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Abstract  

Pipelines are popular means of fluid transportation. They have become the preferred medium for transporting 

hydrocarbon due to their cost-effectiveness, efficiency and safety. Therefore, in-use pipelines require adequate 

monitoring and   maintenance   for   effective functioning. Pipeline inspection is a practice employed to prevent 

failures that could have significant consequences on their environments, aside from huge business losses. 

However, the fact that pipelines are mostly installed underground makes access and inspection challenging. 

Additionally, different subsurface materials have different chemical composition and properties which could 

have a degrading reaction on the underlying pipeline material; thereby exposing the pipeline to failure risk. 

According to the pipeline failure record, one of the greatest causes of pipeline failure is corrosion. This paper 

developed a model for predicting the corrosion rate of oil and gas pipelines using neural networks. Levenberg-

Marquardt (LM) back propagation algorithm was used to optimize the training of the model for better predictive 

accuracy. The developed model was validated using MATLAB. Subsequently, the model was evaluated with 

industrial dataset and was discovered to have an accuracy of 97%, this corresponds to improvements of 17.7% 

and 6.6% over Obaseki analytical model and Abbas artificial neural network model respectively. The developed 

model has a root mean square error (RMSE) of 0.01421 and mean absolute error (MAE) of 0.00015, thus can 

accurately predict the corrosion rate of pipelines. 
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1.   Introduction 

 

Oil and natural gas is transported across 

continents by pipelines. Pipelines are indeed the 

most pivotal part of the present-age energy-

delivery system and thus one of the foremost 

requirements of oil and gas industries and their 

supply chain is to ensure that the pipelines 

continue to function free of risk. The oil and gas 

business is big, and it is going to become bigger. 

Considering the fact that the US Energy 

Information Administration’s World Energy 

Outlook has predicted that fossil fuels will 

remain the primary sources of energy, meeting 

more than 90% of the increase in future energy 

demand. Also, global oil demand will rise by 

about 1.6% per year, from 75 million of barrels 

of oil per day (mb/d) in 2000 to 120 mb/d in 

2030. In addition, demand for natural gas will 

rise more strongly than for any other fossil fuel 

and primary gas consumption will double 

between now and 2030 [4]. 

 

Oil and gas pipelines are known for their 

susceptibility to leaks and catching fire, which 

may lead to an explosion and thus may be 

responsible for a catastrophic event. For 

instance, a big explosion was caused by the 

methane gas leakage, on 20 April 2010, at the 

Deepwater Horizon oil rig operated by 

Transocean, which is a subcontractor of British 

Petroleum. Owing to this incident, which was 

caused by the loss of the platform’s well control 

system, 11 workers died instantly and the rig 

also sank and was completely destroyed, causing 

millions of gallons of oil to spill out into the Gulf 

of Mexico. This is considered one of the largest 
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accidental marine oil spills in the history of the 

petroleum industry and, even now, it continues 

to damage the marine and wildlife habitats, as 

well as the Gulf’s fishing and tourism industries 

[12]. 

 

Also, Nigeria suffered losses amounting to 

21,291.673 barrels of oil, an equivalent of 

3,364,084.375 litres, due to spill in 2020, 

according to the data obtained from the National 

Oil Spill Detection and Response Agency, 

NOSDRA. This showed a 50 per cent decline, 

compared to 2019, when 42,076.492 barrels of 

oil (6,648,085.706 litres) were spilled. Also, the 

Nigerian National Petroleum Corporation 

(NNPC) disclosed that 45,347 of pipeline 

explosion had occurred in the last 18 years [9]. 

There are tens of thousands of miles in length of 

oil and gas pipelines around the world; these are 

becoming increasingly susceptible to failures 

owing to aging. Hence, rigorous reliability and 

failure analysis of oil and gas pipelines is 

necessary to minimize the chances of disasters. 

 

According to pipeline failure record, one of the 

greatest causes of pipeline failure in oil and gas 

transmission pipelines is corrosion [10]. 

Corrosion means a loss of metal due to chemical 

or electrochemical process. Similar to other 

pipeline failure factors, corrosion can also cause 

oil and gas leaks or pipeline ruptures. It can 

happen to either of the internal or external 

surfaces of pipelines, bases materials, welds, and 

other associated zones. Corrosions resulting 

from environmental degradation (including 

sulphates, acid, and ultraviolet light), can also 

affect non-steel pipelines, even if they have 

good corrosion proof abilities. The complex 

relationship among failure factors makes it 

difficult to analyse, model and accurately predict 

failure risks.  

 

Artificial neural networks (ANNs) are 

computational systems whose architecture and 

operation are inspired by biological neural cells 

in the brain. The Feed-Forward (FF) network is 

commonly used along with Back Propagation to 

train neural networks. Feed-Forward Back 

Propagation Network (FFBPN)’s main use is to 

learn and map the relationships between inputs 

and outputs. In addition, the FFBPN learning 

rule is used to adjust a system’s weight values 

and threshold values to achieve the minimum 

error. It can also be described as a complex 

relationship between the input and output values 

of a network set. Each node or neuron has a 

value that is determined by the input received 

from other network system units. Each input 

signal is multiplied by the corresponding input 

line weight value. 

 

Hence, the aim of this study is to develop a 

model for predicting the corrosion rate of oil and 

gas pipelines with high predictive accuracy 

using feedforward backpropagation neural 

networks. 

 

2.    Related Works 

 

Reliability analysis is very necessary for 

operating pipelines to evaluate their 

performance along their age. Several methods 

have been used to predict the condition of oil and 

gas pipelines over the last years. 

 

Abbas et al. [1] used neural network to 

characterize selected MATLAB transfer and 

training functions, and assess their degree of 

suitability for CO2 corrosion rate prediction. 

Assessments of the training functions include 

the evaluation of the correlation coefficient and 

determination of a cumulative absolute error to 

indicate the level of precision and the extent of 

model accuracy. A NN model is developed for 

predicting CO2 corrosion at high partial 

pressures by considering the results of the 

various tests and analyses on the given 

MATLAB functions. The results showed that 

the model is reliable and Leave-One-Out Cross-

Validation (LOOCV) was implemented as a 

means for carrying out an additional assessment 

on model performance as well as for model 

selection from possible alternatives. The model 

has a correlation coefficient of 91%. 

 

Zhang et al. [15] developed a risk assessment 

system for oil and gas pipelines laid in one ditch 

based on quantitative risk analysis. In the risk 

assessment, pipelines laid in one ditch (PLOD) 

were regarded as a series system relative to the 

routing environment. Therefore, the functional 

relationship between the total risk of the pipeline 

system and the risk of each pipeline was 

obtained by combining the engineering system 

reliability theory with the mathematical 

induction method. The fuzzy bow-tie model 

combined with the risk acceptance criteria was 

used to obtain a quantitative risk assessment 
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result, which can directly guide operators in 

making risk decisions. 

  

Wang and Duan [14] developed an Improved 

Analytic Hierarchy Process (AHP) and 

Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS) model for the risk 

evaluation of oil and gas pipelines. First, a 

barrier model and fault tree analysis are used to 

establish an index system for oil and gas pipeline 

risk evaluation on the basis of five important 

factors: corrosion, external interference, 

material/construction, natural disasters, and 

function and operation. Next, the index weight 

for oil and gas pipeline risk evaluation is 

computed. Then, the TOPSIS of a multi-

attribute decision-making theory is studied. 

Finally, the weight and the closeness coefficient 

are combined to determine the risk level of 

pipelines. Results showed that the risk 

evaluation model of oil and gas pipelines based 

on the improved AHP– TOPSIS is valuable and 

feasible. 

 

Obaseki [8] presented an under-deposit 

condition of localized carbon steel in acidic gas 

solutions by developing and using a twelve 

parameters condition prediction model. The 

developed model equation can be solved 

manually or with any spreadsheet package and 

the performance was determined by running a 

repeated test with experimentally determined 

corrosion rates for the given conditions. The 

analytical model was tested and found to have 

an accuracy of 82.4%, root mean square error 

(RMSE) of 0.024 and mean absolute error 

(MAE) of 0.019. The method is useful for better 

corrosion management than the existing manual 

traditional models. The complex relationship 

among failure factors makes it difficult to 

analyse, model and accurately predict failure 

risks. Therefore, the high predictive strength of 

feedforward backpropagation neural network 

can be adopted to increase the accuracy of the 

model. 

 

3.   Methodology  

  

The pipeline prediction model was developed 

following these iterative steps. 

a. Development of a regression-based 

model that takes pipe length, diameter, 

pipe age, fluid temperature, pressure, 

velocity, CO2 partial pressure, pH, 

chloride, sand flow, oil density and oil 

viscosity as input parameters. 

 

b. Execution of data pre-processing tasks 

by using data transposition and 

MATLAB normalization technique 

(mapminmax). 

 

c. Development of an optimal network 

architecture for the model by 

considering different numbers of 

neurons in the hidden layer and 

calculating the prediction error for each 

network. 

 

d. Optimization for the appropriate 

network parameters using Levenberg-

Marquardt back propagation algorithm 

in the neural network toolbox of 

MATLAB. 

 

e. Validating the model by partitioning the 

dataset into training (70%), validation 

(15%) and testing (15%) sets. 

 

f. Evaluating the performance of the 

model using root mean square error 

(RMSE), mean absolute error (MAE) 

and coefficient of determination (R-

square) and comparing results with 

other existing models. 

3.1 Datasets  

The dataset shown in Table 1 has been acquired 

from a particular field Z in the Niger Delta 

region of Nigeria. Twelve listed factors for 

twenty pipelines are used to represent the major 

operational parameters [8]. Pipe length, 

diameter, pipe age, fluid temperature, pressure, 

velocity, CO2 partial pressure, pH, chloride, 

sand flow, oil density and oil viscosity are the 

twelve input parameters, whereas, the field 

value corrosion rate is the output. The data 

samples were divided into training, validation 

and testing datasets, 70% of datasets were 

presented to the network model for training 

purpose. The other 15% of datasets concurrent 

with the training set were used for cross 

validation which identify the stopping point for 

training process and the remaining 15% of 

datasets were used for testing the designed 

network model.
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Table 1: Input and Output Field Datasets  

3.2 Predictive Model 

The network architecture was designed to use 

feed forward and back propagation training 

algorithms for generating and comparing 

predictions with actual corrosion measurement 

by backtracking and adjusting the weights until 

the highest possible correlation between the 

input and the target data were obtained before 

fitting an optimal ANN function for oil and gas 

pipeline corrosion rate. The Predictive model 

was developed and analysed using 

MATLAB2018a. The hidden layers are 

activated using hyperbolic tangent sigmoid 

function (tansig) and the output layer is 

activated using logistic sigmoid function. The 

designed function fitting neural network 

architecture of oil and gas pipeline involves 

twelve inputs, one-hidden layer and one-output 

layer, applies number of neurons, n × 12 matrix 

weight, W of the input parameters, Ip with n × 

1 matrix of bias, b in determining the output 

corrosion rate, CR using equation (1). 

 

𝐶𝑅 = (𝑊𝐼𝑝 + 𝑏) (1) 

 

 

 

Where CR is the corrosion rate, F is the 

activation function, W is the matrix of weights, 

Ip is the input parameters and b is the bias. The 

activation function f was determined and 

confirmed using Levenberg Marquardt (LM) 

optimization algorithm.  

 

Levenberg Marquardt (LM) backpropagation 

training algorithm is a modified version of 

Newton's method. It presents the best 

performance in the search for the weights of 

neuron connectors. Besides, this algorithm is 

the fastest method for training moderate-sized 

feed forward neural networks, very efficient 

implementation. It is also designed to approach 

second-order training speed without having to 

compute the Hessian matrix. The Levenberg 

Marquardt (LM) algorithm is the most widely 

used optimization algorithm. It outperforms 

simple gradient descent and other conjugate 

gradient methods in a wide variety of problems. 

 

Figure 1 shows the flow chart of the predictive 

model which covers the whole procedures from 

the handling of the input parameters to the 

prediction results of corrosion rates based on 

testing datasets. 
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Figure 1: Flow Chart of the Predictive Model 

 

3.3 Feedforward Back Propagation Network 

The feedforward network in Figure 2 consists 

of series of layers. The first layer has a 

connection from the network input. Each 

subsequent layer has a connection from the 

previous layer. The final layer produces the 

network’s output. The network architecture is 

described as follow, with a tangent sigmoid 

activation function in the hidden layer and 

logistic sigmoid activation function in the 

output layer. 

 

As denoted in Figure 2: p is the input matrix, h 

is the number of hidden neurons, w1 is the 

weight matrix between the input layer and the 

hidden layer, w2 is the weight matrix between 

the hidden layer and the output layer, b1 is the 

bias matrix between the input layer and the 

hidden layer, b2 is the bias matrix between the 

hidden layer and the output layer, n1 is the 

matrix of the weighted sum from the hidden 

layer, n2 is the matrix of the weighted sum from 

the output layer, a1 is the output matrix from 

the hidden layer and a2 is the output from the 

output layer. 

 

The leftmost layer in this network is known as 

the input layer with twelve (12) input 

parameters and the rightmost layer is the output 

layer with a single output neuron. The middle 

layer is the hidden layer since the neurons in 

this layer are neither inputs nor outputs. 

 

 

Figure 2: Feedforward Back Propagation Network  



6     UIJSLICTR Vol. 8 No. 2 Nov. 2022 ISSN: 2714-3627 

 

 

 

3.4 Training Performance of Different 

Network Architectures 

 

The neural network backpropagation model 

used in this research has three layers, i.e., input 

layer, hidden layer and output layer. The 

number of neurons in the input and output 

layers had to be set to 12 and 1 respectively 

since there are 12 input parameters and 1 

output. The number of neurons was chosen 

from 1 to 20 neurons in the hidden layer. The 

accuracy of the network was evaluated by the 

mean square error (MSE) and the coefficient of 

determination (R2). As can be seen in Table 2, 

the MSE in the training process is not directly 

related to increasing number of neurons. It is 

also obvious that the network with 9 neurons in 

the hidden layer gives better results of 

minimum MSE and higher R2 value.

Table 2: Training Performance of Different Network Architecture 

 
Network 

Architecture 

MSE R2(%) 

12-1-1 0.00166 76.1 

12-2-1 0.00068 89.2 

12-3-1 0.00143 76.1 

12-4-1 0.00164 83.6 

12-5-1 0.00077 88.4 

12-6-1 0.00057 90.4 

12-7-1 0.00046 91.9 

12-8-1 0.00043 94.8 

12-9-1 0.00020 97.0 

12-10-1 0.00154 80.2 

12-11-1 0.00099 85.9 

12-12-1 0.00060 90.7 

12-13-1 0.00143 78.3 

12-14-1 0.00061 93.3 

12-15-1 0.00078 87.5 

12-16-1 0.00175 68.6 

12-17-1 0.00078 89.8 

12-18-1 0.00231 77.6 

12-19-1 0.00100 84.9 

12-20-1 0.00166 74.1 
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3.4 Model Performance Evaluation 

Coefficient of determination (r-square), mean 

absolute error (MAE) and root mean square error 

were used to evaluate the performance of the 

predictive model. 

 

Coefficient of determination (r-square) 
measures how successful the fit is in explaining 

the variation of the data. R-square is defined as 

the ratio of the sum of squares of the regression 

(SSR) and the total sum of squares (SST). SSR is 

defined as: 

SSR = ∑ (�̂�𝑖 − �̅�)2
𝑛

𝑖=1
  

where �̂�𝑖 is the predicted value and �̅� is the mean. 

SST is also called the sum of squares about the 

mean, and is defined as: 

SST = ∑ (𝑦𝑖 − �̅�)2
𝑛

𝑖=1
  

where 𝑦𝑖 is the actual value and �̅� is the mean. 

Where SST = SSR + SSE. Given these 

definitions, R-square is expressed as: 

  R-square = 
𝑆𝑆𝑅

𝑆𝑆𝑇
 

R-square can take on any value between 0 and 1, 

with a value closer to 1 indicating that a greater 

proportion of variance is accounted for by the 

model.    

 

The mean absolute error (MAE) is the average 

of the absolute differences between predicted 

values and actual values. The smaller the MAE of 

a model, the better. 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 

 where, 

  N = number of pipelines 

  y = actual corrosion rate 

�̂� = predicted corrosion rate 

 

Root mean square error (RMSE) is the 

measurement of the differences between values 

predicted by a model and the actual values. The 

RMSE serves to aggregate the magnitudes of the 

errors in predictions for various data points into a 

single measure of predictive power.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑖=1

 

 Where, 

  n = number of pipelines 

  y = actual corrosion rate 

�̂� = predicted corrosion rate 

 
4. Results and Discussion 

 

4.1 Results  

The results obtained from the analysis are 

presented below in Table 3. The predicted values 

are subtracted from the field value corrosion rates 

to get the differences. 

 

Table 3: Differences between field values and predicted values 
 

Field Value CR 

(mm/yr) 

Predicted Value Difference 

0.02 0.017 0.003 

0.141 0.115 0.026 

0.035 0.041 0.006 

0.028 0.008 0.02 

0.06 0.068 0.008 

0.134 0.126 0.008 

0.025 0.022 0.003 

0.022 0.017 0.005 

0.123 0.083 0.04 

0.046 0.042 0.004 

0.216 0.216 0 

0.062 0.057 0.005 

0.031 0.05 0.019 

0.143 0.157 0.014 

0.045 0.024 0.021 

0.026 0.025 0.001 
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0.054 0.06 0.006 

0.035 0.032 0.003 

0.136 0.138 0.002 

0.044 0.04 0.004 

 
 

Figure 3: Training plot               Figure 4: Validation plot 
 

 

 

Figure 5: Test plot                       Figure 6: Overall Performance plot of the model 
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4.2  Discussion 

The developed neural network model was applied 

to the data set to test the performance of the model 

and the results were found to be satisfactory as the 

correlation coefficient (R2) value is 97%. The 

developed model also has root mean square error 

(RMSE) of 0.01421 and mean absolute error 

(MAE) of 0.00015, which implies that the 

predictive error is minimal. 

 

Figures 3, 4 and 5 represent the regression 

analysis plots for training, testing and validation 

of the optimum neural network model. The circles 

are the data points and the lines represent the best 

fit between predicted values and the field values 

of pipeline corrosion rate. The dotted lines 

represent predicted value is the same as the field 

value.  

 

The regression analysis plot of the best resulting 

network based on the average performance of 

training, validation and test errors is shown in 

Figure 6. It is obvious that the overall regression 

value is very close to 1. This signifies that the 

developed neural network model has a very high 

predictive accuracy. Subsequently, the developed 

model was compared with other existing models 

and has improvements of 17.7% and 6.6% over 

Obaseki analytical model and Abbas artificial 

neural network model respectively. Therefore, 

the predictive model is satisfactory and accurate 

in predicting the corrosion rate of oil and gas 

pipelines.   

 

5.  Conclusion 

 

In this study, a neural network model for 

corrosion prediction of oil and gas pipelines was 

developed. Levenberg-Marquardt optimization 

algorithm was used in the training process given 

their high objectivity and rationality thereby 

increasing predictive accuracy. The predictive 

model was validated using the neural network 

toolbox of MATLAB. Subsequently, the model 

was evaluated and the prediction result of the 

neural network architecture which has 9 neurons 

in the hidden layer was found to be in good 

agreement with the experimental data.  

 

A better correlation coefficient (R2) of 97% was 

achieved. Also, the developed model has a root 

mean square error (RMSE) of 0.01421 and mean 

absolute error (MAE) of 0.00015 and can 

accurately predict the corrosion rate of pipelines. 

It is recommended that different techniques to get 

the optimal number of neurons in the hidden layer 

should be integrated into the model and larger 

datasets can be used in order to further improve 

performance results. 
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