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Abstract

High order numerical schemes are mostly desired for the integration of stiff initial value problems. In this paper, stable second
derivative linear multistep formulas of high order of accuracy are derived by the inclusion of a nonzero coefficient selected out

of K zero coefficients of the third characteristics polynomial of conventional second derivative backward differentiation

formulas. One coefficient out of K zero coefficients is assumed nonzero one at a time and this results in the development of K
new second derivative linear multistep formulas. Boundary locus technique is thereafter used to analyze the stability of these

new K second derivative linear multistep formulas. Stable members of these formulas are shown to be A — stable for order
p <4and A(x)-stable for order P <11. Numerical examples are included to justify the suitability of these schemes as

numerical integrators for stiff initial value problem.
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I INTRODUCTION

The development of efficient and suitable numerical
methods for the integration of stiff initial value
problems (ivps) in ordinary differential equations (ode)
has attracted a great deal of research attention. A
potentially good numerical integrator for stiff ivps in
ode is required to be A-stable (a numerical integrator is
said to be A-stable, if its region of absolute stability
contains the entire left of the complex plane). However,
the requirement of A-stability puts some limitations on
the choice of class of linear multistep formulas (LMF)
suitable for the integration of stiff ivps in odes; this is
due to the fact that explicit LMF cannot be A-stable
and A-stable implicit LMF cannot exceed order p =2

[1]. Consequently, researches are geared towards the
development of higher order A-stable LMF and this has
been achieved through two broad paths, these are: (a)
by incorporating higher derivatives of the exact
solution into the classical LMF or (b) by incorporating
supplementary stages, extra division points or future
points [2]. Several authors have derived methods that
utilize the path that incorporates higher derivatives, of
which examples of second derivative LMF can be
found in [3-6]. For some stiff ivps, obtaining higher
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derivatives may not be possible. In cases where higher
derivatives exist, they are cumbersome to obtain. That
makes the second derivative methods most successful
in this search direction for high order stable methods
[6]. It is a well known fact that by adding an extra term
to formula of a numerical scheme increases the order of
accuracy and also modifies the region of absolute
stability [4]. In this paper, a new class of stiffly stable
methods for numerical solution of stiff ivps in ode is
derived by the inclusion of an extra term into the third
characteristics polynomial of the well known second
derivative backward differentiation formulas (SDBDF)
[7]. This follows the idea utilized in [6,8] to improving
the order of accuracy of the backward differentiation
formulas (BDF). This paper is arranged as follows:
section 2 is on second derivative linear multistep
formulas, section 3 is on stability analysis of the
proposed method. Numerical examples are presented in
section 4, conclusion is in section 5.

I1. Second derivative linear multistep formulas

Consider the K —step second derivative
multistep formulas (SDLMF),

linear
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where «;, ,Bj, y; are real constant coefficients to be

determined, y,,; s the approximate numerical
solution obtained at t,, ;,
df(ty)
fn+k = f (tn+k ! yn+k) and gn+k -
dt S
(2)

for integrating the stiff initial value problem

y=fty), yt)=Y, Yy:R->R", f:RxR">R",
t e[a,b]. @3)
If ﬁk and y, are both zero then (1) is explicit, and

implicit otherwise. Taylor series expansion of the linear
difference operator associated with SDLMF (1),

L(t’ y(t)1 h) = Z(aj y(tn+j) B hﬂ] y,(tn+j)

_h27j y”(tn+j)) 4)

about t, shows that the scheme (1) is of order p if and

only if
: 2
0~
|ZJ }/i’

Zl ZJ‘“,B )

Osqs p. (5)

The error constant is given as

Z(J"*1

SDLMEF can be written in compact form as

(6)

p(E)Y, =ho(E)f,+h*¢(E)g, (7)
p(E) = Zk:ajEj ;o (E) :Zk:,BjEj ,and

where

K
¢(E)=Zij’ are the first, second, and third
i=0
characteristics polynomial associated with the scheme
(1) respectively. E is the shift operator (i.e
E'y,
are: second derivative multistep method (SDMM)
derived in [5, 9] and the second derivative backward

differentiation formulas (SDBDF) [7]. These are of the
form:

= Ynij ). Two prominent members of SDLMF

yn+k yn+k -1 Zﬂj fn+J 7k gn+k (8)
and

S 2
Zannﬂ' =Bt N7 G 9)
j=0

respectively. The SDMM (8) is of order (k+2) while
SDBDF (9) is of order (k+1). In Muka and Obiorah [8],

—(p+D) B, —(p+Dpj*y)).

boundary locus search for stiffly stable SDLMF is
carried out by the inclusion of an extra term to the
second characteristics polynomial of (9). In this paper,
a new method of the class of SDLMF (1) is proposed
by adding a nonzero coefficient to the third
characteristics polynomial of the SDBDF (9). This new
method will be of order of accuracy (k+2) which is
higher than that of SDBDF (9) by unity.
Proposed second derivative linear multistep formula in
this paper, is of the form

k
Zaj Yoij = hB . + hz(?/k Joik T 7 Onaks)s
j=0

(10)

where r=12,---,k. The parameters

BV Vi T=1DK, and ,, j =00k —1 are

completely determined using (K+2)x(k+2)
systems of linear equations (5). For each
7=12,---,K, a new SDLMF is derived, in other

words for a K —step SDLMF (10), k formulas will be
constructed. The coefficients for ~ Kk —step SDLMF
(10) are presented in Table 1 for each 7, this is

achieved through the use of MATHEMATICA 10
software.

Lemma
SDLMF (10) is of order k+2.

Proof

k — step SDLMF (10) has a total of (k+3) unknowns to
be determined. These are determined using the
following system of linear equations

k-1
k+ j%; =ak™ A +a(q -1k ?y, +

j=0

k—7)"%y,_.),0<q<k+2 (11)

Since (11) holds, then (10) is of order (k+2).
I11. Stability analysis of SDLMF (10)

This section analyzes the SDLMF (10) in terms of

zero and A — stability. The SDLMF is said to be zero
stable if no root of the first characteristics polynomial
has modulus greater than unity and that any root with
modulus unity is simple [10]. The first characteristics

polynomial p(E) of K —step SDLMF (10) for each

T and parameters given in Table 1 are easily verified
to be zero stable. If SDLMF (10) is applied to the test

equation  Y'=Ay, Y(t,)=Y,, we get the
characteristics equation
k .
Z(ZJ—/{’J - Zﬂklk - Zz(gn+ka + gn+k—r/¥k_r) :O’ z=7h.
j=1

(12)
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Set y =exp(if) in (12), for O € [0,27[] yields two y, -1 0 0 0 Y,

roots, using the boundary locus method with the aid of Y, 0 -10 0 0 y
MATLAB R2007b software, the stability domain of 2= 2
SDLMF (10) is described. The stability characteristics A 0 0 -100 0 Y,
of K—step SDLMF (10) for 7 with the maximum v, 0 0 0 -1000\y,
o —value and order of consistency are shown in Table

2.

with initial conditions
IV. Numerical examples yi(0)=1 i=12)4,

In this section, SDLMF (10) proposed in this paper  the exact solutions are
is used to generate approximate solutions of three _t _10t 100t
standard problems in examples 1-3 below. The results Y1 =& + Y2 =€ 7, Y3 =€ »and
are compared with those generated by SDMM (8). A Y, = g—100a
constant step size h=0.001 is adopted for the three 4
examples.

Example 3
E)(;ig](?el?t%]e VP Consider the Van der Pol’s ode
y'=-200(y—F(®)+F'(t), y(0)=10, et o
F(t):lo—(10+t)e‘t, yé =0 ((1_ yl)yZ _y1)1

with initial value y(0) = (2,0)" and @ = 500.
MATLAB R2007b software is used and results are
presented in Tables 3-5.

the exact solution is y(t) = F(t) +10e2°*

Example 2
Consider the system of differential equation
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Table 1: Coefficients and error constants of SDLMF (10).

k|7 Vi-u Yk By Ay a, a, Oy a, Us g a; Cp+3
101 |1 1 1 -1 1 1
6 3 24
21 4 26 26 3 32 1 86
87 87 29 29 29 1305
2 | 2 _ 8 10 3 _16 1 2
39 39 13 13 13 117
311 | 108 18 _30 _8 135 _216 1 _9
89 89 89 89 89 89 890
2 | 54 _36 150 40 _ 2 _216 1 9
203 203 203 203 203 203 1015
3 12 78 330 56 243 648 1 9
461 461 461 461 461 461 922
411 | 1728 72 420 27 _ 320 2808 _5ls4 1 _ 24
2669 2669 2669 2669 2669 2669 2669 13345
2 | 432 12 300 2 512 _ 864 0 1 9%
379 379 379 379 379 379 13265
3 192 168 780 135 64 648 1728 1 216
1511 1511 1511 1511 1511 1511 1511 40285
4 | 216 2016 9300 1107 4864 10800 20736 1 2976
13693 13693 13693 13693 " 13693 13693 13693 479255
1 108000 1800 55020 504 5625 2000 207000 387000 1 75
208879 208879 208879 208879 208879 208879 208879 208879 132923
50, 54000 1800 4620 576 7875 80000 144000 72000 1 600
701 701 701 701 701 701 701 701 4907
3 3000 600 2940 162 3375 5500 0 6750 1 225
4463 4463 4463 4463 " 4463 4463 4463 62482
4 | 27000 28800 143220 17856 1125 112000 234000 360000 1 5700
221269 221269 221269 221269 T 221269 | 221269 221269 221269 1548883
5 21600 268200 1323420 122184 568125 1310000 2115000 3285000 1 8625
2034059 2034059 2034059 | 2034029 2034029 | 2034029 2034029 2034029 2034059
6|1 | 648000 30600 427140 100 12528 70875 292000 1390500 2599600 | 1 2150
1401653 1401653 1401653 127423 1401653 | 1401653 1401653 | 1401653 " 1401653 9811571
2 | _ 162000 ~ 1800 21420 400 5184 37124 272000 486000 302400 | g 500
56059 56059 56059 56059 56059 56059 56059 56059 56059 392413
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12000 600 2940 100 1512 16875 30000 13500 5400 1 100
4363 4363 4363 4363 4363 4363 4363 4363 4363 30541
3240 720 3780 152 3456 5265 1280 7560 10368 1 104
6049 6049 6049 6049 6049 6049 6049 6049 6049 42343

129600 160200 840420 80500 37584 691875 1420000 | 1822500 2322000 | 1 25250
" 1345709 " 1345709 1345709 " 1345709 71345709 | 1345709 71345709 | 1345709 " 1345709 " 9419963

6000 94200 490980 37200 184896 | 462375 784000 1026000 1339200 | 1 16700
782521 782521 782521 782521 782521 | 782521 782521 782521 782521 5477647
137200 88200 1025780 8600 34300 65856 2272375 2401000 102900 51724450 2695
3160481 3160481 3160481 | 28444329 | 9481443 | 3160481 28444329 | 9481443 101951 " 28444329 28444329

55566000 1499400 11920860 36000 480200 3259872 16592625 100156000 | 175959000 | 116071200 6370
26491247 | 26491247 | 26491247 | 26491247 | 26491247 | 26491247 | 26491247 | 26491247 26491247 | 26491247 264491247

4116000 29400 93660 7200 102900 | 814968 6559875 | 11662000 6482700 | 617400 1225
43907 " 43907 43907 43907 " 43907 43907 43907 43907 43907 43907 43907
3087000 176400 958860 20800 343000 | 4148928 7245875 | 2744000 1852200 2744000 2940
1566947 1566947 1566947 1566947 1566947 | 1566947 1566947 | 1566947 1566947 1566947 1566947

22226400 5203800 28643580 | 909000 22466500 | 30968784 21223125 1715000 4630500 86436000 86975
47398091 | 47398091 | 47398091 | 47398091 " 47398091 47398091 47398091 | 47398091 2788123 | 47398091 47398091
686000 950600 5213740 400800 1303400 4642848 9904125 39788000 14200200 15640800 52430
8606723 " 8606723 8606723 | 8606723 25820169 | 8606723 8606723 " 25820169 8606723 | 8606723 25820169

1764000 33780600 | 184324140 11878000 | 63146300 172699128 | 320833625 441784000 | 486202500 | 564947800 691145
7303126503 | 303126503 | 303126503 | 303126503 | 303126503 | 303126503 | 303126503 | 303126503 | 303126503 | 303126503 302126503
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Table 2: Stability characteristics of SDLMF (10).

K 1 2 3 4 6 7 8 9

r 1 1 3 4 5 6 8 9

a 90° 90" 88° 83.2° | 748 | 62.I" | 352 | 283 | .76
P 3 4 5 6 8 9 10 11

Table 3: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 1

t SDMM SDLMF Error SDMM Error SDLMF
3.0 |9.353586300575 | 9.353564537742 0.000818189358 | 0.000796426525
4.0 |9.743908612962 | 9.743900992905 0.000327557404 | 0.000319937347
5.0 | 9.899061075736 | 9.899058414668 0.000130280722 | 0.000127619654
6.0 1 9.960391491388 | 9.960390564773 0.000051526215 | 0.000050599599
7.0 |9.984518286045 | 9.984517964421 0.000020279460 | 0.000019957835

Table 4: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 2

T Methods

0.1 | SDMM 1.76229%107 | 547101107 | 1.43009%107° | 1.285125%10~
SDLMF 1.76225%10° | 5.46912%10° | 143376%10° | 1867358%10°

0.2 | SDMM 1.553758%107" | 1.348821x10° | 2.7437%10° 4.815047%10°"
SDLMF 1553715%107 | 1.348124%107 | 3.6157x107° 7.039827x10°°

0.3 | SDMM 1.368951%107" | 2507709107 | 2.2775%10° 1.789153x10°°
bl 1.36891%10° | 2505131107 | 3.0665%10° 2.622090%10°"

0.4 | SDMM 1.20525%107 | 1.514322%10° | 2.0609%10°° 6.62710%107"
SDLMF 1.20521x107 | 1.418994%10™" | 2.7750%107 9.72107%107"

0.5 | SDMM 1.060298*107 | 3.299020%10° | 1.8650%10~ 2.45182x107
bl 1.060267*107 | 3.302544%107 | 25112%10° 3.59769% 107
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Table 5: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 3

Methods

t
|y1(tn)_yln| |y2(tn)_y2n|
01| SDMM 3.1038652x10° 1.758217x10°
SDLMF 3.1036961x107 1.758170x10°
oz | e 2.407847x10° 1.5408544x10°
SDLMF 2.407710x10°° 1.54081212x10°
03| SDMM 1.862156x10° 1.345562x10°
SDLMF 1.862043x10° 1.345524x10°
Ol | SRl 1.435166x10° 1.171434x10°
SDLMF 1.435073x10° 1.171400x10°
s | Sl 1.101776x10° 1.017040x10°
SDLMF 1.101700x10°° 1.017008x10°°
0.6 | SDMM 8.420851x10™ 8.807224x10™
SDLMF 8.420228x10™ 8.806940x10™
0.7| SDMM 6.403308x10™ 7.607715x10™
SDLMF 6.402798x10™ 7.607458x10™

V Conclusion

A new class of second derivative linear multistep
formula (SDLMF) is developed via the inclusion of a
non-zero term in the third characteristics polynomial of
SDBDF (9). In the derivation of k-step SDBDF (9), (k-
1) coefficients of the third characteristics polynomial of
SDLMF (7) are set to zero. In the SDLMF (10), the (k-
1) zero terms in SDBDF (9) are made non-zero one at
a time. This results in the derivation of k numbers of k-
step SDLMF (10). The boundary locus technique is
thereafter used to select methods that are stable of
which Table 2, contains stability characteristics of
methods with largest & —values of SDLMF (10). The
order of accuracy of our proposed method is higher by
one when compared with the SDBDF and of the same
order of accuracy as Enright’s SDMM (8). The SDMM

(8) is unstable for order p >9. Method proposed
herein is A(c) —stable for order p <11. Numerical

results shown in Tables 3-5 reveal that our proposed
methods are suitable for integrating linear and
nonlinear stiff IVPs.

References

[1] Burrage K. (1995). Parallel and sequential
methods for ordinary differential equations.
Oxford University press Inc., New York.

[2] Hairer E. and Wanner G. (2002). Solving
ordinary differential equations Il. Stiff and
Differential-Algebraic problems. Vol. 2.
Springer—verlag.

[3] Butcher J.C. (2008). Numerical methods for
ordinary differential equations. John Willey
and Sons, Ltd, Chichester.

[4] Enright W.H. (1974). Second derivative
multistep  methods  for  stiff ordinary
differential equations. SIAM J. Num.Anal.
Vol.11, No. 2, pp. 321-331.

[5] Muka K. O. (2016). Extended block adams
moulton method for stiff initial value
problems, J.of the Nig. Assc. Of Maths.
Physics, Vol. 33, pp. 71 -78.

[6] Dill G.C. and Gear C.W. (1971). A graphical
search for stiffly stable methods for ordinary
differential equations, J. of the Assc. For
comput. Machinery, Vol. 18, No. 1, pp. 75 -
79.

[71 Khalsarai M.M., Oskuyi N.N., and Hojjati G.
(2012). A class of second derivative
multistep methods for stiff systems, Acta
Universitatis apulensis, Vol. 30, pp. 171 -
188.

UIJSLICTR Vol. 1 June 2017 13



[8] Muka K.O and Obiorah F.O. (2016). Boundary
locus search for stable second derivative
linear multistep method for stiff initial value
problems in ODEs, J.of the Nig. Assc. Of
Maths. Physics, Vol. 37, pp. 173 -178.

[9] Ezzeddine A.K. and Hojjati G. (2012). Third
derivative multistep methods for stiff
systems, Inter. J. of Nonlinear Sci., Vol. 14,
pp. 443-450.

[10] Akpodamure O.G. and Muka K.O. (2016).
New block backward differentiation for stiff
initial value problems, J.of the Nig. Assc. Of
Maths. Physics, Vol. 36, pp. 449 - 456.

UIJSLICTR Vol. 1 June 2017 14



