
       UIJSLICTR Vol. 1,  June 2017       26 
 

 
University of Ibadan 

Journal of Science and Logics in ICT Research   
 

 
Modelling of Components of Building Structures Using Discrete Structures of 
Computer Science 

Bamidele (‘Dele) Oluwade 
deleoluwade@yahoo.com  

 
POB 20253, UIPO., 
Ibadan, Oyo 200005 
Nigeria 
 
 
Abstract  

Buildings are essential physical structures which serve several purposes including residential accommodation, factories, 
hospitals, laboratories, offices, schools, as well as religious places of worship such as church, mosque, shrine etc. A building is 
an aggregate of components such as roof, window, door and arch. From the perspective of computer graphics, each of these 
components can be formed from a point and a line. Several models dealing with aspects of building structures have been 
developed in the literature. Two of the popular generic models are the Tits Building model and the evolutionary computation 
(bioinformatics) model. While the former uses Discrete Structures of Computer Science (DSCS), specifically, set theory, graph 
theory and lattice theory, the latter is strictly based on genes derived from nucleotides in DNA Computing. In this paper, a novel 
DSCS model is presented using the qualitative equivalence behavior of a set of autonomous ordinary differential equations 
(ODEs). In the model, ODEs of the same kind are classified based on the phase portraits (i.e. geometrical shapes) generated from 
their equilibrium points. The model successfully presents a good representation of (aspects) of components of buildings, with 
focus on a door, and can be potentially simulated into computer software. 
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I     INTRODUCTION  

Buildings are essential physical structures which serve 
several purposes including residential accommodation, 
factories, hospitals, laboratories, offices, schools, as well as 
religious place of worship such as church, mosque, shrine etc 
[1]. Historically, civil engineering encompasses buildings, 
roads and bridges, of which the design principles are somehow 
similar. However, in modern times, with increasing 
specialization, buildings are now normally classified under 
building technology/engineering [2] while civil engineering 
often refers to the design and construction of roads, bridges, 
rail tracks etc [3]. Structural engineering is a part of the larger 
civil engineering family which focuses on the study and 
design/calculation of appropriate loads, usually called bearing 
capacity, which a building/civil engineering structure will 
carry, and the balancing of these loads to enable the structure to 
be stable [4]. Normally, a structure cannot carry more than its 
bearing capacity.  (Building) Structural analysis is invariably 
tied to engineering mechanics.  This is of two kinds. While 
engineering statics deals with the study of a structure under 
dead or stationary load [5], engineering dynamics focuses on 
the analysis of a structure under applied or moving load [6]. In 

Nigeria, building/civil engineering has come of age. Examples 
of successful indigenous/Nigerian civil engineering firms over 
the years include T. A. Oni & Sons (the first indigenous 
construction company), L. A. O. Banjoko & Sons, Adebayo & 
Olatunbosun & Sons, and Dantata & Sawoe. Successful 
multinational firms that have operated on Nigerian soil include 
Julius Berger Plc, Cappa & Dalberto, China Civil Engineering 
Construction Company (CCECC), Arab Contractors, Solel 
Bonel, Taylor Woodrow, Strabag and Salini. A leading 
indigenous structural engineering firm is Ette & Aro Partners. 
Four key specialization areas of building technology are (i) 
Building Structures (which deals with stability of buildings) (ii) 
Building Maintenance, which focuses on keeping the building 
in its original state, as much as possible (iii) Building Services, 
which deals with building infrastructure such as lighting, 
sewage disposal system, plumbing works etc (iv) Construction 
Management, which deals with effective management 
strategies from inception of building to completion. 

Generally, three major engineering processes are Design, 
Construction and (Performance) Testing/Evaluation [7, 8]. 
Design essentially involves preparation of the architectural 
structure; construction involves the translation of the 
architectural structure into real physical structure while 
performance testing deals with checking to ensure that 
functionalities of a building are functioning as desired, 
according to specification. A designer is a highly trained 
person who normally has skills to construct but a person who 
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has the ability to construct may not necessarily be highly 
skilled in design. This phenomenon is the case with some 
typical indigenous construction companies, who could 
construct but not necessarily skilful in design. Generally, 
structural or design oversight may lead to disastrous 
consequences such as revealed via engineering forensics in the 
case of the collapse of the Kinzua Viaduct in 2003 [9]. This 
viaduct was initially built in North-Central Pennsylvania, 
USA, in 1882 but was rebuilt in 1900 before its eventual 
collapse over a century years later. A viaduct is a special 
bridge, especially a rail flyover, consisting of series of short 
spans. 

 
The construction of a building is normally preceded by an 

architectural design, which in a sense, depicts the building 
model. This design invariably consists of geometrical 
structures composed of points, lines and derived shapes such as 
circles, spheres, rectangles etc. This aligns with computer 
graphics [10]. Furthermore, in the parlance of computer 
science, the geometric structures are data structures (DS), 
which may be fundamental (primitive) or derived (non-
primitive) units of data that are manipulated in computer 
(software) design [11]. A set (real numbers, rational number, 
complex number etc) is a classic example of primitive DS 
while array, graph, stack, tree and queue are examples of non-
primitive DS, built from the primitive structures. In the peculiar 
case in which a DS is binary in nature, or generates binary 
structures, it becomes a discrete structure. That is, a discrete 
structure is a data structure whereas a data structure is not 
necessarily a discrete structure. Examples of discrete structures 
are set, group, lattice and graph [12, 13, 14]. 

Mathematical) modeling refers to the act of translating 
physical problems into mathematical relationships. It plays a 
vital role in science, engineering and environmental sciences, 
in the design and analysis of physical systems which are 
intractable, costly or complex in nature [7, 15, 16]. In 
particular, models have historically been useful in studying the 
behaviour of environmental systems such as buildings, bridges 
and roads under applied loads [3, 4, 17]. This assists in 
determining the appropriate bearing capacity to be 
incorporated in the structural design. A classical example on 
the use of models to solve physical problems relates to the 
famous Konigsberg bridge problem which was solved by the 
great Swiss mathematician Leonhard Euler in the early 18th 
century. This pertains to the seven bridges in Konigsberg, 
Switzerland, which crossed the river Pregel. Euler proved 
mathematically, using a standard method of proof called 
‘proof by contradiction’, that it is impossible to devise a route 
which crosses each bridge just once [12]. A field of 
mathematics which has been fundamentally useful in 
modeling is differential equations [18]. This field describes 
processes which change with time and so plays an important 
role in predicting or explaining the trend of changes in 
structural or dynamical systems. 

 
Several discrete structure-related models have been 

developed in the literature. Two of the popular generic models 
are the Tits Building model [19] and the Bioinformatics model 

[20]. While the former makes use of set theory, lattice theory 
and graph theory, the former is based on evolutionary 
computation. The goal of the present paper is twofold. First, an 
abridged history of some of the major developments in the 
modelling and analysis of building and civil engineering 
structures is presented. Secondly, a novel model for theoretical 
construction of basic building components, with focus on a 
door, is presented based on discrete structure of computer 
science. Specifically, the qualitative equivalence behavior of a 
set of first order autonomous ordinary differential equations 
(ODEs), having a polynomial non-linear part, is considered 
[21]. This set-theoretic model is herein described as the 
qualitative equivalence model of buildings. In the model, the 
phase portraits (geometrical figures) resulting from the 
equilibrium points of the ODEs are used to model components 
of building structure such as wall, roof etc. In the parlance of 
discrete structures of computer science, these phase portraits 
are actually graphs consisting of nodes and edges. Simulation 
of models leads to the development of computer software. 
Examples of computer programs which have been used in 
performing the dynamical analysis of structures are SAP and 
NASTRAN. Popular computer graphics software include, 
among others the Microsoft Word, Corel draw, and LATEX. 

In an earlier paper [22], it was shown that there is a marked 
similarity between the process of building a house 
(construction industry) and the process of building computer 
information system (computer industry). Specifically, it was 
shown that the systems development life cycle is applicable to 
both. In [23], some novel computer, and information and 
communication technology (ICT) software tools/models that 
are being utilized in the built environment, including three 
dimensional CAD modelling, were presented. In particular, 
Chau et al [24] presented a four dimensional visualization 
model designed to aid the knowledge and understanding of the 
relevance of modern computer graphics to the responsibilities 
of the construction site manager. The fact that the methods of 
drawings and graphs cannot be computationally analyzed even 
though they are capable of expressing complex concepts have 
spurred researchers to develop visual approaches and 
paradigms that can be used to capture and represent nodes in a 
computational form and which can be linked to and integrated 
with data sets and applications (e.g. [25]). One of the active 
research institutions in this area is the Pacific Northwest 
National Laboratory, USA [26].  

The rest of the paper is arranged as follows: In Section II, 
some historical and contemporary ideas on mathematical 
modeling are presented. In Section III, the qualitative 
equivalence of ordinary differential equation (ODE) model of 
building structure is espoused. This is the main contribution in 
the paper. This model is an extension of an earlier application 
of the concept of qualitative equivalence of differential 
equations to fractals and computer networks [27, 28, 29]. 
Essentially, a similarity is established among fractals, 
networks and components of buildings (such as wall, roof, 
door etc.), namely that, all can take the form of a digraph. The 
focus is however on a door. Section IV discusses the model 
while Section V concludes the paper. 
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II  REVIEW OF LITERATURE ON THE 

MATHEMATICAL MODELLING OF BUILDINGS  

The use of mathematical modeling for studying physical 
structures has been an age long phenomenon. The first stage in 
the mathematical modeling process is the formulation of a real 
or analytical model of the (building or civil engineering) 
structure which is being studied [7, 17, 18]. Assumptions are 
then made to simplify the model by applying such physical 
laws as the stress-strain relationship for elastic beams, the 
Newton’s laws, Lagrange’s equation, strain-displacement 
relations etc. This is with a view towards formulating a 
mathematical problem for the physical problem.  

Usually the mathematical problem would invariably be in 
the form of differential equation(s) of motion that describe the 
analytical model; generally, a continuous model leads to 
partial differential equations while a discrete-parameter model 
leads to ordinary differential equations. This is then followed 
by the solution of the resulting equations to obtain the 
dynamical response. The equations are solved subject to some 
specified initial conditions and inputs from external sources 
(such as dimensions, material properties, loads). The solution 
is thereafter interpreted in terms of the time history of the 
motion of the structure. This gives the predicted behaviour of 
the real structure otherwise called the response. In particular, 
development in mathematical modeling for building and civil 
engineering structures is intertwined with the evolution or 
history of structural mechanics (statics or dynamics) [3, 4, 30]. 
Table 1 presents a summary of historical development in 
mathematical modeling of these structures (structural 
mechanics) from the ancient/earliest times to modern times. 

 
Table 1: Summary of Some Historical And Contemporary 
Developments In Mathematical Modelling Of Building And 
Civil Engineering Structures 
 
S/N Name of Scientist Highlight of Contribution to 

Knowledge 
1. Imhotep (c. 2700 

BC), Egyptian 
architect and 
structural engineer 

He is credited with the construction of 
the first recorded step pyramid. He is 
thus often referred to as the father of 
structural engineering. 

2. Aristotle (384-
322BC);  Greek 
scientist and 
philosopher 

He propounded the subject matter of 
structural statics. 

3. Leonardo da Vinci 
(1452-1519); Italian 
scientist and 
philosopher 

He laid the foundation of mechanical 
science. 

4. Galileo Galilei 
(1564-1642); Italian 
scientist 

He expounded theories of structural 
analysis including those for stresses in 
frames and strains in beams. 

5. Robert Hooke 
(1635-1703); 
English scientist 

He discovered the basic law of 
elasticity. In the process of doing this, 
he corrected some of the theories of 
Galileo. He also explained the principle 
of the catenarian arch. 

6. Claude-Louis 
Navier (1785 - 

He established the theory of elasticity. 
Among others, he conjectured Navier’s 

1836), French 
physicist and 
engineer  

hypothesis (1926) which states that 
‘the plane-sections remain plane’, in 
agreement with an earlier work of 
Edme Mariotte (1620 - 1684). 

7. The Bernoulli 
brothers, Swiss 
scientists. They 
include (i) Jacob 
Bernoulli (1654-
1705) (ii) Johann 
Bernoulli (1667-
1748), Jacob’s 
junior brother (iii) 
Daniel Bernoulli 
(1700-1782), the 
son of Johann. 

They applied the principle of the 
infinitesimal calculus to calculate the 
deflections of beams. They also 
developed the principle of the 
catenarian arch. 

8. Leonard Euler 
(1707 – 1783), 
Swiss scientist 

He applied the principle of the 
infinitesimal calculus to analyze the 
buckling loads of perfect structures. 

9. Gottfried Wilhelm 
Von Leibnitz (1646 
– 1746), German 
scientist 

He discovered the concept of 
infinitesimal calculus. 

10. Sir Isaac Newton 
(1642 – 1727), 
English scientist 

He co-discovered infinitesimal calculus 
with Leibnitz. 

11. Thomas Young 
(1773 - 1829), 
English physician 
and polyvalent 
intellectual 

He improved on the work of Euler with 
respect to imperfect and eccentrically 
loaded columns. This work inspired 
theories of elastic stability, which is the 
basis of design of modern bridges. 

12. Charles Bage (1751 
- 1822), English 
architect 

He built the first building in the world 
which used an interior iron frame 

13. William Strutt 
(1756 - 1830), 
English civil 
engineer and 
architect 

He built a prototype fireproof mill 
which is essentially the first fireproof 
building. 

14. Carlos Alberto 
Castigliano (1847 -
1884), Italian 
scientist                      

He proved a theorem for computing 
displacement as partial derivative of 
the strain energy. 

15. Joseph Aspdin 
(1778–1855), 
English inventor                                 

He obtained patent for Portland 
Cement. 

16. Joseph-Louis 
Lambot (1814-
1887), French 
inventor                             

He constructed a rowing boat which 
was built of ferrocement, thus paving 
way for reinforced concrete. 

17. Henry Bessemer 
(1813-1898), 
English inventor                            

He developed the Bessemer process for 
producing steel. 

18. Vladimir Shukhov 
(1853-1939), 
Russian 
civil/structural 
engineer and 
architect 

He developed analysis methods for 
new structural geometries such as 
tensile structures, thin-shell structures, 
lattice-shell structures and hyperboloid 
structures. 

19. Eugene Freyssinet 
(1879 – 1962), 
French 
civil/structural 

He discovered a way of solving the 
challenges arising from weakness of 
concrete structures under tension. This 
led to his construction of 6 prestressed 
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engineer concrete bridges. His discovery has 
applications in such area as the design 
of airship hangars. 

20. Hardy Cross (1885 
– 1959), American 
civil/structural 
engineer 

He developed the moment distribution 
method. This enables reliable 
approximation of the real stresses of 
complex structures i.e. the method is 
useful for structural analysis of 
statically indeterminate structures. 

21 John Fleetwood 
Baker (1901 – 
1985), British 
scientist and 
civil/structural 
engineer 

He developed the plasticity theory of 
structures thus paving way for reliable 
design of steel structures. 

22. Alexander 
Hrennikoff  (1896 – 
1984), Russian-
Canadian 
structural/civil 
engineer 

He discovered an approach to the 
discretization of plane elastic problems 
using lattice framework. This paved the 
way for finite element analysis, a 
numerical technique. 

23.  Richard Courant 
(1888 – 1972), 
German-American 
scientist                                

He developed the mathematics of finite 
element analysis, which is nowadays 
accomplished using a computer. This 
subsequently led to formal 
development of the finite element 
method by J. Turner, R. W. Clough, H. 
C. Martin and L. J. Topp. 

 

A. Tits Building Model 
The Tits building, due to J. Tits, is an abstract algebraic 

representation or model of a real building structure [19, 31].  
The model is based on mathematical concepts such as lattice 
theory, graph theory and general set theory. In particular, 
lattice theory is generally useful in providing a common 
abstract setting for studying subsystems of certain systems e.g. 
subgroups of a group [32]. Simply put, a lattice is a set T on 
which a relation ~ is refined such that this relation is reflexive, 
(i.e. a~a), antisymmetry (a~b, b~a  a=b) and transitive (a~b, 
b~c  a~c) and in which any two elements of T have a 
greatest lower bound and a least upper bound. Essentially, a 
Tits building refers to a pair C =(C, S) in which C is a 
complex and S a family of finite sub-complexes (otherwise 
called apartments) possessing four (4) basic properties namely 
[19]: 

(i) The complex is thick. 
(ii) Each of the apartments Ai is thin. 
(iii) Any two elements of a complex belong to an 

apartment. 
(iv) Given two apartments A1, A2 in which α, β ϵ A1 ∩ 

A2, there exists an isomorphism θ: A1→ A2 such 
that θ (w) = w for all w ϵ αC ∩βC. 

Two concepts in mathematics are said to be isomorphic if they 
are structurally identical.  

A complex in itself refers to a semilattice T = (T, ≤) = (T, 
^) which has a minimum element zero (0) such that for all x ϵ 
T, xT = {y ϵ T: y < x} is a finite Boolean lattice (^ means 
“and”). The minimal elements of  T\{0} are called vertices 
while the maximum elements of T are called chambers. If x ϵ 
T, then the rank of x is the number of vertices in xT. The basic 

assumption is that all chambers are of the same rank d and 
every element of a semilattice is a chamber. The rank of a 
semilattice is defined to be d. Let x, x/ be chambers and 
suppose T is connected (i.e. there exist chambers x = x0, x1, x2, 
---, xm = x/ such that xi ^ xi+1 has rank d-1 for 0 < i < m-1. A 
subcomplex refers to an ideal of T [32, 33]. A (sub) complex is 
said to be thick if every element of rank d-1 is less than at least 
three (3) chambers. It is said to be thin if every element of rank 
d-1 is less than exactly two (2) chambers. 

B. Bioinformatics Model 
One of the most explored areas in building models is the 

bioinformatics model which is based on evolutionary/genetic 
algorithm. This algorithm is premised on the fact that a 
computer program employs a large population of different 
inputs such that each specifies one way of performing some 
task. The program transforms a randomly generated input into 
a set of corresponding outputs, in such a way that the set is 
evaluated based on some predetermined criteria. At every 
stage, a program creates a new set of outputs which it once 
again evaluates in order to produce a new generation of inputs. 
The process is repeated several times until a satisfactory 
output is arrived at. Thus, the principle of ‘survival of the 
fittest’ holds since it is only the individuals that perform best 
go on to have ‘offspring’. Two of the evolutionary algorithm-
based programs are Inventor and Emergent Designer [20, 34, 
35].  
 

In the Inventor, each gene determines a specific structural 
element such that genes in four separate sections of a 
building’s genome correspond to the following four different 
kinds of elements, namely bracing, beam, column and support 
footings. Also, every gene has a numeric value which encodes 
the type of structural element to be used such that there exists 
a 1-1 mapping of the genes to the building components e.g. if 
the value of a gene which describes a bracing is 0, nothing 
should be put in that position.  Emergent Designer is a 
computer program which permits the simulation of structures 
that can be developed from a design embryo. Just like 
Inventor, the program also permits the simulation of structures 
which evolve through crossovers and mutations. The program 
allows the entire genome to evolve i.e. the program modifies 
both the design embryo and the design rule over many 
generations. The advantage of Emergent Designer over 
Inventor is that the former is stiffer (i.e. has a higher sway) 
under applied load such as the normal weight and the wind 
load. In general, a novel way of maintaining a reduced weight, 
especially in very tall buildings, is to use macro-diagonals. 
These are external cross-bracings which span large areas of a 
building. Examples of classic high rise buildings with 
embedded macro-diagonals include the Bank of China Tower, 
Hong Kong and the John Hancock Tower, Chicago, USA. A 
cursory look at the Swiss Re Tower, London shows that it is a 
classic example of modern day buildings which mimic nature 
(biomimicry), and so amenable to the principle of genetic 
algorithm. Specifically, the tower resembles a microorganism 
called glass sponge, and so a computer simulation may be 
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carried out to create optimized designs using the biological 
processes of genetic crossover, mutation and evolution. 
 

III     QUALITATIVE EQUIVALENCE MODEL OF  
           BUILDINGS  
 

Many, if not majority, of real life phenomena are 
invariably modeled using differential equation. This is due to 
the fact that the equation describes the rate of change of a 
variable subject to another variable such as time i.e. dynamical 
phenomena. Generally, an equation in a variable that changes 
with respect to another variable may assume any of the 
following four generic types, namely, ordinary differential 
equation, partial differential equation, difference equation and 
differential-difference equation. The type of equation to be 
used for modeling depends on the nature of the problem to be 
solved. The qualitative theory of ordinary differential 
equations is a novel theory which attempts to make prediction 
about the changes in structural or dynamical systems by 
observing patterns instead of explicitly solving any equation, 
in contrast to the analytic method i.e. it studies the geometry 
of the solution curves of differential equations instead of 
solving them explicitly by using conventional methods such as 
the use of specific formulas, such as the popular integration by 
parts, separation of variables, as well as the series solution 
method [36, 37, 38].  

 
This section presents an exposition on the use of the 

qualitative theory of differential equations to model the basic 
mathematical geometries of lines, planes and their derived 
shapes. Specific connection with building structures is then 
made. Examples of differential equation-based models of 
building structure which are non-qualitative are [39, 40]. Two 
general models based on the idea of qualitative equivalence of 
differential equations are [41, 42]. In particular, in [42], the 
authors presented a review on qualitative reasoning such as 
learning qualitative differential equation model and qualitative 
simulation. Applications of these models in physics, biology 
and medical science are then highlighted. In [41], the author 
presented concept of equivalence by considering whether the 
reflecting functions of two differential systems are coincident 
in their common domain. If they are, the systems are defined 
to be equivalent. 
 

The present model is based on the ordinary differential 
equation 

x/ = f(x)    (3.1) 
called first order autonomous equation, where f(x) = Σaixn-i, 0 
≤ i ≤ n, is the general polynomial of degree n. The equilibrium 
(or critical) points of the equation are those values of n which 
would make the right hand side of the equation to be zero e.g. 
the equation x/ = x2 – 9 has two equilibrium points namely x = 
+ 3. Of particular importance in the model is the geometrical 
representation of the qualitative behaviour of (3.1) called the 
phase portrait or phase diagram. This diagram is completely 
determined by the nature of the equilibrium points of (3.1).   

A. Algorithm 

 
The algorithm of this model is as follows: 
 
Procedure QUALITATIVE EQUIVALENCE MODEL 
Step 1: Start 
Step 2: Consider a set of first order autonomous ODEs of the 
form 
       
{x/ = f(x) = ∑ ai xn-i, ai ϵ Ṛ,  0 ≤ i ≤ n, for fixed n } (3.2) 
    
where R is the set of real numbers, and n a natural number. 
 
Step 3: For a given n, consider all the possible equilibrium 
points (ep). 

(i) If n = 1, there exists only one ep which is necessarily 
real. 

(ii) If n ≥ 2, all the ep may be real or some may be 
complex, occurring as complex conjugates. 

 
Step 4: For a given n in Step 3 above, construct the various 
phase portraits based on the ep. 
 
Step 5: For two ordinary differential equations D1, D2 ϵ (3.2), 
define an equivalence relation ~ on (3.2) as D1 ~ D2 if D1 and 
D2 have the same geometrical shape, otherwise called phase 
portraits.  
 
Step 6: Based on the Fundamental Theorem of Equivalence 
Relations [32], (3.2) can be classified into disjoint equivalence 
classes, referred to as the qualitative classes in the qualitative 
theory of differential equations. 
  
Step 7: Study the physical structure of a building component 
to be modeled. 
 
Step 8: Superimpose two or more combinations of phase 
portraits to get the shape of the desired building component. 
 
Step 9: Stop 

B. The Case n = 1 and n = 4 

The cases in which n = 1 and n = 4 in (3.2) are classic 
examples of cases which enable a door or door frame to be 
constructed. The former is the simplest case, where f(x) is 
linear [35]. These cases are thus considered in this subsection. 
When n = 1, the four basic phase diagrams are as shown in 
Figure 1, where c is the equilibrium point. 
 
    In Figure 1(a), f(x) decreases when c > 0 and increases 
when c < 0. In Fig. 1(b), f(x) increases when c > 0 and 
decreases when c < 0. In the case of Fig. 1(c), f(x) decreases 
when c > 0 and also increases when c < 0 while in Fig. 1(d), 
f(x) decreases when c > 0 and also decreases when c < 0. This 
form the set:  
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S = {Attractor (A), Repellor (R), Positive Shunt (P), Negative 
Shunt(N)}         (3.3) 
 
 
(a)                       
                        (Attractor) 

 
 
 

(b) 
                                                                 (Repellor) 
 
 
 
(c)  
                                                                  (Positive shunt)   
 
 
                                                         
(d) 
 
                                                            (Negative Shunt)  
 
Figure 1:  Basic digraphs (phase portraits) when f(x) is 
linear 

 
If the direction of each of the elements of this set is 

ignored, then a superimposition by end points of the elements 
models such building components as louvres, doors, floors and 
roofs.  As the degree n of f(x) increases and when some or all 
the equilibrium points of (3.1) have complex values, more 
interesting phase diagrams are formed using (3.2). When 
disconnected straight lines are formed, the end points of these 
lines are joined to form a single structure. The set defined in 
(3.2) may therefore be partitioned into disjoint equivalent or 
qualitative classes such that all equations having the same 
phase diagram belong to the same class.  

Similarly, consider the case in which n = 4 [28]. This gives 
rise to the equation. 
 
x/ = ax4 + bx3 + cx2 + dx + e   (3.4) 
 
where a, b, c, d, e are real numbers, a ≠ 0. (3.2) then has (i) 
four real equilibrium points (ii) four complex equilibrium 
points (comprising of two complex conjugates) as well as (iii) 
two real and two complex equilibrium points. In case (i), there 
are 21 possible subsets of (3.2) with 18 actual qualitative 
classes i.e. only 18 distinct digraphs exist, each of which is a 
directed straight line graph. The direction of each of the 
diagrams may be inferred by considering the set {ARAR, 
RARA, ARPP, RANN, AR, RA, PAR, NRA, ANR, RPA, 
PPP, NNN, ARP, RAN, P, N, PP, NN}. In case (ii), the two 
basic graphs are: 
 
 
 
 

 
       and  
 
 
 
 
    
 Figure 2(a)      Figure 2(b) 
 
Figure 2: Basic graphs when all equilibrium points are 
complex for n = 4  
 
The three basic graphs in case (iii) are: 
 
 
 
 
 
 
 
 
Figure 3(a)  Figure 3(b)         Figure 3(c) 
 
Figure 3: Basic graphs when two of the equilibrium points are 
complex for n = 4. 

 

C. Illustration: Construction of a Door  

Consider a door or a door frame as a building component 
being modeled. A typical three dimensional shape of the 
component is as shown in Figure 4. One part of the figure 
shows the door in an open position, clearly revealing its frame. 
The second part shows the door in its closed position. 
Structurally, the door consists of four (4) nodes and four (4) 
edges. If the direction in Figure 1 is ignored and the node of 
one diagram rests on the node of another, then a rectangle 
having 4 nodes and 4 edges result. By stretching the sides of 
the figure to the appropriate value of length and breadth, then a 
door or door frame is constructed. Alternatively, consider 
Figure 2(b), which consists of two (2) vertical lines, one on the 
left hand side (LHS) and the other on the right hand side 
(RHS). Suppose another copy of the figure is produced and is 
rotated 900 counterclockwise. By superimposing it on top of 
the original figure, such that the line on its LHS now rests on 
the bottom of the original figure while the line on its RHS lies 
on the bottom of the original figure, such that the nodes are all 
joined together, then a door frame structure is formed.   

 

Figure 4: A door [43] 
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IV     DISCUSSION 

In general, every component of a building can be aptly 
modeled using the idea of the qualitative equivalence (or 
theory) of ordinary differential equations. In (3.2), the case in 
which the value n results into complex conjugates is more 
interesting as it gives rise to more robust structures. The 
present paper generates k-state systems (where k ≥ 1), such 
that the actual value of k depends on the degree n in (3.2) such 
that k ≤ n. The quaternary or 4-state codes, in which k = 4, 
arising from the present paper can be reduced to the binary or 
2-state codes designed and analyzed in [7] by considering 
Figure 1. In the figure, if phase portraits having arrows 
moving in the same direction are considered to be 
isomorphically the same, then 1(a) and 1(b) describes just a 
single state AR while 1(c) and 1(d) describes another state PN. 
Thus, the 4-state system {A, R, P, N} reduces to a 2-state 
system {AR, PN}, which is equivalent to {0, 1}. The idea in 
the paper can be integrated into existing AUTOCAD related 
software to bring about working drawings (including plans, 
sections and elevations) produced by orthographic, isometric, 
axonometric or pictorial projections [2]. It can also be 
improved and developed as a stand-alone design software, 
such as is the case with the software Inventor and Emergent 
Designer [20]. 

V CONCLUSION 

This paper has presented a discrete computing approach to 
modeling components of building structures, with emphasis on 
the use of differential equations. The idea relates to the modern 
theory of differential equations otherwise known as the 
qualitative theory. It can be developed, via simulation, into a 
distinct computer application software that can be adapted to or 
integrated into existing computer-aided design or graphics 
software such as AUTOCAD. This would ease the work of 
architects and building professionals with respect to effective 
and efficient design and construction of modern building 
structures. The idea is capable of assisting in producing 
working drawings of simple and complex building components 
and elements such as the trussed or framed roofs. For instance, 
in the king post and the queen post timber trusses, the principal 
rafter, strut, tie beam, straining beam, king post and queen 
posts are formed from the shapes which arise when the critical 
points of (3.2) are a mixture of real and complex values for a 
high value of n. The paper can be viewed as a contribution to 
information technology in building technology, and also to 
discrete structures of computer science (DSCS). Essentially, 
the paper has established a connection between building (civil) 
engineering and computer science. That is, it is shown that 
design of building structures can be accomplished via the 
instrumentality of DSCS. Similar application can be extended 
to the design of roads, bridges and rail tracks.  
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