Boundary Locus Search for Stiffly Stable Second Derivative Linear Multistep Formulas for Stiff ODEs

Muka, K. O.
kingsley.muka@uniben.edu

Olu-Oseh, A. S.
asifasueoluoseh@yahoo.com

Department of Mathematics, University of Benin,
Benin-City, Nigeria.

Abstract

High order numerical schemes are mostly desired for the integration of stiff initial value problems. In this paper, stable second derivative linear multistep formulas of high order of accuracy are derived by the inclusion of a nonzero coefficient selected out of k zero coefficients of the third characteristics polynomial of conventional second derivative backward differentiation formulas. One coefficient out of k zero coefficients is assumed nonzero one at a time and this results in the development of k new second derivative linear multistep formulas. Boundary locus technique is thereafter used to analyze the stability of these new k second derivative linear multistep formulas. Stable members of these formulas are shown to be A - stable for order $p \leq 4$ and $A(\alpha)$-stable for order $p \leq 11$. Numerical examples are included to justify the suitability of these schemes as numerical integrators for stiff initial value problem.

Keywords: A-Stability; Stiffly stable; Initial value problem (ivp); Ordinary differential equation (ode).

I INTRODUCTION

The development of efficient and suitable numerical methods for the integration of stiff initial value problems (ivps) in ordinary differential equations (ode) has attracted a great deal of research attention. A potentially good numerical integrator for stiff ivps in ode is required to be A-stable (a numerical integrator is said to be A-stable, if its region of absolute stability contains the entire left of the complex plane). However, the requirement of A-stability puts some limitations on the choice of class of linear multistep formulas (LMF) suitable for the integration of stiff ivps in odes; this is due to the fact that explicit LMF cannot be A-stable and A-stable implicit LMF cannot exceed order $p=2$
[1]. Consequently, researches are geared towards the development of higher order A-stable LMF and this has been achieved through two broad paths, these are: (a) by incorporating higher derivatives of the exact solution into the classical LMF or (b) by incorporating supplementary stages, extra division points or future points [2]. Several authors have derived methods that utilize the path that incorporates higher derivatives, of which examples of second derivative LMF can be found in [3-6]. For some stiff ivps, obtaining higher

[^0]where $\alpha_{j}, \beta_{j}, \gamma_{j}$ are real constant coefficients to be determined, y_{n+j} is the approximate numerical solution obtained at t_{n+j},
\[

$$
\begin{equation*}
f_{n+k} \equiv f\left(t_{n+k}, y_{n+k}\right) \text { and }\left.\quad g_{n+k} \equiv \frac{d f(t, y)}{d t}\right|_{t=t_{n+k}} \tag{2}
\end{equation*}
$$

\]

for integrating the stiff initial value problem

$$
\begin{array}{ll}
y^{\prime}=f(t, y), & y\left(t_{0}\right)=y_{0}, \\
t \in[a, b] . & y: R \rightarrow R^{m}, \quad f: R \times R^{m} \rightarrow R^{m} \tag{3}\\
t
\end{array}
$$

If β_{k} and γ_{k} are both zero then (1) is explicit, and implicit otherwise. Taylor series expansion of the linear difference operator associated with SDLMF (1),

$$
\begin{gather*}
L(t, y(t) ; h)=\sum_{j=0}^{k}\left(\alpha_{j} y\left(t_{n+j}\right)-h \beta_{j} y^{\prime}\left(t_{n+j}\right)\right. \\
\left.-h^{2} \gamma_{j} y^{\prime \prime}\left(t_{n+j}\right)\right) \tag{4}
\end{gather*}
$$

about t_{n} shows that the scheme (1) is of order p if and only if

$$
\begin{align*}
\frac{1}{q!} \sum_{j=0}^{k} j^{q} \alpha_{j}= & \frac{1}{(q-1)!} \sum_{j=0}^{k} j^{q-1} \beta_{j}+\frac{1}{(q-2)!} \sum_{j=0}^{k} j^{q-2} \gamma_{j} \\
& 0 \leq q \leq p \tag{5}
\end{align*}
$$

The error constant is given as

$$
\begin{equation*}
C_{p+1}=\sum_{j=0}^{k}\left(j^{p+1} \alpha_{j}-(p+1) j^{p} \beta_{j}-(p+1) p j^{p-1} \gamma_{j}\right) . \tag{6}
\end{equation*}
$$

SDLMF can be written in compact form as
$\rho(E) \mathrm{y}_{n}=h \sigma(E) \mathrm{f}_{n}+h^{2} \phi(E) \mathrm{g}_{n}$
where $\quad \rho(E)=\sum_{j=0}^{k} \alpha_{j} E^{j} ; \sigma(E)=\sum_{j=0}^{k} \beta_{j} E^{j}$, and $\phi(E)=\sum_{j=0}^{k} \gamma_{j} E^{j}$ are the first, second, and third characteristics polynomial associated with the scheme (1) respectively. E is the shift operator (i.e $E^{j} y_{n}=y_{n+j}$). Two prominent members of SDLMF are: second derivative multistep method (SDMM) derived in [5, 9] and the second derivative backward differentiation formulas (SDBDF) [7]. These are of the form:

$$
\begin{equation*}
y_{n+k}-y_{n+k-1}=\sum_{j=0}^{k} \beta_{j} f_{n+j}+h^{2} \gamma_{k} g_{n+k} \tag{8}
\end{equation*}
$$

and
$\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \beta_{k} f_{n+k}+h^{2} \gamma_{k} g_{n+k}$
boundary locus search for stiffly stable SDLMF is carried out by the inclusion of an extra term to the second characteristics polynomial of (9). In this paper, a new method of the class of SDLMF (1) is proposed by adding a nonzero coefficient to the third characteristics polynomial of the SDBDF (9). This new method will be of order of accuracy ($k+2$) which is higher than that of SDBDF (9) by unity.
Proposed second derivative linear multistep formula in this paper, is of the form
$\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \beta_{k} f_{n+k}+h^{2}\left(\gamma_{k} g_{n+k}+\gamma_{k-\tau} g_{n+k-\tau}\right)$,
where $\quad \tau=1,2, \cdots, k$. The parameters $\beta_{k}, \gamma_{k}, \gamma_{k-\tau}, \tau=1(1) k$, and $\alpha_{k}, j=0(1) k-1$ are completely determined using $(k+2) \times(k+2)$ systems of linear equations (5). For each $\tau=1,2, \cdots, k$, a new SDLMF is derived, in other words for a $k-$ step SDLMF (10), k formulas will be constructed. The coefficients for ${ }^{`} k$-step SDLMF (10) are presented in Table 1 for each τ, this is achieved through the use of MATHEMATICA 10 software.

Lemma

SDLMF (10) is of order $\mathrm{k}+2$.

Proof

k - step SDLMF (10) has a total of $(k+3)$ unknowns to be determined. These are determined using the following system of linear equations

$$
\begin{gather*}
k^{q}+\sum_{j=0}^{k-1} j^{q} \alpha_{j}=q k^{q-1} \beta_{k}+q(q-1)\left(k^{q-2} \gamma_{k}+\right. \\
\left.(k-\tau)^{q-2} \gamma_{k-\tau}\right), 0 \leq q \leq k+2 \tag{11}
\end{gather*}
$$

Since (11) holds, then (10) is of order ($k+2$).

III. Stability analysis of SDLMF (10)

This section analyzes the SDLMF (10) in terms of zero and A - stability. The SDLMF is said to be zero stable if no root of the first characteristics polynomial has modulus greater than unity and that any root with modulus unity is simple [10]. The first characteristics polynomial $\rho(E)$ of k-step SDLMF (10) for each τ and parameters given in Table 1 are easily verified to be zero stable. If SDLMF (10) is applied to the test equation $y^{\prime}=\lambda y, \quad y\left(t_{0}\right)=y_{0}$, we get the characteristics equation

$$
\begin{equation*}
\sum_{j=1}^{k} \alpha_{j} \chi^{j}-z \beta_{k} \chi^{k}-z^{2}\left(g_{n+k} \chi^{k}+g_{n+k-\tau} \chi^{k-\tau}\right)=0, z=\lambda h \tag{12}
\end{equation*}
$$

respectively. The SDMM (8) is of order ($k+2$) while SDBDF (9) is of order ($k+1$). In Muka and Obiorah [8],

Set $\chi=\exp (i \theta)$ in (12), for $\theta \in[0,2 \pi]$ yields two roots, using the boundary locus method with the aid of MATLAB R2007b software, the stability domain of SDLMF (10) is described. The stability characteristics of k-step SDLMF (10) for τ with the maximum α - value and order of consistency are shown in Table 2.

IV. Numerical examples

In this section, SDLMF (10) proposed in this paper is used to generate approximate solutions of three standard problems in examples 1-3 below. The results are compared with those generated by SDMM (8). A constant step size $h=0.001$ is adopted for the three examples.

Example 1

Consider the IVP

$$
\begin{aligned}
y^{\prime}= & -200(y-F(t))+F^{\prime}(t), \quad y(0)=10 \\
& F(t)=10-(10+t) e^{-t}
\end{aligned}
$$

the exact solution is $y(t)=F(t)+10 e^{-200}$

Example 2

Consider the system of differential equation
$\left(\begin{array}{l}y_{1}^{\prime} \\ y_{2}^{\prime} \\ y_{3}^{\prime} \\ y_{4}^{\prime}\end{array}\right)=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -10 & 0 & 0 \\ 0 & 0 & -100 & 0 \\ 0 & 0 & 0 & -1000\end{array}\right)\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right)$
with initial conditions
$y_{i}(0)=1, \quad i=1(1) 4$,
the exact solutions are
$y_{1}=e^{-t}, y_{2}=e^{-10 t}, y_{3}=e^{-100 t}$, and
$y_{4}=e^{-1000}$.

Example 3

Consider the Van der Pol's ode

$$
y_{1}^{\prime}=y_{2},
$$

$$
y_{2}^{\prime}=\omega^{2}\left(\left(1-y_{1}^{2}\right) y_{2}-y_{1}\right)
$$

with initial value $y(0)=(2,0)^{T}$ and $\omega=500$.
MATLAB R2007b software is used and results are presented in Tables 3-5.

Table 1: Coefficients and error constants of SDLMF (10).

k	τ	$\gamma_{k-\mu}$	γ_{k}	β_{k}	α_{0}	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	α_{7}	C_{p+3}
1	1	$-\frac{1}{6}$	$-\frac{1}{3}$	1	-1	1							$\frac{1}{24}$
2	1	$-\frac{4}{87}$	$-\frac{26}{87}$	$\frac{26}{29}$	$\frac{3}{29}$	$-\frac{32}{29}$	1						$\frac{86}{1305}$
	2	$\frac{2}{39}$	$-\frac{8}{39}$	$\frac{10}{13}$	$\frac{3}{13}$	$-\frac{16}{13}$	1						$\frac{2}{117}$
3	1	$\frac{108}{89}$	$\frac{18}{89}$	$-\frac{30}{89}$	$-\frac{8}{89}$	$\frac{135}{89}$	$-\frac{216}{89}$	1					$-\frac{9}{890}$
	2	$\frac{54}{203}$	$-\frac{36}{203}$	$\frac{150}{203}$	$\frac{40}{203}$	$-\frac{27}{203}$	$-\frac{216}{203}$	1					$\frac{9}{1015}$
	3	$-\frac{12}{461}$	$-\frac{78}{461}$	$\frac{330}{461}$	$-\frac{56}{461}$	$\frac{243}{461}$	$-\frac{648}{461}$	1					$\frac{9}{922}$
4	1	$\frac{1728}{2669}$	$\frac{72}{2669}$	$\frac{420}{2669}$	$\frac{27}{2669}$	$-\frac{320}{2669}$	$\frac{2808}{2669}$	$-\frac{5184}{2669}$	1				$-\frac{24}{13345}$
	2	$\frac{432}{379}$	$-\frac{72}{379}$	$\frac{300}{379}$	$-\frac{27}{379}$	$\frac{512}{379}$	$-\frac{864}{379}$	0	1				$\frac{96}{13265}$
	3	$-\frac{192}{1511}$	$-\frac{168}{1511}$	$\frac{780}{1511}$	$-\frac{135}{1511}$	$\frac{64}{1511}$	$\frac{648}{1511}$	$-\frac{1728}{1511}$	1				$\frac{216}{40285}$
	4	$\frac{216}{13693}$	$-\frac{2016}{13693}$	$\frac{9300}{13693}$	$\frac{1107}{13693}$	$-\frac{4864}{13693}$	$\frac{10800}{13693}$	$-\frac{20736}{13693}$	1				$\frac{2976}{479255}$
5	1	$\frac{108000}{208879}$	$-\frac{1800}{208879}$	$\frac{55020}{208879}$	$-\frac{504}{208879}$	$\frac{5625}{208879}$	$-\frac{2000}{208879}$	$\frac{207000}{208879}$	$-\frac{387000}{208879}$	1			$-\frac{75}{132923}$
	2	$-\frac{54000}{701}$	$\frac{1800}{701}$	$-\frac{4620}{701}$	$-\frac{576}{701}$	$\frac{7875}{701}$	$\frac{80000}{701}$	$\frac{144000}{701}$	$-\frac{72000}{701}$	1			$-\frac{600}{4907}$
	3	$-\frac{3000}{4463}$	$-\frac{600}{4463}$	$\frac{2940}{4463}$	$\frac{162}{4463}$	$-\frac{3375}{4463}$	$\frac{5500}{4463}$	0	$\frac{6750}{4463}$	1			$\frac{225}{62482}$
	4	$\frac{27000}{221269}$	$-\frac{28800}{221269}$	$\frac{143220}{221269}$	$\frac{17856}{221269}$	$-\frac{1125}{221269}$	- $\frac{112000}{221269}$	$\frac{234000}{221269}$	- $\frac{360000}{221269}$	1			$\frac{5700}{1548883}$
	5	$-\frac{21600}{2034059}$	$-\frac{268200}{2034059}$	$\frac{1323420}{2034059}$	$-\frac{122184}{2034029}$	$\frac{568125}{2034029}$	$-\frac{1310000}{2034029}$	$\frac{2115000}{2034029}$	$-\frac{3285000}{2034029}$	1			$\frac{8625}{2034059}$
6	1	$\frac{648000}{1401653}$	$-\frac{30600}{1401653}$	$\frac{427140}{1401653}$	$\frac{100}{127423}$	$-\frac{12528}{1401653}$	$\frac{70875}{1401653}$	$-\frac{292000}{1401653}$	$\frac{1390500}{1401653}$	$-\frac{2599600}{1401653}$	1		$-\frac{2150}{9811571}$
	2	$-\frac{162000}{56059}$	$-\frac{1800}{56059}$	$\frac{21420}{56059}$	$\frac{400}{56059}$	$-\frac{5184}{56059}$	$\frac{37124}{56059}$	$-\frac{272000}{56059}$	$\frac{486000}{56059}$	$-\frac{302400}{56059}$	1		$-\frac{500}{392413}$

Table 2: Stability characteristics of SDLMF (10).

K	1	2	3	4	5	6	7	8	9
τ	1	1	3	4	4	5	6	8	9
α	90°	90°	88°	83.2°	74.8°	62.1°	35.2°	28.3°	7.76°
p	3	4	5	6	7	8	9	10	11

Table 3: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 1

t	SDMM	SDLMF	Error SDMM	Error SDLMF
3.0	9.353586300575	9.353564537742	0.000818189358	0.000796426525
4.0	9.743908612962	9.743900992905	0.000327557404	0.000319937347
5.0	9.899061075736	9.899058414668	0.000130280722	0.000127619654
6.0	9.960391491388	9.960390564773	0.000051526215	0.000050599599
7.0	9.984518286045	9.984517964421	0.000020279460	0.000019957835

Table 4: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 2

T	Methods	$\left\|y_{1}\left(t_{n}\right)-y_{i n}\right\|$	$\left\|y_{2}\left(t_{n}\right)-y_{2 a}\right\|$	$\left\|y_{3}\left(t_{n}\right)-y_{3 m}\right\|$	$\left\|y_{4}\left(t_{n}\right)-y_{4 n}\right\|$
0.1	$\begin{aligned} & \text { SDMM } \\ & \text { SDLMF } \end{aligned}$	$\begin{aligned} & 1.76229 \times 10^{-3} \\ & 1.76225 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 5.47101 \times 10^{-3} \\ & 5.46912 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 1.43009 \times 10^{-5} \\ & 1.43376^{\times 10^{-5}} \end{aligned}$	$\begin{aligned} & 1.285125 \times 10^{-5} \\ & 1.867358 \times 10^{-5} \end{aligned}$
0.2	$\begin{aligned} & \text { SDMM } \\ & \text { SDLMF } \end{aligned}$	$\begin{aligned} & 1.553758^{\times 10^{-3}} \\ & 1.553715 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 1.348821 \times 10^{-3} \\ & 1.348124 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 2.7437 \times 10^{-8} \\ & 3.6157 \times 10^{-8} \end{aligned}$	$\begin{aligned} & 4.815047 \times 10^{-6} \\ & 7.039827 \times 10^{-6} \end{aligned}$
0.3	SDMM SDLMF	$\begin{aligned} & 1.368951 \times 10^{-3} \\ & 1.36891 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 2.507709 \times 10^{-4} \\ & 2.505131 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 2.2775 \times 10^{-8} \\ & 3.0665 \times 10^{-8} \end{aligned}$	$\begin{aligned} & 1.789153 \times 10^{-6} \\ & 2.622090^{\times 10^{-6}} \end{aligned}$
0.4	SDMM SDLMF	$\begin{aligned} & 1.20525 \times 10^{-3} \\ & 1.20521 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 1.514322 \times 10^{-6} \\ & 1.418994 \times 10^{-6} \end{aligned}$	$\begin{aligned} & 2.0609 \times 10^{-8} \\ & 2.7750 \times 10^{-8} \end{aligned}$	$\begin{aligned} & 6.62710^{\times 10^{-7}} \\ & 9.72107 \times 10^{-7} \end{aligned}$
0.5	$\begin{gathered} \text { SDMM } \\ \text { SDLMF } \end{gathered}$	$\begin{aligned} & 1.060298 \times 10^{-3} \\ & 1.060267 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 3.299020^{\times 10^{-5}} \\ & 3.302544 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 1.8650^{\times 10^{-8}} \\ & 2.5112 \times 10^{-8} \end{aligned}$	$\begin{aligned} & 2.45182 \times 10^{-7} \\ & 3.59769 \times 10^{-7} \end{aligned}$

Table 5: Absolute Error using SDMM and SDLMF (10) to integrate Problem in Example 3

t	Methods	$\left\|y_{1}\left(t_{n}\right)-y_{1 n}\right\|$	$\left\|y_{2}\left(t_{n}\right)-y_{2 n}\right\|$
0.1	SDMM	3.1038652×10^{-3}	1.758217×10^{-3}
	SDLMF	3.1036961×10^{-3}	1.758170×10^{-3}
0.2	SDMM	2.407847×10^{-3}	1.5408544×10^{-3}
	SDLMF	1.407710×10^{-3}	$1.54081212 \times 10^{-3}$
0.3	SDMM	1.862156×10^{-3}	1.345562×10^{-3}
	SDLMF	1.435166×10^{-3}	1.171434×10^{-3}
0.4	SDMM	1.101776×10^{-3}	1.017040×10^{-3}
	SDLMF	1.101700×10^{-3}	1.017008×10^{-3}
0.5	SDMM	8.420851×10^{-4}	8.807224×10^{-4}
	SDLMF	8.420228×10^{-4}	8.806940×10^{-4}
0.6	SDMM	6.403308×10^{-4}	7.607715×10^{-4}
	SDLMF	6.402798×10^{-4}	7.607458×10^{-4}
0.7	SDMM		
	SDLMF		1.171400×10^{-3}

V Conclusion

A new class of second derivative linear multistep formula (SDLMF) is developed via the inclusion of a non-zero term in the third characteristics polynomial of SDBDF (9). In the derivation of k-step SDBDF (9), (k1) coefficients of the third characteristics polynomial of SDLMF (7) are set to zero. In the SDLMF (10), the (k1) zero terms in SDBDF (9) are made non-zero one at a time. This results in the derivation of k numbers of k step SDLMF (10). The boundary locus technique is thereafter used to select methods that are stable of which Table 2, contains stability characteristics of methods with largest α - values of SDLMF (10). The order of accuracy of our proposed method is higher by one when compared with the SDBDF and of the same order of accuracy as Enright's SDMM (8). The SDMM (8) is unstable for order $p>9$. Method proposed herein is $A(\alpha)$-stable for order $p \leq 11$. Numerical results shown in Tables 3-5 reveal that our proposed methods are suitable for integrating linear and nonlinear stiff IVPs.

References

[1] Burrage K. (1995). Parallel and sequential methods for ordinary differential equations. Oxford University press Inc., New York.
[2] Hairer E. and Wanner G. (2002). Solving ordinary differential equations II. Stiff and Differential-Algebraic problems. Vol. 2. Springer-verlag.
[3] Butcher J.C. (2008). Numerical methods for ordinary differential equations. John Willey and Sons, Ltd, Chichester.
[4] Enright W.H. (1974). Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Num.Anal. Vol.11, No. 2, pp. 321-331.
[5] Muka K. O. (2016). Extended block adams moulton method for stiff initial value problems, J.of the Nig. Assc. Of Maths. Physics, Vol. 33, pp. 71-78.
[6] Dill G.C. and Gear C.W. (1971). A graphical search for stiffly stable methods for ordinary differential equations, J. of the Assc. For comput. Machinery, Vol. 18, No. 1, pp. 75 79.
[7] Khalsarai M.M., Oskuyi N.N., and Hojjati G. (2012). A class of second derivative multistep methods for stiff systems, Acta Universitatis apulensis, Vol. 30, pp. 171 188.
[9] Ezzeddine A.K. and Hojjati G. (2012). Third derivative multistep methods for stiff systems, Inter. J. of Nonlinear Sci., Vol. 14, pp. 443-450.
[10] Akpodamure O.G. and Muka K.O. (2016). New block backward differentiation for stiff initial value problems, J.of the Nig. Assc. Of Maths. Physics, Vol. 36, pp. 449-456.

[^0]: Muka, K. O. and Olu-Oseh, A. S. (2017). Boundary Locus Search for Stiffly Stable Second Derivative Linear Multistep Formulas for Stiff ODEs, University of Ibadan Journal of Science and Logics in ICT Research (UIJSLICTR), Vol. 1, pp. 7 - 14

