
81 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

University of Ibadan

Journal of Science and Logics in ICT Research

Assessing the Effects of Academic and Work Experience Backgrounds

on Software Defect Detection Effectiveness

Arowolo Oladimeji ABIOLA and Solomon Olalekan AKINOLA
oladimejiarowolo@yahoo.co.uk solom202@yahoo.co.uk

Department of Computer Science, University of Ibadan, Nigeria

Abstract

Inspection of various software artefacts increases the quality of the end product – the software. The question yet

unanswered is “Does effectiveness of software inspection depend largely on the academic and work experience

backgrounds of individual inspectors involved?” To address this issue, a medium-scale controlled code

inspection experiment with 28 final year students from selected Departments in the Faculty of Science and 10

professionals was conducted at University of Ibadan. The experiment was designed to find out the relationship

(if exist) between inspectors’ academic and work experience backgrounds and their defect detection

effectiveness during an industrial code inspection. The results of the study showed that those with computer

related background found significantly more defects than those with non computer related background. It is also

found out that prior industrial code writing and inspection experiences significantly impact the effectiveness of

an inspector. Finally, professionals with prior code inspection experience found significantly more defects than

their student counterparts.

Keywords: Code inspection, Academic background experience, work experience, Inspection effectiveness

1. Introduction

Software inspection is a necessary and

important tool for software quality assurance. It

involves ability to estimate software faults

early on during the development process or

even before starting a project can be

indispensable in minimizing software

development time and effort, where accurate

software detection model can reduce the efforts

needed to detect software errors throughout the

software life cycle and minimize the number of

modules developed in each activity [1].

Confusing code is any code element in which

developers have considerable difficulty

reaching its comprehension. These difficulties

may result from a plethora of characteristics of

the source code and external issues. In this

way, there is still a lack of knowledge on the

core issues of confusing code [2]. The

development products could be specifications,

source code, contacts, test plans and test cases,

the use of inspections throughout the software

lifecycle is an important factor in improving the

overall quality of the resulting software. Code

reviews have been used to improve code

quality since the 1970s. Most practitioners in

the field of software have some experience with

respect to the technique (Ilenia et al, 2019).

More than thirty years since the inception of

inspections, researchers have made

modifications to the original process with the

goal of improving the effectiveness, efficiency,

or applicability in various settings.

Prior research indicates that the overall

effectiveness of an inspection team depends

largely on the effectiveness of the individual

inspectors who make up that team. But, the

effectiveness of those inspectors varied widely,

even when they use the same inspection

technique. Much of this variation was attributed

to the inherent differences among the

inspectors. Therefore, in order to better

understand these differences, this work focuses

on the variations in academic and work

experience backgrounds of inspectors to

understand the variation in their effectiveness.

Arowolo Oladimeji ABIOLA and Solomon Olalekan

AKINOLA (2022). Assessing the Effects of Academic and

Work Experience Backgrounds on Software Defect

Detection Effectiveness, University of Ibadan Journal of

Science and Logics in ICT Research (UIJSLICTR),

Vol. 8 No. 1, pp. 81 - 90

©UIJSLICTR Vol. 8, No. 1,June 2022

mailto:oladimejiarowolo@yahoo.co.uk
mailto:solom202@yahoo.co.uk

82 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

Most of the existing software inspection

research has focused on improving the methods

and techniques used for inspections but the

effect of software inspectors’ academic and

professional backgrounds have not been

extensively dealt with.

The common observation nowadays is that

non-Information technology (IT) experts are

seen developing software for commercial

purposes in the country. A good example is the

result computation software which is being

used by many departments in the University of

Ibadan. The software was developed by a non-

IT professional who happened to be a

pharmacist by profession. Before software is

taken out to the market-place, inspection for

bugs must be carried out on it in order to

ascertain its quality.

Ten (10) professional software practitioners

were selected from three (3) software houses

and participated in the inspection of an

industrial code with the goal of identifying as

many defects as possible. Second set of the

subjects were the final year students from

computer science department and non-

computer based departments. The specific

focus of this study is to compare the

performance of these different groups of

subjects to determine whether one group is

more effective than the other. The results

provide insight into the types of knowledge or

experience that are beneficial for inspectors.

Although software review (inspection) could be

said to be inevitable in order to ensure software

quality assurance, arguments exist on whether

academic backgrounds have effects on the

reviewer’s effectiveness or not.

The major aspect to be considered is the

personality of the reviewers, their level of

exposure in terms of education and experience.

The following research questions were

answered in the experiment:

1. Are inspectors who have computer

science background more effective

during inspection than inspectors with

non-computer based background?

2. Does the effectiveness of inspection

depend on team size?

3. Does number of inspection meetings –

single or multiple – affect the

performance of software inspection

process?

4. What effect does choice of inspection

technique or fault detection method has

on inspection performance?

5. Does preparation before inspection

meeting has any significant effect on the

effectiveness of software inspection

process?

1.1 Research Hypotheses

Based on the research questions above, the

following hypotheses are tested within the span

of this empirical research study:

H1o: There is no significant difference between

the effectiveness of computer based

inspectors and that of non-computer based

inspectors.

 H2o: There is no significant difference between

the effectiveness of Ad-hoc and Checklist

reading techniques.

H3o: Inspections with large team size have

longer inspection effort (time), but finds

no more defects than smaller teams.

H4o: There is no significant difference between

the effectiveness of inspectors with little

code writing experience and average code

writing experience during inspection.

H5o: There is significant difference between the

effectiveness of inspectors with inspection

experience and inspectors without

inspection experience during inspection

1.2 Paper Outline

The rest of this paper is organized as follows.

Section 2 discusses the related works on this

line of research while in Section 3;

methodology for carrying out the study is

discussed. In Section 4, results and their

analyses were presented and discussed while

the conclusion and recommendation are

presented in Section 5.

2.0 Literature Review

Software inspection is as old as programming

itself. In principle, code inspection is a

transparent process in which reviewers aim to

assess the qualities of the software on its

technical merits in a timely manner; however,

in practice the execution of this process can be

affected by a variety of factors, some of which

83 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

are external to the technical content of the

software itself [3]. At the outset, programmers

found out that writing completely accurate

programs was too great a problem for the

unaided human mind. Hence informal reviews

were done. However, as software projects

increased in size and ambition, the steps of the

review process were gradually written down

and improved upon.

Over the years, various metaheuristic

algorithms have been hybridized with different

kinds of prediction models to obtain an

optimized weight that can be fed to the

prediction model in an attempt to achieve better

prediction accuracy. These endeavours have

resulted in the development of hybrid methods

that have attained better performance when

compared to standard prediction approaches [4,

5].

Although researchers realize the importance of

understanding the impacts of an inspector’s

background and experience, little previous

research has focused specifically on identifying

the characteristics that make an inspector

particularly effective. In a paper that lays out a

research program focused on understanding

technical reviews and how to improve them.

Baum et al. [6] highlight the importance of

code review has an effective quality assurance

technique for decades. In the last years,

industrial code review practices were observed

to converge towards “change- based/modern

code review”, but with a lot of variation in the

details of the processes.

Inspection is a static verification and validation

process in which a software system is reviewed

to find defects [7]. Prior work has shown that

formal code inspections tend to improve the

quality of delivered software. However, the

formal code inspection process mandates strict

review criteria (e.g. in-person meetings and

reviewer checklists) to ensure a base level of

review quality, while the modern, lightweight

code reviewing process does not. Practitioners

do not always use the systematic probably

because they do not buy the idea of eliminating

the general, identical nature of responsibilities

given to reviewers and replacing it with

narrowing individual reviewers with the

responsibility of finding specific faults that

may not be present in the artefact. Whatever

the case may be, before any method may be

used, it may be necessary to consider the nature

and size of the material to be inspected as well

as the inspection history available as it affects

the materials to be inspected.

RI Hussein et al. [8] subdivided defects into

two broad types.

1. Omission: Some information is left to

understand and the following errors are

included in omission.

• Missing functionality

• Missing performance

• Missing interface

• Missing environment

2. Commission: some information that is

irrelevant, ambiguous, or not correct.

Following errors are included in the

commission.

• Ambiguous information

• Inconsistent information

• Incorrect or extra information

• Wrong selection

To evaluate the frequency of the error, defect

report forms and reviewer defect report forms

can be used.

The most frequently used detection methods,

which are ad hoc and checklist rely on non-

systematic techniques. Ad hoc fault detection

method requires that all reviewers use non –

systematic techniques and are given the same

responsibilities. Checklist is similar to Ad hoc,

but here, individual reviewers are given a

checklist. The checklist contains items, which

are used to extract vital lessons from previous

inspections in a particular environment or

application. These items may state

characteristics faults or ask questions that will

aid reviewer’s responsibilities and recommend

ways reviewers may follow to find faults. In the

scenario method, each reviewer employs

different, systematic techniques to locate

different, specific types of faults. Popular

methods used by practitioners are the, Ad hoc

and checklist methods where responsibilities

are general and identical. Code defects are

often considered as key indicators of software

quality degradation. If code defects are not

systematically removed from a program, its

continuous degradation may lead to either

major maintenance effort or the complete

84 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

redesign of the system. For several reasons,

software developers introduce defects in their

code as soon as they start to learn programming

[9].

3. The Experiments

3.1 Subjects

Twenty eight (28) final year students from

seven Departments in the University of Ibadan

and ten (10) professional software practitioners

were also involved throughout the experiments;

the Departments are Computer Science,

Physics, Electrical/Electronics, Geography,

Economics, Chemistry, Mathematics, and

Mechanical Engineering. The final year

students from Computer Based Backgrounds

have undergone (CSC232, Structured

programming), (CSC231 Scientific

Programming) while those from other

department have not done any Scientific

Programming course. In the process of

conducting the experiment, the reviewers were

divided into two groups based on the focus of

this research. The first group of reviewers are

those with Computer Based Backgrounds and

second are those with non- Computer Based

Backgrounds. Each of the groups is divided

into four team sizes (1, 2, 3 and 4); for each

group of reviewers, two variables were

measured (effectiveness and effort). Therefore,

this work adopted 2 x 2 x 4 factorial

experimental design. The first 2 indicates the

main factors measured – Computer Based

Backgrounds and non-Computer Based

Backgrounds, the middle term 2 indicate sub-

factors (dependent variables) measured. The

last 4 indicates that 4 replications (team sizes)

were measured.

3.2 Experimental Settings

The artefact inspected was Students

Registration Software (SRS), an industrial Java

code of 450-line of code that accepts students

biodata, course registration, mark scored and

generate transcript for each student. The

program uses all the functionalities of frmlog,

showlog, JFrame, connection to db etc. The

program accepts student’s bio data, courses to

be taken in that year and carried over courses,

the marks were entered against each courses.

The code was compiled successfully and

implemented okay by the researcher before it

was finally seeded with 45 bugs – 18 Logical,

and 27 syntactic/semantic errors. The program

performs all the operations on the input data

and reports the output results of the

computation if there were no errors. If there

were errors in form of operational condition not

being fulfilled for any of the operations, the

program reports appropriate error log for that

operation.

3.3 Experiment Design

The experimental design adopted for this

research is an independent, two-group between-

subject design. It is one in which participant

were randomly assigned to the code artefact to

be inspected for errors. In this design, six

independent variables are measured on each

inspector.

3.4 Variables

The experiment manipulated six independent

variables: the number of reviewers per team (1,

2, 3, or 4 reviewers), educational background,

educational degree industrial experience, code

writing experience and inspection experience.

Two dependent variables were measured in the

experiments: inspection effort in terms of time

spent (in minutes) on inspecting the code

artefacts, estimated defect detection ratio

measured as a ratio of the total true defects

detected by the reviewers to the total seeded

defect in the inspection artefact.

3.5 Experimental Instrumentation

The designed instruments for this experiment

are the Experimental code, Preparation Forms

and Defect Collection Meeting Forms. The

Experimental Code serves as the artifact

reviewed by the reviewers in the inspection

processes. Preparation Forms were filled during

preparation phase by the reviewers. The

Experimental Code and Preparation forms were

both given to the reviewers to inspect

individually as preparations for a maximum of

70 minutes during which the artefact was

reviewed, and the line number of each issue

(“suspected defect”) as well as the description

of the defects suspected. Most importantly, the

reviewers recorded their Identity Numbers and

their names on the forms.

85 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

 An hour after the preparation phases were

completed, the collection meetings were held.

The meeting Forms were filled in at the Defect

Collection Meeting. When completed, they

gave the time during which the meetings were

held, line number and a description of the

defect. The team’s identity numbers were

recorded on the defect collection meeting form

to identify which team has which form.

3.6 Conducting the Experiments

The reviewers were broadly grouped into two.

Each group was then distributed into teams of

varying sizes from 1 to 4. The first group were

the Computer Based Background Inspectors

while the second group are the Non - Computer

Based Background Inspectors. The reviewers

not minding their initial experiences were

giving proper trainings on some trivial aspects

of the experimental artifacts, such as the

algorithms for codes during the first weekend

meeting. These were done to ensure they

understand the inspection artifacts very well.

The experiments were closely monitored and

organized by the researcher. In order to

minimize errors in the experiments, participants

were randomly reassigned to teams for each

experiment.

During preparations, reviewers analyze the

codes in order to find defects. All suspected

defects were recorded on the Preparation Forms

given them. The experiments placed no time

limit on preparations but an average of 70

minutes (1.17 hours) was generally observed by

the reviewers for the inspections. During the

defect collection meetings, one of the reviewers

in each team was selected as the reader as well

as the recorder and the moderator. This

reviewer paraphrases the code. During this

activity, reviewers may bring up any issues

found during preparation or discuss new ones.

All issues raised were thus recorded in the

defects collection forms by the recorder. Before

the commencement of the defect collection

meetings, the preparation forms were collected

by the researcher in order that the reviewers do

not mistakenly add to their preparation forms

any issues that were not found until collection.

Also, there was no time limit placed on defect

collection meetings but an average of 47

minutes (0.78 hours) was generally observed by

the reviewers.

3.7 Threats to Validity

The question of validity draws attention to how

far a measure really measures the concept that

it purports to measure (Christoph et al 2021).

Therefore in this experiment, we considered

two important treats that may affect the validity

of the research in the domain of code

inspection.

3.7.1 Threats to Internal Validity

Threats to internal validity are influences that

can affect the dependent variable without the

researcher’s knowledge. We considered 3 such

influences:

(1) Selection effects, (2) Maturation effects,

and (3) Instrumentation effects.

Selection effects are due to natural variation in

human performance. For example, if one-

person inspection is done only by highly

experienced people, their average skill can be

mistaken for a difference in the effectiveness of

the treatments. We limited this effect by

randomly assigning team members for each

inspection, this way individual difference was

spread across all treatments.

Maturation effects result from the participants’

skills improving with experience. Randomly

assigning the inspectors and doing the review

within the same period of time checked this

effect.

Instrumentation effects are caused by the code

to be inspected, by difference in data collection

forms, or by other experimental materials. In

this study, this was very negligible or did not

take place at all since all the groups inspected

the code artifact within the same period of time.

Again, one set of data collection forms was

used for the entire group.

3.7.2 Threats to External Validity

Threats to external validity are conditions that

limit our ability to generalize the results of our

experiment to industrial practice. We

considered three sources of such threats: (1)

experimental scale, (2) subject generalizability,

86 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

and (3) subject and artefacts representativeness.

Experimental scale is a threat when the

experimental setting or the materials are not

representative of individual practice; this

experiment was carried out on industrial live

software project in reputable software industry

in Nigeria.

A threat to subject generalizability may exist

when the subject population is not drawn from

the industrial population; again this experiment

was carried out with industrial software

professionals. Threats regarding subject and

artefact representativeness arise when the

subjects and artefact population is not

representative of the industrial population.

Same issue is attributed to this threat.

4. Results

This study has one major research question and

one secondary research question. The major

research question is: “Are inspectors who have

a degree in computer science more effective

during inspection than inspectors with non-

computer science degrees?” The secondary

research question is: “Do other variables (The

number of reviewers per team, Educational

Background, Educational Degree, Industrial

Experience, Code Writing Experience and

Experience with inspection) impact the

effectiveness of an inspector?” Prior to

conducting T-test and an ANOVA, the first

step is to perform a data reduction exercise to

ensure that the six secondary variables are all

independent. If any of the variables are not

independent, then they should be removed prior

to conducting the ANOVA to increase the

power of the analysis.

The graph in Figure 1 shows that out of 45

bugs seeded into the artifact, computer based

background inspectors with four member team

detected highest number of bugs in the artefact,

they detected 73.33% of the bugs. While the

non - computer based background counterpart

with a team of four also detected 28.88% of the

bugs. The highest defect detection by non-

computer based background inspectors is from

team member one and they detected 42.22% of

the seeded defects.

Figure 1. Graph of defect detection by computer based Background and Non-Computer based

Background Inspectors.

Table 1: Defect detection between Computer based background and Non-Computer based background

Inspectors

 N Mean Std.

Deviation

t df p

Computer

based

4 29.5000 2.64575 5.962 6 0.001

Non-

Computer

based

4 13.7500 4.57347

87 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

Table 1 shows that Computer Based

Background (CBB) inspectors uncover more

defects than the Non-Computer Based

Background (NCBB) inspector with mean

defect detection of 29.5000 and 13.7500

respectively. This means that the null

hypothesis did not hold based on the result.

Statistical test results from Table 1 reveals that

there is significant difference in the

effectiveness of Computer Based Background

Inspectors than Non-Computer Based

Background Inspectors (p = 0.001). This result

may be attributed to the fact that the computer

based inspectors had gone through series of

courses in code writing, inspection and have

acquired skills during their one year industrial

attachment.

4.1 Analysis of Code Writing Experience

Part of the vital data obtained from the

inspectors was their code writing experience.

The inspectors’ experience with code writing

varies based on the number of years they have

been writing codes. The variable value 3 is for

inspectors having inspection experience above

3 years and they are revered to as high

experience while those having less than 3 years

of experience are revered to as low experience.

The hypothesis for code writing experience

states that there is no significant difference

between the effectiveness of inspectors with

low code writing experience and those with

high code writing experience during inspection.

Table 3. Effect of Code Writing Experience

 Mean Std.

Deviation

t df p

Low

Experi-

ence

25.0 12.47 -0.91 18 0.4

High

Experi-

ence

29.4 8.64

Results from the analysis in Table 3 shows that

the mean value for low experience inspectors is

25.000 and inspectors with high experience is

29.3571. The high experiences inspectors are

more effective in defect detection than low

experience inspector which means there

experience have impact in their effectiveness.

From analysis using independent t-test, the

result shows that there is no significant

different in the effectiveness of low and high

experience inspectors (p = 0.377). The null

hypothesis holds for this results and this can be

attributed to small size of the code.

4.2 Analysis of Inspection Experience

The software industries site surveyed that was

carried out in Lagos state Nigeria shows that

many of the software houses have different set

of people for their inspection work which make

the software product to be free from bugs that

can prevent the software from efficient

operation. Considering the third hypothesis

which states that, there is no significant

difference between the effectiveness of

inspectors with low inspection experience and

high inspection experience.

Table 4 Experience with inspection

 N Mean Std.

Devia-

tion

t df p

Low

experi-

ence

8 25.5 8.93 -0.83 20 0.4

High

experi-

ence

14 29.2 10.75

Result from the analysis in Table 4 shows that

there is no significant difference in the

effectiveness of reviewers with low inspection

experience and that of reviewers with high

inspection experience, since the significance

level (p = 0.419) is higher than the allowed

error probability level () of 0.05.

The null hypothesis holds for student inspectors

and can be attributed to time factors

(insufficient time) in training and in inspection.

But while comparing the students’ performance

and the performance of professionals from the

industry, the null hypothesis did not hold, from

Table 5, the analysis on students’ data and the

practitioners from the industry was compared

and the result shows that the professional

reviewers are more effective than the students

88 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

in terms of inspection experience, the value of

the ANOVA F-test is 41.778. The result shows

that there is a significant difference in the

effectiveness of student inspectors and that of

professionals. The level of significance gave p

< 0.005; the result is attributed to their years of

experience in the software industry.

Table 5. Analysis of result of Industrial

Practitioners and Student’s Inspectors

 N df F p power

Non-

Computer

based

4 2 41.78 <0.005 40.7500

Computer

based

4 2

Professional 4 2

4.3 Discussion of Results

The academic background of inspectors has a

significant effect on their performance during

inspection, the software industry comprises of

graduates from computing related and non

computing related background. The graduates

from computing related background

outperforms the non-computing related

graduates. 60% of individuals employed in

computer industry do not have a computing –

related education, but the result from the

analysis has shown that there is a significant

difference in the effectiveness computer related

inspectors compare to non computer related

inspectors (p = 0.001) from independent t test

in Table 3.

The code writing experience of the inspectors

was also analysed and there in no significant

difference in the effectiveness of inspectors

with little experience and that of inspector with

average code writing experience, the t test

value (p = 0.377) confirmed the result.

The results of the practitioners in the industry

was compare with that of the student inspectors

and the result shows that there is a significant

difference in the effectiveness of code writing

experience of the practitioners compare to that

of student inspectors. The level of significance

is (p = 0.000) and this is attributed to their year

of experience in the industry. The result shows

that years of experience in the industry improve

the performance of inspectors irrespective of

their academic backgrounds.

Two inspection techniques that were employed

in this study is Ad hoc and Checklist technique

and the result of the analysis reveals that there

is no significant difference in the effectiveness

of Ad hoc over Checklist reading techniques.

The relative improvement of a method over

another is a measure of how that method

outperforms the other [10]. Checklist reading

technique performs better than Ad hoc and the

inspectors that employed these techniques also

proves that inspectors with computing related

background outperforms those that did not have

computing related background.

5 Conclusions / Future Direction of Works.

Software inspection is an essential constituent

of software quality assurance process, yet

significant controversies beset the most

efficient effective review method used. In this

study,

i. The necessity of holding software

inspection meetings was questioned against

the traditional belief that supports its

importance.

ii. The role of collaborative, distributive tool

in software inspection was demonstrated.

It is hereby concluded from this study that:

i. Inspections with large teams have higher

inspection costs (effort in teams of time

expended) but find no more defects than

smaller teams.

ii. As far as defect detection performance is

concerned, meeting based review methods

are not considerably better than the

meeting-less based methods.

iii. The level of significance in the

effectiveness of Computer based

background (CBB) inspectors and Non-

Computer based background (NCBB)

inspectors is significant (p = 0.001).

Computer based background (CBB)

inspector uncover more defects than the

Non-Computer Based Background

(NCBB) inspectors.

89 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

In addition to gaining a better understanding of

the inspection process, the results of this work

will also provides guidance to inspection

planners in selection and training of inspection

team members.

However, future research will enhance this

work by examining the effects of a priori

professional and cognitive experiences of

reviewers on.

5.1 Recommendations

Based on the results obtained in this

experiment, the following recommendations are

made:

 That software practitioner in Nigeria

should endeavour to imbibe code

inspection culture in their software

development projects. We are now in the

IT age and software is the vehicle driving

the IT. Nigeria is also wakening up to the

global challenge of IT revolution with

several machineries put in place to ensure

that viable software are produced locally

for global consumption. Quality is

however needed to be built into this

software. Inspection has been identified

as a process achieving this quality. That

academic background of inspectors’

impacts their effectiveness in inspection

process; the experimental result reveals

that Computer Based Background (CBB)

inspectors perform better than Non-

Computer Based Background (NCBB)

inspectors. It is recommended that 65%

of individuals employed in computer

industry should have computing related –

education. Lethbridge et al., [11]

reported that 60% of individuals

employed in computer industry do not

have a computing –related education.

 The matter of software review meeting

has been a controversial one, on whether

a formal software inspection meeting

should be done or not. It is recommended

that non – meeting based methods should

be used during software review.

 That the inspection team should not be

larger than two, to avoid incurring too

much cost (time) in the inspection

process.

 Checklist reading technique is highly

recommended for the reviewers in the

process as this will provide an aid to

them while carrying out the inspection

process on software artefacts.

Acknowledgement

We would like to thank the employee of

IETECH Computer Ilupeju Lagos, SYSTEM

Spec, Obalende Lagos for their participation in

the study. We would also like to thank the final

year students from the selected departments in

the University of Ibadan for their participation

in inspection of the artefact.

References

[1] Hamza Turabieh, Majdi Mafarja, Xiaodong

Li (2019) Iterated feature selection

algorithms with layered recurrent neural

network for software fault prediction. Journal

of Expert Systems with Applications, Vol. 122

(2019), pp. 27-42.

[2] R de Mello, JA da Costa, B de Oliveira

(2021), Decoding Confusing Code: Social

Representations among Developers, 13th

International Conf. 2021 -

ieeexplore.ieee.org.

 [3] Baysal, O., Kononenko, O., Holmes, R.,

Godfrey, M.W. (2016) Investigating

technical and non-technical factors

influencing modern code review. Empir.

Softw. Eng. 21(3), 932–959

 [4] Quang-Thanh Bui (2019) Metaheuristic

algorithms in optimizing neural network: a

comparative study for forest fire

susceptibility mapping in dak nong, Vietnam

Geomatics, Natural Hazards and Risk, 10 (1)

(2019), pp. 136-150.

[5] Varun Kumar Ojha, Ajith Abraham, Václav

Snášel (2017) Metaheuristic design of

feedforward neural networks: A review of

two decades of research, Engineering

Applications of Artificial Intelligence, 60

(2017), pp. 97-116.

[6] Baum, T., Leßmann, H., Schneider, K.: The

choice of code review process: a survey on

the state of the practice. In: Felderer, M.,

Méndez Fernández, D., Turhan, B.,

Kalinowski, M., Sarro, F., Winkler, D. (eds.)

PROFES 2017. LNCS, vol. 10611, pp. 111–

127. Springer, Cham (2017).

https://doi.org/10.1007/978-3-319-69926-4_9

90 UIJSLICTR Vol. 8 No. 1 June 2022 ISSN: 2714-3627

[7] Ebad, S. (2017) Inspection reading

techniques applied to software artifacts - A

systematic review. Comput. Syst. Sci. Eng.

32(3), 213–226 (2017).

[8] RI Hussein, NSR Najjar, N Pirzada…

Software Requirement Inspection And Defect

Detection Techniques,- 湖南大学学报

(自然科学版 …, 2021 - johuns.net.

[9] Oliveira, R., Estácio, B., Garcia, A.,

Marczak, S., Prikladnicki, R., Kalinowski,

M., Lucena, C. (2016) Identifying code

smells with collaborative practices: a

controlled experiment. In: X Brazilian

Symposium on Software Components,

Architectures and Reuse (SBCARS), pp. 61–

70. IEEE 2016.

[10] Ilenia Fronza, Arto Hellas, Petri Ihantola &

Tommi Mikkonen (2019) Code Reviews,

Software Inspections, and Code

Walkthroughs: Systematic Mapping Study of

Research Topics Conference paper.

 [11] Lethbridge, T.C., Diaz-Herrera, J., LeBlanc

Jr., R.J., and Thompson, J.B. (2004)

"Improving software practice through

education: Challenges and future trends". In

Proceedings of 29th International

Conference on Software Engineering (Future

of Software Engineering Track).

