testing discussed in this study. Unambiguous areas of application of protractor, rational integration

tester and TESSY were discussed as well. The study therefore, recommends the use of machine learning

paradigms for quantitative computation of the best software integration testing for further studies.

Keywords: Acceptance testing, Integration testing, Rational integration tester, Software testing, System testing,

Unit testing

1. INTRODUCTION

Development of a quality software is

accomplished through a well-articulated software

development life cycle model [1]. In order to

achieve this goal, there is a need to follow an

organized process. This process is known as

software development life cycle, abbreviated as

SDLC. The SDLC model includes some phases

such as planning, analysis, requirement

gathering, design, implementation, testing,

among others [2]. Software performance

evaluation and removal of ambiguity can be

effectively done using formal methods [3].

Software testing is one of the phases of software

development life cycle that comes after the

implementation phase (coding).

Testing is done on a software product to assure

its conformity with the user requirements. In the

process of testing, software tester places the

product under test by comparing its functionality

with user functional requirements in the software

requirements specification (SRS) document. It is

an important aspect of software engineering that

is used to ensure confidence over the product.

Software testing is also done to check for errors

or defects in the software product that might

occur during the implementation phase and also

to proffer solution to the error. On time software

testing helps to assure delivery of a good

software product to the customer [4]. Test cases

are required when checking the fitness of a

product for use. These test cases contain the

input, process and output. The system or software

takes in data and processes it. The output of this

is noted to know if it performs what it was

developed for. There are different types of

testing, which are unit testing, integration testing,

system testing and acceptance testing. Three of

these testing types are done by the development

Akinsola, J. E. T., Adeagbo, M. A., Abdul-Yakeen S.

O., Onipede, F. O. and Yusuf A. A. (2022). Qualitative

Comparative Analysis of Software Integration Testing

Techniques, University of Ibadan Journal of Science

and Logics in ICT Research (UIJSLICTR), Vol. 7 No.

2, pp. 67 – 82

©UIJSLICTR Vol. 7, No. 2, January 2022

68 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

team while the acceptance testing is done by the

end user of the software.

Unit testing implies testing the modules

independently, integration testing is to check the

interface and interaction of the independently

tested modules. System testing is for checking

the combination of all the modules which forms

a single system. Acceptance testing is done by the

customer or by the end user of the software to

confirm if truly the system meets their demand.

A software tester needs to be very careful while

choosing any approach for integration testing.

Making decision on which methodology to use to

carry out integration testing on a software

product needs to be carefully stated. Therefore,

software engineering also provides some

computer aided software engineering (CASE)

tools to make the processes of software

development easy and efficient. Software

products always involve more than one module

that interconnects together. Integration testing

checks for the interaction of these modules and

their interfaces. Among the tools for integration

testing are Tessy, JMeter, Badboy, Protractor,

Selenium software testing. These tools make

integration testing to be done in a very much easy

and efficient way.

Determination of appropriate integration testing

techniques for software testing has been a

herculean task due to the heterogenous nature of

software codes and applications. Thus, proper

characterization of the features in determining

the suitable integration testing technique is

desirable. The study characterized the four

integration testing methodologies using

qualitative comparison based on twenty-six

features identified as shown in Table 2.

Qualitative comparative analysis was conducted

to categorize the important features for

determining the right software integration testing

approach. The characterized features will help

software testers in choosing the right software

testing approach and making effective decision

for assuring quality of software products.

2. LITERATURE REVIEW

Software testing is one of the phases of software

development that should not be underestimated.

It contributes largely to the development of a

quality software product. Testing a software

product makes the developer to be confident that

the right product has been built. One of the

factors that is used in measuring the quality of a

software is the usability. A quality software must

be user friendly, simple and easy to use.

Integration testing helps to confirm if the product

is user friendly by testing the interfaces of

different modules in the software.

In the research conducted by Sawant et al. [5],

detailed description of software testing, the goals

as well as principles of software testing in

addition to software testing needs were

considered. The best methodologies, practices,

principles and standards essential for optimal

software testing have been discovered. This

makes the problem of software testing to be less

rigorous with appropriate implementation of

formal methods as exemplified by Akinsola et al.

[3]. Anyone involves in testing should get

familiarized with basic goals, limitations,

principles as well as concepts of software testing

in order to carry out effective and efficient

software testing.

Tahvili [6] provides some methods for carrying

out optimized test which are selection of test,

prioritization of test as well as scheduling test

execution. In the research, provision of a more

effective and efficient way of carrying out

integration testing process manually was

outlined. To achieve these three phases, there are

essential processes which must be provided;

which are test cases properties for automatic

measurement, test cases prioritization and

scheduling for automatic execution in terms of a

support system decided and lastly evaluation of

the efficient approach proposed empirically.

Improved techniques such as automated testing

and various metrics for software testing were

discussed in the research carried out by

Arumugam [7] for ensuring better quality

assurance. The automated testing carried out are

Test Driven Development (TDD) while the

metrics are Prioritization Metrics as well as

Process Quality Metrics. According to the study

on integration testing in a software product line

engineering by [8], automated integration testing

method that can be used in engineering domain is

called software product line platform. This

method is proposed due to its ability of test cases

and scenarios generation for integration testing.

69 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

Rastogi [9] discusses several most common

software testing approaches with a brief

summary of the essential requirements for

software testing. Furthermore, comparative

analysis of the software testing types was done in

order to know the best one and how to find a

particular error based on the systematic

investigation called comparative study on testing

techniques of software. It was revealed from the

study that agile testing is the most efficient and

effective testing technique among all the

software testing techniques implemented. This is

largely due to its adaptability and predictability

characteristics.

2.1 Types of Integration Testing

Integration testing is the process of verifying

combination of individual software modules.

Integration testing is a phase in software testing

that checks for the agreement of software

modules in accordance with the requirements in

the SRS document. Unit testing must have been

done before integration testing. If an error had

been detected during the unit testing phase,

integration testing cannot be done until the error

is fixed [10]. Integration testing also aims at

checking the interaction between modules of a

software product. For example, checking the

connection of a login page in web application to

the dashboard. The major focus or objective of

the integration testing phase is to track the error

in the interface of software. The interface is what

makes interaction between software modules

possible [11], and this is essential in software

testing. Once a system passes the integration

testing, it convinces the tester that, there is a good

communication among the modules and that

guarantees good functionality of the system [12].

Figure 1 shows pictorial representation of

software testing types.

The most efficient and reliable way to carry out

integration testing in a large system is to test

modules in pairs. Testing the interfaces of all

modules of a large system at a time may be too

complex and accurate result may not be obtained.

After the first pair has been tested, this forms a

partially integrated system. Other modules can

then be included in an incremental version to

achieve a reliable test [13]. Integration testing is

done based on test plan that has been prepared

and documented during the design phase in

software development life cycle (SDLC).

Integration testing is done to make sure that the

system fulfils the functional requirement (that is,

the main purpose of creating the system),

performance requirement (how well do the

sections interrelate) and reliability (customers’

satisfaction) [14]. During the design phase there

must be proper identification of the right SDLC

model. Figure 2 shows diagrammatic

representation of software integration testing in

relation to modules testing.

.

Figure 1: Types of software Testing

Figure 2: Software Integration Testing [15]

70 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

2.1.1 Advantages of Integration Testing

The following are the benefits of integration

testing [16]:

i. Production of a reliable system:
integration testing helps to mitigate the rate

of getting failure, thereby ensuring the

development of a reliable system.

ii. Easy location of bugs: integration testing

makes it easier to find error as well as

fixing it.

iii. Reduction of defects: defects can be

easily reduced by correcting them after the

collation of modules.

iv. Early correction of defects: integration

testing gives the advantage of getting error

on time and fixing them.

v. Ensures basic testing: integration testing

helps to examine the operational features

of the system.

vi. Quick testing: integration testing is faster

than any other testing.

vii. Modules interactions: Integration testing

assures proper interaction between

modules.

viii. Compatibility testing: integration testing

examines the suitability of hardware and

software of a system.

ix. Testing during development phase:
integration testing allows tester to begin

testing the developed modules before the

completion of the development phase.

x. Proper integration functionality:
integration testing assures proper

functioning of all combined components.

2.1.2 Disadvantages of integration testing

Given are the demerits of integration testing

[17]:

i. Difficulty of operation: operating or

performing integration testing requires

expertise compared to system testing.

ii. High resource utilization: it involves an

intensive use of resources while testing all

the interfaces between linked modules.

iii. Requires Studs and Drivers: it needs

studs as well as drivers’ development,

which if created wrongly can lead to

inadequate testing.

2.2 Test Cases of Integration Testing

Login page, inbox as well as delete mails are the

three assumption modules in an application.

Individual modules’ functionality is not the first

thing to focus on while writing test cases of

integration testing because unit testing would

have tested the modules individually. The test

cases must be properly determined for efficient

integration testing. Wrong test case can lead to

non-functional software product with the guise

that the software is well integrated.

Communication between modules is the major

focus of integration testing. Due to the

assumption above, the focus is how login page is

connected to the inbox page as well as how inbox

page is connected to the delete mails module

[18]. Figure 3 shows how integration testing

works. Integration test cases sample is shown in

Table 1.

Figure 3: How Integration Testing Works [18]

71 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

Table 1: Test Cases Sample of Integration Testing [18]

ID of

Test

Case

Objective of Test Case Description of Test Case Result Expected

1. Verification of integration

testing between login as

well as module of inbox.

Entering of credentials of

login and then perform

login.

Displaying of inbox.

2. Integration between inbox

as well as mails deleted for

verification.

Selection of emails as well

as clicking on delete

button.

Disappearance of emails that has

been deleted form inbox as well

as appearance in trash box.

2.3 Integration Testing Entries

i. Modules that have been tested.

ii. All bugs to be corrected and ensure

closure of those that are highly prioritized.

iii. All modules to be completely coded as

well as successfully integrated.

iv. Documentation as well as sign off of

integration scenarios, test cases and test

plans.

v. Test environment that is required should

be set up for integration testing.

2.4 Integration Testing Exit

i. Integration application that has been

tested successfully.

ii. Documentation of test cases that has been

executed.

iii. Corrected and closed highly prioritized

errors.

iv. Documentations that are technical should

be submitted and followed by notes

released.

3. METHODOLOGY

Combination of mapping review and scoping

review was used for typology of literature review

methodology to ensure analytic frameworks

construction in relation to integration testing

techniques. Mapping review was done in relation

to qualitative comparison with content analysis

methods while scoping review focuses on the use

of explicit inclusion and exclusion criteria. This

is to ensure that there is no need to examine the

quality or risk of bias of the primary studies that

have been included. The goal of scoping review

approach is to give a rough estimate of the size

and extent of the existing research literature. It

may be used to establish the quality and extent of

research evidence, including ongoing research, in

order to determine whether or not a

comprehensive systematic review is warranted.

3.1 Integration Testing Methodologies

Integration testing has four different approaches

or methodologies to enable an effective

interaction and evaluation in a software project.

To carry out integration testing, one of these

approaches may be employed or combination of

two or more techniques [19]. Integration testing

techniques are done by combining several

functional units and testing them for results

investigation. Integration testing is divided into

two classes as shown in Figure 4 which are

incremental testing and big bang testing [16].

3.1.1 Big-Bang Methodology

Big-Bang type of integration testing is a

straightforward method in software integration

testing where all the modules are collated

together and subjected to test. Big-bang checks

for the correctness of the interface of all modules

of the system at a time [19]. This approach can

only be beneficial in case of a small project with

less complexity and small number of modules.

This is because error can easily be traced to a

module compared to project of high complexity

and larger number of modules. Error will be very

much difficult to trace to any model in the

situation of project with large number of modules

[11].

Big-bang method requires that all the modules to

be completed before the testing phase [20]. The

diagrammatic representation of big bang is

shown in Figure 5.

72 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

Figure 4: Types of Integration Testing Techniques

Figure 5: Big-Bang Integration Methodology [21]

a) Merits of Big-Bang Integration Testing

Methodology

Big- Bang methodology has the

following advantages:

i. Small-sized project: big-bang approach

is appropriate for projects with small

number of modules.

ii. Saves time: big-bang reduces time of

testing each module incrementally by

subjecting all modules to test at a stretch.

iii. Minor planning: very little testing plan

is needed in this approach.

iv. Component testing: it assures complete

module testing

b) Demerits of Big-Bang Integration Testing

Methodology

The following are the shortcomings of big-bang

integration testing methodology [22]:

i. Error tracking: one of the shortcomings

of big-bang approach is that errors

detected from the system cannot be

easily traced to the module.

ii. Project Size: big-bang is not the best

testing approach for a system with large

number of modules.

iii. Test Re-working: once an error is

detected, it requires splitting all the

modules to find out the main source of

the error

iv. Risk: it involves high rate of risk.

v. Reliability: this testing technique is not

that dependable due to the level of risk

involved.

c) When to Use Big-Bang Integration Testing

Methodology

Big-bang methodology can be used under the

following conditions:

i. When there is short time constraint.

ii. When the project is of small size.

iii. It can be used when there is little or less

testing plan.

iv. When the project is of small risk.

v. When there is little cost of planning for

the project.

3.1.2 Incremental Testing

This type of integration testing technique is done

by integration of two or more modules that are

logically related to each other as well as testing

the application to ensure proper functioning.

Then, the other modules are incrementally

integrated and the process continues until all the

modules that are logically related are tested as

73 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

well as successfully integrated [23]. In this type

of integration testing, the relationship among

modules or components that are dependent must

be strong. For example, if two or more modules

are chosen to validate the flow of data among

them is working perfectly then, more modules or

components are added as well as undergo testing

again [24]. There are three approaches to

incremental testing techniques, which are

Bottom-up, Top-down and Sandwich or Mixed

approach [23].

3.1.2.1. Bottom-Up Methodology

Bottom-up testing is one of the integration testing

methodologies that follows an iterative process to

check interaction of different components. This

approach can also be classified as incremental

technique. In this methodology, smaller modules

are combined first and later on, more components

are added to form a higher one. This approach

make it easier and faster for the tester to carry out

the testing within a short time range [25].

Modules are combined together in bottom-up

approach. This combination is divided into two

levels, the higher and lower levels. The interfaces

of the modules in the lower level are first tested,

then the modules at the higher level are also put

to test [26]. In bottom-up approach, initial

modules are tested together to form a module

which will be tested against another integrated

modules. All modules are finally integrated

together to achieve the whole system. Figure 6

shows the diagrammatic representation of

bottom-up approach.

a) When to Use Bottom-Up Methodology

In bottom-up methodology, unit testing of

modules is carried out first. These modules are

combined together to realize sub-systems. The

subsystems’ interface can then be tested. The

following are the conditions that can warrant the

usage of bottom-up integration methodology:

i. When the project involves many modules

ii. When the system can be split into sub-

systems.

iii. When the project has medium to high risk.

iv. When reliability is of high demand.

b) Steps to Follow When using Bottom-Up

Methodology

i. Combining or merging of low-level

elements is known as clusters. They are

known as builds that are responsible for

certain subsidiary or secondary function

performance of a software.

ii. Writing a control program for testing is

essential.

iii. Testing is done on clusters that contains

modules that are low-level or on entire

clusters.

iv. Lastly, drivers are eliminated and clusters

are integrated by upward moving from

bottom to top in program structure with

control flow help [27].

Figure 6: Pictorial Representation of Bottom-Up Approach [15]

74 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

c) Merits of Bottom-Up Methodology

The benefits of bottom-up approach are as

follows [15], [25] :

i. Easy tracking of errors: errors can easily

be noticed using bottom-up method

ii. Size of project: this methodology is very

useful in large project size

iii. Clarity of system’s scope: the entirety

of the tested system is known to the

testing team, which make it more

convenient to test

iv. Simplicity: this approach makes the

creation of test situation easier.

v. Simultaneous testing: This approach

makes it possible for testing to be done

simultaneously with the development.

vi. Time utilization: this approach ensure

efficient management of time as testing

is done on available unit unlike big-bang

where it is compulsory that all modules

are completed.

vii. Reliability: bottom-up technique assures

high reliability because the test begins

from the initial modules. All hidden

errors can be tracked with this approach

d) Demerits of Bottom-Up Integration

Methodology

The disadvantages of bottom-up integration

approach are listed below [25], [28]:

i. Complexity: there is an increase in the

complexity of the system as it comprises of

too many components.

ii. Rate of test case provision: provision of

test cases for this technique requires high

fee.

iii. Complete module testing: Testing can

only be satisfied when all modules are

correctly tested.

iv. Late generation of sample: sample of the

system is gotten late as this approach begin

testing from individual component before

getting to high level.

v. Late data flow testing: The flow of data is

examined very late

3.1.2.2 Top-Down Methodology

Top-down technique is an approach that involves

splitting the whole system into high-level and

low-level. Unlike the bottom-up approach, where

testing of modules in the lower level is done and

gradually move to the high level which contain

the main functionality of the system, Top-down

approach begin testing from the higher level and

combination of the lower-level modules are done

repeatedly till the whole modules are combined.

Top-down begins the combination of modules in

the higher level division and later move to the

lower level division to check the interaction

between the modules [15].

While the higher-level testing is still in process,

this technique makes use of artificial modules to

work in place of the lower-level modules that are

yet to be added. The artificial module is known

as Stub. The introduced stubs are replaced with

the main component when the process get to the

lower-level phase. Perfect purpose of system is

guaranteed with the finishing integration [29].

The higher-level division include the modules

with the main functionality of the system. This is

gotten by the prioritization of the system

functionality. Figure 7 shows the diagrammatic

representation of top-down approach.

Figure 7: Top Down Approach to Software Integration Testing [15]

75 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

a) When to Use Top-down Integration Testing

Methodology

The following are conditions that calls for the use

of top-down:

i. When there is a need to get the sample of

the system on time.

ii. When there is a need to test the system

before the total completion of the

modules.

b) Top Down Integration Testing Methodology

Strategies

i. Ensure that top-down testing approach

match your bill: other testing approaches

must be kept in mind in order to set

expectations that are realistic as well as time

delivery achievement [30].

ii. Creating and sticking to test plan: global

and detailed integration must be provided

and the team must adhere to it for confusion

avoidance as well as ensuring that everybody

is not on different pages with the strategy of

testing. Planned documents will serve as a

documentation for focus areas, timelines as

well as approaches to be used for the project.

The team will navigate through structures of

a system that is complicated with the use of

detailed test plan in order to save effort and

costs.

iii. Left shifting and early testing: launching of

test activities in system development

delivery cycle (SDDC) as early as possible

will enhance reduction in cost associated

with correcting and identifying errors.

iv. Keeping stride with the constant delivery

automation: automation go along well with

integration testing.

v. Unit testing should not be mixed with

integration testing: environmental changes

that affect the integration between modules

are caused by failure in integration testing

while unit testing exposes the errors in

coding.

vi. Various integration testing should be

combined: engagement model, project size

as well as methodology can evolve and

change and for successful continuation, the

team must adapt to practices that guarantee

reliable top - down software integration

solutions. So, combinations of different

testing strategies are required to arrive at the

desirable outcome as well to a picture that is

realistic.

vii. Management of expectations:

expectations of accuracy should be well

managed.

c) Merits of Top-Down Methodology

The following are the benefits of top-down

integration approach [29]:

i. Error detection: errors in the system due to

the design are easily discovered.

ii. On time model of the system: using top-

down technique, it is convenient to acquire

the model promptly.

iii. Prioritization: the main modules of the

system are given higher priority and tested

first.

iv. Simple: top-down integration testing

approach is simple to implement.

v. Correction of flaws: correction can be made

to the system very early since the main

system is tested first.

d) Demerits of Top-Down Integration

Methodology

The following are the disadvantages of the

approach [29]:

i. Too many stubs are required: this

approach uses many artificial modules at the

lower level.

ii. Complexity: high number of stubs required

makes this approach complex to implement.

iii. Ineffectiveness of lower-level module:
there is high rate of the lower-level modules

not being tested commendably.

iv. Error tracking: some errors that occur in

the lower-level modules might not be

traced.

v. Restricted understandability: the testing

can only be done by the development team

alone as the functionality might not be clear

to another tester.

vi. Testing restriction: testing is restricted to

only the module with the main functionality

of the system.

76 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

3.1.2.3 Sandwich, Hybrid or Mixed

Methodology

As the name implies, mixed methodology uses

both the characteristics of top-down

methodology and bottom-up methodology. This

approach is used to address the drawback of the

two approaches; where in top-down approach,

the higher-level modules are tested first and in

bottom-up approach, the lower-level modules are

tested first. Mixed methodology involves testing

both the higher level modules and the lower level

modules simultaneously [12]. This approach is

also referred to as the hybrid approach. This

approach makes it possible to produce a good

working version of the system in a short time.

Unlike bottom-up and top-down approaches,

where the system is shared into two levels, which

are higher and lower levels. Hybrid approach

divides the system into three levels based on the

features of the system. The levels are high level,

low level and the main level. The testing in this

approach is focused on the middle level which is

also the main level.

This approach is very useful in testing a software

project with high complexity. It is very reliable

when it is used in a large project due to the

integration of two techniques.

Mixed approach does not only make use of the

testing principles of the incremental approaches

(that is, top-down and bottom-up); it also makes

use of the non-incremental approach (big-bang

approach). Big-bang approach is used at the

middle division. Top-down approach is used to

test the upper division of the software project

down to the middle; while bottom-up is applied

to test from the lower division up to the middle

division where big-bang approach is then applied

at the middle division to round up the integration

testing process [31]. Pictorial representation of

sandwich approach is shown in Figure 8.

a) When to Use Mixed Approach to Integration

Testing

As the name implies, it is the combination of two

integration testing approaches, top-down and

bottom-up approach. It can be used in the

following conditions:

i. When the size of the project is very large

ii. When the time for the delivery of the project

is very short.

iii. When the estimated cost of the project is very

high.

iv. When there is great demand for a quality

software product.

b) Merits of Mixed Methodology

The following are the advantages of mixed

methodology [32], [33]:

i. Size of project: mixed approach is very

efficient for a project that is very large in

size.

ii. Parallelism: this approach makes it possible

to test using both top-down and bottom-up

approaches simultaneously.

iii. Saves time: this approach uses less time

when performing testing, because it uses the

principles of two approaches at a time.

iv. Test coverage: there is high probability of

covering all modules when using mixed

approach for testing large software. This is

because bottom-up tests the lower level while

top-down approach tests from the top.

Figure 8: Mixed Approach to Integration Testing [15]

77 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

c) Demerits of Mixed Approach to Integration

Testing

The following are the drawbacks of mixed

approach to integration testing [33]:

i. Cost: mixed approach uses top-down and

bottom-up approach which increases the

cost associated with the software project.

ii. Scope of the approach: mixed approach

cannot be used for software project with

small size.

iii. Complexity: this approach is too complex

due to the fact that the condition of both

bottom-up and top-down approach must be

fulfilled.

iv. Late application: this approach can only

be used at the end of development phase,

since all modules need to be completely

developed before testing.

3.2 Comparative Analysis of Integration

Testing Approaches

Software testing is one of the most essential

phases in software development life cycle.

Integration testing is one of the most important

testing types that need to be carried out on a

system to assure development of a quality

software product. Integration testing is majorly

aimed at tracking errors on interaction of

different modules that may occur during the

course of implementation. There are basically

four approaches to integration testing which are

big- bang approach, top-down approach, bottom-

up approach and hybrid or mixed approach.

Comparative analysis of these approaches is

given in Table 2.

Table 2: Comparative Analysis of Big-Bang, Top-Down, Bottom-Up and Hybrid or Mixed

Approach

S/N Features
Software Integration Testing Approaches

Big-bang Top-down Bottom-up Hybrid

1. Project size small Large Large Large

2. Project

complexity

Low capability Average capability Average

capability

High capability

3. Project with

risk

Not Suitable Suitable Suitable Greatly suitable

4. Project period Short time Average time Average time Short time

5. Cost Not expensive Expensive Expensive More Expensive

6. Project with

low risk

Suitable Less suitable Less suitable Not suitable

7. Project with

many sub-

projects

Worst Good Good Excellent

8. Error discovery Fast to track Fast to track A little bit

late

Very fast

9. Reliability Not reliable Low to high

reliability

Less reliable High reliability

10. Test coverage All modules are

tested

Some modules

might be missing

Some

modules

might be

missing

All modules are

covered

11. Effectiveness Less effective Less efficient Efficient Highly efficient

12. Testing while

developing

Not allowed Not allowed Allowed Not allowed

13. Testing period Late Quite late Early stage At the end of

development

phase

78 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

S/N Features
Software Integration Testing Approaches

Big-bang Top-down Bottom-up Hybrid

14. Prioritization

of modules

No

prioritization

Works based on

prioritization

No

prioritization

Little

prioritization

15. Testing basic

functionality

Early Early Late Quite early

16. Module testing Quite difficult difficult Easy Easy

17. Planning

approach

Simple Difficult Simple Difficult

18. Incorporation

of modules

Final level At initial level At initial

level

At initial level

19. Parallel testing Not allowed Allowed Allowed Allowed

20. Component

driver needed

Yes No Yes Yes

21. Work

parallelism at

beginning

High Low Medium Medium

22. Integration

stage

Late Early Early Early

23. Testing a

specific path

capability

Easy Easy Hard Medium

24. Require stubs Yes Yes No Yes

25. Planning and

controlling of

sequence

capability

Easy Hard Easy Hard

26. Basic working

program time

Late Early Late Early

3.3 Areas of Application Integration Testing

Various areas where each integration testing

approach can be applied in order to know where

each approach is most suitable for execution of

software project are discussed thus. The major

application areas are web application and

database application. Web application is for

testing the output of merging client- and server-

side code and accessing it through a web browser

to determine its functionality within the context

of web applications while database application is

concerned with specifying test for queries results

and the test to validate the database state after

several update operations.

3.3.1 Areas of Application of Big-Bang

Approach

It is applicable in cases where the project is not

complex and need to be delivered in a short

period of time. The application areas are given

thus:

i. Database development

ii. Mobile app development

iii. Web applications development

iv. Networking

v. Server monitoring

vi. System analysis

vii. Reporting

viii. Code optimization

ix. Generation of test data

x. Database profiling

3.3.2 Areas of application of Top-down

Approach

The top-down integration begins from the root

node of the program module that is called by the

main program known as stub. The following are

the areas of application of top gown approach:

i. Database development

ii. Mobile app development

79 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

iii. Web applications development

iv. Networking

v. Server monitoring

vi. System analysis

vii. Reporting

viii. Code optimization

ix. Generation of test data

x. Database profiling

3.3.3 Areas of Application of Bottom-up

Approach

Bottom-up can be applied in cases where an

existing component is required and needs to be

integrated into the product [34]. The application

areas of bottom-up approach are highlighted thus

[35]:

i. Database development

ii. Mobile app development

iii. Web applications development

iv. Networking

v. Server monitoring

vi. System analysis

vii. Reporting

viii. Code optimization

ix. Generation of Test data

x. Database profiling

3.3.4 Areas of Application of Mixed Approach

This approach can be termed as a smaller version

of the big-bang approach since it is combining

two approaches. Though, problem isolation is

tedious as the total testing session varies with the

total number of sub-trees [36]. The application

areas are given below:

i. Database development

ii. Mobile app development

iii. Web applications development

iv. Networking

v. Server monitoring

vi. System analysis

vii. Reporting

viii. Code optimization

ix. Generation of Test data

x. Database profiling

4. AUTOMATION TOOLS FOR

INTEGRATION TESTING

The interaction between components and their

interfaces can be tested both manually and with

the use of testing tools. Automation of integration

testing makes it more convenient and faster to

achieve the testing phase [37]. Effective conduct

of integration testing sometimes is not easy as

there is high probability of missing some parts

due to oversight. It is not always easy to carry out

integration testing on a large system with many

sub-systems manually. The use of automation

tools needs to be adopted in order to get a quality

software product that meets user requirements.

Some of integration testing tools are TESSY,

FitNesse, rational integration tester, protractor

and CITRUS.

4.1 TESSY

Tessy is an essential tool that is used to check the

components’ interfaces of a system under

development. This tool takes in two inputs; the

source code of the system and the requirement

document that had been prepared before the

implementation phase based on user

requirements. This software checks the

conformity of the built system with respect to the

requirement document. This tool tests the system

with the use of requirement document in order to

ensure the system works as the user wants. The

tool requires the tester to highlight all

components’ interfaces. The interfaces are then

checked using a scenario to confirm the

interaction between them [38].

4.1.1 Features of TESSY

The following are the characteristics of TESSY

integration testing tool [38]:

i. Need for requirement document: TESSY

tools requires the introduction of the

requirement document alongside with the

source code of the system to assure users’

satisfaction.

ii. Scenario formulation: this is done when

the main functionalities of each model and

their interactions have been known. The

tester creates a situation that can represent

the main function of the system. The right

and wrong inputs are subjected to the

system to check it reliability.

iii. Creation of interfaces: the interface of all

components is listed in the software in

order to achieve the aim of integration

testing which is to check for well-

functioning of the system.

80 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

iv. Generation of outcome report: this

testing tool is capable of producing the

results of the testing after the completion.

4.2 Rational Integration Tester

This is a software used to automate integration

testing. This testing tool helps to test a system in

a very short time interval with a very moderate

cost. This tool tests a system with incomplete

modules. The missing modules in the system can

be replicated using an artificial module known as

stubs. This tool is best used in a top-down

approach where there is a need for sub-modules

to be replaced by stubs. This tool best suits the

iterative approaches for integration testing, that

is, top-down and bottom-up integration

approaches.

4.2.1 Features of Rational Integration Tester

This testing tool is an automated version of the

iterative approach to integration testing. The

following are the distinguishing characteristics of

this tool.

i. Use of stubs: rational integration tester allows

the use of stubs to replicate the missing

components in a system while undergoing

integration testing.

ii. Test-case design: test case to use for the

integration testing can be from the

requirement document of the system or

external test case.

iii. Functional testing: this tool can be used to

check the functionality of the system. This is

one of the main features of top-down

approach.

4.3 Protractor

Protractor is an integration testing tool that is

basically designed to test web application. The

web-pages in a web application are put to test to

check their interfaces and their inter-

connectivity. For example, once a login page has

been filed correctly, on clicking the sign-in

button, it should move to the homepage of the

web application. This tool is used to test the

communication between web pages. It is mostly

used with Angular JS application.

4.3.1 Features of Protractor

The following are the characteristics of

Protractor as an integration testing tool:

a. Angular JS based: it is mainly used to test

application that is Angular JS based.

b. Multi-task: protractor can be used on more

than one browser simultaneously with the use

of selenium grid.

c. Simplicity: this tool uses a simple syntax to

automate the integration process.

4.4 Badboy Integration Testing Tool

This is used in CPU process measuring as well as

consumption of memory, processes number,

e.t.c.

4.5 JMeter Integration Testing Tool

 This is useful in integration testing of different

servers for example web servers, application

servers as well as distributed and stand-alone

databases.

4.6 Selenium Integration Testing Tool

 This is used in program correction as well as

quality of output tracking.

4.7 Worksoft Integration Testing Tool

This is used for testing of a whole program using

several inputs, individual functions exercises as

well as methods of object [39] , [40].

4.8 Other Integration Testing Tools

There are other integration testing tools such as

Citrus, Jasmine, FitNesse, VectorCAST / Ada,

Validate MSG, LDRA, Smart Integration Test

Accelerator (SITA), Cucumber, Steam, eZscript,

Pioneerjs, VectorCAST/C++, TESSY and Spock

for JAVA.

5. CONCLUSION

Software testing is generally important while

working on a software project. Checking for the

correctness is very essential to know how well

the components in the software product interacts.

Four approaches can be used to achieve software

testing goals. Big-bang approach, top-down

approach, bottom-up approach and mixed

approach also known as hybrid approach have

been carefully considered in this study. Some of

the key factors to consider when choosing the

software testing approach to work with are

project size, complexity and time constraint;

81 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

reliability of the approach for the intended

software project and the cost of carrying out

integration testing. Big-bang approach is suitable

for a small software project that has short life

span. Long term project with many sub - projects

and high complexity is peculiar to mixed

approach. Bottom-up approach best fits a

software project that requires simultaneous

development and testing. Project risk also need to

be considered while testing software. Mixed

approach can be applicable for a high-risk

software project with a very high-cost estimation.

The detailed comparative analysis was given in

Table 2 using twenty-six characteristics. It is

therefore, recommended that the use of machine

learning paradigms for the qualitative

computation of the best software integration

testing can be employed for future studies in

relation to any given software project.

References

[1] Akinsola J. E. T., Ogunbanwo A. S.,

Okesola O. J., Odun-Ayo I. J., Ayegbusi F.

D. and Adebiyi A. A. (2020). “Comparative

Analysis of Software Development Life

Cycle Models (SDLC),” Springer, vol. 1224

AISC, pp. 310–322, doi: 10.1007/978-3-

030-51965-0_27.

[2] Adeagbo M. A., Akinsola J. E. T., Awoseyi

A. A. and Kasali F. (2021). “Project

Implementation Decision Using Software

Development Life Cycle Models: A

Comparative Approach,” J. Comput. Sci. Its

Appl., vol. 28, no. 1, doi:

10.4314/jcsia.v28i1.10.

[3] Akinsola J. E. T., Kuyoro A. O., Adeagbo

M. A. and Awoseyi A. A. (2020).

“Performance Evaluation of Software using

Formal Methods Global Journal of

Computer Science and Technology,” Glob.

J., vol. 20, no. 1.

[4] IBM (2022). “What is Software Testing and

How Does it Work,” IBM.

[5] Sawant A. A., Bari P. H. and Chawan P. M.

(2012). “Software Testing Techniques and

Strategies,” J. Eng. Res. Appl., vol. 2, no. 3,

pp. 980–986.

[6] Tahvili S. (2018). Multi-Criteria

Optimization of System Integration Testing..

[7] Arumugam A. K. (2019). “Software Testing

Techniques & New Trends,” Int. J. Eng.

Res. Technol., vol. 8, no. 12, pp. 708–713.

[8] Reis S., Metzger A. and Pohl K. (2007).

“Integration Testing in Software Product

Line Engineering : A Model-Based

Technique” pp. 321–335.

[9] Rastogi S. (2021). “A comparative study of

software testing techniques,” Int. J. Innov.

Sci. Res. Technol., vol. 6, no. 7, pp. 114–

119, doi: 10.1007/978-3-319-59647-1_27.

[10] Wikipedia (2021). “Integration Testing,”

Wikipedia,. .

[11] Geeks for Geeks (2020). “Software

Engineering | Integration Testing,” Geeks

for Geeks.

[12] Pedamkar P. (2020). “Integration Testing _

Types & Approach with Advantages &

Disadvantages,” EDUCBA.

[13] Parmar K. (2014). “Integration Testing

Techniques,” no. SAP AG, pp. 1–15.

[14] Dhanalakshmi K. (2019). “Integration

testing,” Coimbatore.

[15] Hamilton T. (2021). “What is System

Integration Testing (SIT) with Example”.

[16] Selvan A. (2020). “Integration Testing

Types & Approaches,” TechAffinity.

[17] Rana K. (2020). “Integration Testing

Types, Challenges, Benefits and Tools,”

ArtOfTesting.

[18] Rajkumar (2020). “Integration Testing - Big

Bang, Top Down, Bottom Up & Hybrid

Integration - Software Testing Material,”

Software Testing Material.

[19] Behera H. S., Sahu K. K. and Bhattacharjee

G., “Lecture Notes On Course Code : BCS-

306.”

[20] QATestLab (2018). “Big-Bang Testing

Specifics – QATestLab,” QATestLab.

[21] Poonam (2019). “Big Bang Approach-The

Way to Test Modules as Whole -

TestOrigen,” TestOrigen.

[22] Gupta Y. (2022). “ISTQB Foundation Level

Exam Crash Course Part-3 - Software

Testing Genius,” Software Testing Genius.

[23] Hamilton T. (2022). “Integration Testing_

What is, Types, Top Down & Bottom Up

Example,” Guru99.

[24] JavaTpoint (2021). “Integration Testing -

javatpoint,” JavaTpoint.

[25] Geekforgeek (2013). “Steps in Bottom Up

Integration Testing - GeeksforGeeks.”

[26] Tutorialspoint (2021). “Bottom Up Testing

- Tutorialspoint.”

[27] GeeksforGeeks (2020). “Steps in Bottom

Up Integration Testing,” GeeksforGeeks.

82 UIJSLICTR Vol. 7 No. 2 Jan. 2022 ISSN: 2714-3627

[28] Singh R. and Khan I. A. (2012). “AN

APPROACH F OR I NTEGRATION T

ESTING I N,” Int. J. Comput. Sci. Inf.

Technol., vol. 4, no. 3, pp. 141–158.

[29] Professionalqa.com (2022). “Top Down

Integration Testing.”

[30] Mikhalchuk O. (2020). “7 essential steps to

top-down integration testing strategy _

Forte Group,” Forte Group.

[31] Brown H. (2021). “What is Integration

Testing: Approaches and Challenges

Explained! Cyclr,” Cyclr.

[32] Choudary A. (2020). “What is Integration

Testing? | How to perform integration

testing?,” Edureka.

[33] MKS075 (2022). “Sandwich Testing _

Software Testing - GeeksforGeeks,”

GeeksforGeeks.

[34] ProfessionalQA.com (2022). “What is

Bottom Up Approach in Software Testing_

_Professionalqa.”

[35] Abdul M., Maniyar R., Hakeem M. A.,

Khalid M. and Zafar M. (2018). “Bottom-up

Approach for Performance Testing of

Software Applications or Products,” vol. 6,

no. 9, pp. 7812–7817, 2018, doi:

10.15680/IJIRCCE.

[36] Jorgensen P. C. (2014). “Integration

Testing,” Softw. Test., pp. 225–250, doi:

10.1201/b16592-22.

[37] Javapoint (2021). “Integration Testing

Tools - javatpoint.”

[38] Embitel (2021). “How Tessy Tool

Automate the Integration Testing of

Automotive Software”.

[39] Reddy M. R., Yalla P. and Chandra J. V.,

“Design and Implementation of Integrated

Testing Tool,” Researchgate, no. May, pp.

10464–10472, 2014.

[40] W3Softech (2019). “W3Softech,”

W3Softech.

