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Abstract  

 High order numerical schemes are mostly desired for the integration of stiff initial value problems. In this paper, stable second 

derivative linear multistep formulas of high order of accuracy are derived by the inclusion of a nonzero coefficient selected out 

of k  zero coefficients of the third characteristics polynomial of conventional second derivative backward differentiation 

formulas. One coefficient out of k  zero coefficients is assumed nonzero one at a time and this results in the development of k  

new second derivative linear multistep formulas. Boundary locus technique is thereafter used to analyze the stability of these 

new k  second derivative linear multistep formulas. Stable members of these formulas are shown to be A stable for order 

4p and )(A -stable for order 11p . Numerical examples are included to justify the suitability of these schemes as 

numerical integrators for stiff initial value problem. 
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I   INTRODUCTION 

       

    The development of efficient and suitable numerical 

methods for the integration of stiff initial value 

problems (ivps) in ordinary differential equations (ode) 

has attracted a great deal of research attention. A 

potentially good numerical integrator for stiff ivps in 

ode is required to be A-stable (a numerical integrator is 

said to be A-stable, if its region of absolute stability 

contains the entire left of the complex plane). However, 

the requirement of A-stability puts some limitations on 

the choice of class of linear multistep formulas (LMF) 

suitable for the integration of stiff ivps in odes; this is 

due to the fact that explicit LMF cannot be A-stable 

and A-stable implicit LMF cannot exceed order 2p 

[1]. Consequently, researches are geared towards the 

development of higher order A-stable LMF and this has 

been achieved through two broad paths, these are: (a) 

by incorporating higher derivatives of the exact 

solution into the classical LMF or (b) by incorporating 

supplementary stages, extra division points or future 

points [2]. Several authors have derived methods that 

utilize the path that incorporates higher derivatives, of 

which examples of second derivative LMF can be 

found in [3-6]. For some stiff ivps, obtaining higher 

derivatives may not be possible. In cases where higher 

derivatives exist, they are cumbersome to obtain. That 

makes the second derivative methods most successful 

in this search direction for high order stable methods 

[6]. It is a well known fact that by adding an extra term 

to formula of a numerical scheme increases the order of 

accuracy and also modifies the region of absolute 

stability [4]. In this paper, a new class of stiffly stable 

methods for numerical solution of stiff ivps in ode is 

derived by the inclusion of an extra term into the third 

characteristics polynomial of the well known second 

derivative backward differentiation formulas (SDBDF) 

[7]. This follows the idea utilized in [6,8] to improving 

the order of accuracy of the backward differentiation 

formulas (BDF). This paper is arranged as follows: 

section 2 is on second derivative linear multistep 

formulas, section 3 is on stability analysis of the 

proposed method. Numerical examples are presented in 

section 4, conclusion is in section 5. 

       

II. Second derivative linear multistep formulas 

Consider the k step second derivative linear 

multistep formulas (SDLMF), 
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where , ,j j j    are real constant coefficients to be 

determined, jny   is the approximate numerical 

solution obtained at ,jnt    
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for integrating the stiff initial value problem 
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If k and k  are both zero then (1) is explicit, and 

implicit otherwise. Taylor series expansion of the linear 

difference operator associated with SDLMF (1), 
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about nt  shows that the scheme (1) is of order p if and 

only if 
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The error constant is given as 
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SDLMF can be written in compact form as 
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  are the first, second, and third 

characteristics polynomial associated with the scheme 

(1) respectively. E  is the shift operator (i.e 

jnn

j yyE  ). Two prominent members of SDLMF 

are: second derivative multistep method (SDMM) 

derived in [5, 9] and the second derivative backward 

differentiation formulas (SDBDF) [7]. These are of the 

form:  
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respectively. The SDMM (8) is of order (k+2) while 

SDBDF (9) is of order (k+1). In Muka and Obiorah [8], 

boundary locus search for stiffly stable SDLMF is 

carried out by the inclusion of an extra term to the 

second characteristics polynomial of (9). In this paper, 

a new method of the class of SDLMF (1) is proposed 

by adding a nonzero coefficient to the third 

characteristics polynomial of the SDBDF (9). This new 

method will be of order of accuracy (k+2) which is 

higher than that of SDBDF (9) by unity. 

Proposed second derivative linear multistep formula in 

this paper, is of the form  

),(2
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where 1,2, , .k   The parameters 

,)1(1,,, kkkk     and 1)1(0,  kjk  are 

completely determined using ( 2) ( 2)k k    

systems of linear equations (5). For each 

1,2, , ,k   a new SDLMF is derived, in other 

words for a k step SDLMF (10), k  formulas will be 

constructed. The coefficients for ` k step SDLMF 

(10) are presented in Table 1 for each  , this is 

achieved through the use of MATHEMATICA 10 

software.  

 

Lemma  

SDLMF (10) is of order k+2. 

 

Proof 

k step SDLMF (10) has a total of (k+3) unknowns to 

be determined. These are determined using the 

following system of linear equations 
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Since (11) holds, then (10) is of order (k+2). 

      

 III. Stability analysis of SDLMF (10) 

 

    This section analyzes the SDLMF (10) in terms of 

zero and A stability. The SDLMF is said to be zero 

stable if no root of the first characteristics polynomial 

has modulus greater than unity and that any root with 

modulus unity is simple [10]. The first characteristics 

polynomial )(E  of k step SDLMF (10) for each 

  and parameters given in Table 1 are easily verified 

to be zero stable. If SDLMF (10) is applied to the test 

equation ,)(, 00 ytyyy   we get the 

characteristics equation  
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Set )exp(  i  in (12), for   2,0  yields two 

roots, using the boundary locus method with the aid of 

MATLAB R2007b software, the stability domain of 

SDLMF (10) is described. The stability characteristics 

of k  step SDLMF (10) for  with the maximum 

 value and order of consistency are shown in Table 

2. 

 

IV. Numerical examples 

 

     In this section, SDLMF (10) proposed in this paper 

is used to generate approximate solutions of three 

standard problems in examples 1-3 below. The results 

are compared with those generated by SDMM (8). A 

constant step size h=0.001 is adopted for the three 

examples.  

 
Example 1 

Consider the IVP  

200( ( )) ( ), (0) 10,y y F t F t y       

        ( ) 10 (10 ) ,tF t t e    

the exact solution is 
tetFty 20010)()(   

 

Example 2 

Consider the system of differential equation 
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Example 3  

 

Consider the Van der Pol’s ode 
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 with initial value 
Ty )0,2()0(   and  .500     

MATLAB R2007b software is used and results are 

presented in Tables 3-5. 
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Table 1:  Coefficients and error constants of SDLMF (10). 

 

k 
 

 k  
k  k  0  

1  2  3  
4  5  6  7

 

3pC  

1 1 
6

1
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1
  

1
 

1
 

1 
      

24

1
 

2

 
1 

87

4
  

87

26
  

29

26
 29

3
 

29

32
  1 

     
1305

86
 

2  
39

2
 

39

8
  

13

10
 13

3
 

13

16
  1  

     
117

2
 

3

 
1 

89

108
 

89

18
 

89

30
  89

8
  

89

135
 

89

216
  1

 
    

890

9
  

2  
203

54
 

203

36
  

203

150
 203

40
 

203

27
  

203

216
  1

 
    

1015

9
 

3  
461

12
  

461

78
  

461

330
 461

56
  

461

243
 

461

648
  1

 
    

922

9
 

4

 
1 

2669

1728
 

2669

72
 

2669

420
 2669

27
 

2669

320
  

2669

2808
 

2669

5184
  

1 
   

13345

24
  

2  
379

432
 

379

72
  

379

300
 379

27
  

379

512
 

379

864
  

0
 1 

   
13265

96
 

3  
1511

192
  

1511

168
  

1511

780
 1511

135
  

1511

64
 

1511

648
 

1511

1728
  

1 
   

40285

216
 

4  
13693

216
 

13693

2016
  

13693

9300
 13693

1107
 

13693

4864
  

13693

10800
 

13693

20736
  

1 
   

479255

2976
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1 
208879

108000
 

208879
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208879

55020
 208879

504
  

208879
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208879
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208879

207000
 

208879

387000
  

1
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75
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701
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 701

4620
  701

576
  

701

7875
 

701

80000
 

701

144000
 701

72000
  1

 
  

4907

600
  

3  
4463
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4463

600
  

4463

2940
 4463

162
 

4463

3375
  

4463

5500
 

0
 

4463

6750
 1

 
  

62482

225
 

4  
221269

27000
 

221269

28800
  

221269

143220
 221269

17856
 

221269

1125
  

221269

112000
  

221269

234000
 

221269

360000
  1

 
  

1548883

5700
 

5  
2034059

21600
  

2034059

268200
  

2034059

1323420
 2034029

122184
  

2034029

568125
 

2034029

1310000
  

2034029

2115000
 

2034029

3285000
  1

 
  

2034059

8625
 

6

 
1 

1401653

648000
 

1401653

30600
  

1401653

427140
 127423

100
 

1401653

12528
  

1401653

70875
 

1401653

292000
  

1401653

1390500
 

1401653

2599600


 

1
 

 
9811571

2150
  

2  
56059

162000
  

56059

1800
  

56059

21420
 56059

400
 

56059

5184
  

56059

37124
 

56059

272000
  

56059

486000
 

56059

302400
  

1
 

 
392413

500
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3  
4363

12000
  

4363

600
  

4363

2940
 4363

100
  

4363

1512
 

4363

16875
  

4363

30000
 

4363

13500
  

4363

5400
  

1
 

 
30541

100
 

4  
6049

3240
 

6049

720
  

6049

3780
 6049

152
  

6049

3456
 

6049

5265
  

6049

1280
  

6049

7560
 

6049

10368
  

1
 

 
42343

104
 

5  
1345709

129600
  

1345709

160200
  

1345709

840420
 1345709

80500
  

1345709

37584
  

1345709

691875
 

1345709

1420000
  

1345709

1822500
 

1345709

2322000


 

1
 

 
9419963

25250
  

6  
782521

6000
 

782521

94200
  

782521

490980
 782521

37200
 

782521

184896
  

782521

462375
 

782521

784000
  

782521

1026000
 

782521

1339200
  

1
 

 
5477647

16700
 

7

 
1

 3160481

137200
 

3160481

88200
  

3160481

1025780
 28444329

8600
  

9481443

34300
 

3160481

65856
  

28444329

2272375
 

9481443

2401000
  

101951

102900
 

28444329

51724450
  

1
 

28444329

2695
 

2
 26491247

55566000
  

26491247

1499400
  

26491247

11920860
 26491247

36000
  

26491247

480200
 

26491247

3259872
  

26491247

16592625
 

26491247

100156000
  

26491247

175959000

 
26491247

116071200
  

1
 

264491247

6370


 

3
 

43907

4116000
  

43907

29400
  

43907

93660
 43907

7200
 

43907

102900
  

43907

814968
 

43907

6559875
  

43907

11662000
 

43907

6482700


 
43907

617400
 

1
 

43907

1225
 

4
 1566947

3087000
 

1566947

176400
  

1566947

958860
 1566947

20800
 

1566947

343000
  

1566947

4148928
 

1566947

7245875
  

1566947

2744000
 

1566947

1852200
 

1566947

2744000
  

1
 

1566947

2940
 

5
 47398091

22226400
  

47398091

5203800
  

47398091

28643580
 47398091

909000
 

47398091

22466500


 
47398091

30968784
 

47398091

21223125
 

47398091

1715000
  

2788123

4630500
 

47398091

86436000
  

1
 

47398091

86975
 

6
 8606723

686000
 

8606723

950600
  

8606723

5213740
 8606723

400800
 

25820169

1303400
 

8606723

4642848
  

8606723

9904125
 

25820169

39788000
  

8606723

14200200
 

8606723

15640800
  

1
 

25820169

52430
 

7
 303126503

1764000
  

303126503

33780600
  

303126503

184324140

 
303126503

11878000
  

303126503

63146300

 
303126503

172699128
  

303126503

320833625
 

303126503

441784000
  

303126503

486202500

 
303126503

564947800
  

1
 

302126503

691145
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Table 2: Stability characteristics of SDLMF (10). 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 1 

 

 

 

 

 

 

 

 

 

 
Table 4: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 SDMM SDLMF Error SDMM  Error SDLMF 

3.0 9.353586300575 9.353564537742 0.000818189358 0.000796426525 

4.0 9.743908612962 9.743900992905 0.000327557404 0.000319937347 

5.0 9.899061075736 9.899058414668 0.000130280722 0.000127619654 

6.0 9.960391491388 9.960390564773 0.000051526215 0.000050599599 

7.0 9.984518286045 9.984517964421 0.000020279460 0.000019957835 

 

 

K 1 2 3 4 5 6 7 8 9 

 1 1 3 4 4 5 6 8 9 

          

 3 4 5 6 7 8 9 10 11 

 

T Methods 
     

       

 

0.1    SDMM 

  SDLMF 
 

1.76229         

1.76225  

5.47101  

5.46912  

1.43009  

1.43376  

1.285125  

1.867358  

0.2   SDMM 

  SDLMF 
 

1.553758  

1.553715          

1.348821  

1.348124   

2.7437  

3.6157  

4.815047  

7.039827  

0.3   SDMM 

  SDLMF 
1.368951  

1.36891           

2.507709  

2.505131   

2.2775  

3.0665  

1.789153  

2.622090  

0.4   SDMM 

  SDLMF 
1.20525  

1.20521           

1.514322  

1.418994   

2.0609  

2.7750  

6.62710  

9.72107  

0.5  SDMM 

SDLMF 
1.060298  

1.060267         

3.299020  

3.302544  

1.8650  

2.5112  

2.45182  

3.59769  
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Table 5: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
V   Conclusion 

 
A new class of second derivative linear multistep 

formula (SDLMF) is developed via the inclusion of a 

non-zero term in the third characteristics polynomial of 

SDBDF (9). In the derivation of k-step SDBDF (9), (k-

1) coefficients of the third characteristics polynomial of 

SDLMF (7) are set to zero. In the SDLMF (10), the (k-

1) zero terms in SDBDF (9) are made non-zero one at     

a time. This results in the derivation of k numbers of k-

step SDLMF (10). The boundary locus technique is 

thereafter used to select methods that are stable of 

which Table 2, contains stability characteristics of 

methods with largest  values of SDLMF (10). The 

order of accuracy of our proposed method is higher by 

one when compared with the SDBDF and of the same 

order of accuracy as Enright’s SDMM (8). The SDMM 

(8) is unstable for order .9p  Method proposed 

herein is )(A stable for order 11.p   Numerical 

results shown in Tables 3-5 reveal that our proposed 

methods are suitable for integrating linear and 

nonlinear stiff IVPs. 

 

References 

[1] Burrage K. (1995). Parallel and sequential 

methods for ordinary differential equations. 

Oxford   University press Inc., New York. 

 

[2] Hairer E. and Wanner G. (2002). Solving 

ordinary differential equations II. Stiff and 

Differential–Algebraic problems. Vol. 2. 

Springer–verlag. 

 

[3] Butcher J.C. (2008). Numerical methods for 

ordinary differential equations. John Willey 

and Sons, Ltd, Chichester. 

 

[4] Enright W.H. (1974). Second derivative 

multistep methods for stiff ordinary 

differential equations. SIAM J. Num.Anal. 

Vol.11, No. 2, pp. 321-331. 

 

[5]   Muka K. O. (2016). Extended block adams 

moulton method for stiff initial value 

problems, J.of the Nig. Assc. Of Maths. 

Physics, Vol. 33, pp. 71 -78. 

 

[6] Dill G.C. and Gear C.W. (1971). A    graphical 

search for stiffly stable methods for ordinary 

differential equations, J. of the Assc. For 

comput. Machinery, Vol. 18, No. 1, pp. 75 -

79. 

 

[7]   Khalsarai M.M., Oskuyi N.N., and Hojjati G. 

(2012). A class of second derivative 

multistep methods for stiff systems, Acta 

Universitatis apulensis, Vol. 30, pp. 171 -

188.  

t      Methods 
  nn yty 11 )(       nn yty 22 )(   

0.1     SDMM 

 

    SDLMF 

3.1038652
310  

3.1036961
310  

1.758217
310  

1.758170
310  

0.2     SDMM 

 

    SDLMF 

2.407847
310  

2.407710
310  

1.5408544
310  

1.54081212
310  

0.3     SDMM 

 

    SDLMF 

1.862156
310  

1.862043
310  

1.345562
310  

1.345524
310  

0.4     SDMM 

 

    SDLMF 

1.435166
310  

1.435073
310  

1.171434
310  

1.171400
310  

0.5     SDMM 

 

    SDLMF 

1.101776
310  

1.101700
310  

1.017040
310  

1.017008
310  

0.6     SDMM 

 

    SDLMF 

8.420851
410  

8.420228
410  

8.807224
410  

8.806940
410  

0.7     SDMM 

 

    SDLMF 

6.403308
410  

6.402798
410  

7.607715
410  

7.607458
410  



UIJSLICTR Vol. 1  June 2017               14 

 

 

 

[8]  Muka K.O  and Obiorah F.O. (2016). Boundary 

locus search for stable second derivative 

linear multistep method for stiff initial value 

problems in ODEs, J.of the Nig. Assc. Of 

Maths. Physics, Vol. 37, pp. 173 -178. 

 

[9]  Ezzeddine A.K. and Hojjati G. (2012). Third 

derivative multistep methods for stiff 

systems, Inter. J. of Nonlinear Sci., Vol. 14, 

pp. 443-450. 

 

[10] Akpodamure O.G. and Muka K.O. (2016). 

New block backward differentiation for stiff 

initial value problems, J.of the Nig. Assc. Of 

Maths. Physics, Vol. 36, pp. 449 - 456. 

 

 


