MACRO- AND MICRO-MORPHOLOGICAL ANALYSES OF Entandrophragma angolense (Welw.) C.D.C. and Entandrophragma utile (Dawe & Sprague) Sprague
Keywords:
Micro-anatomical features, Leaf epidermis, Adaxial layer, Abaxial layerAbstract
Entandrophragma utile and Entandrophragma angolense are timber species with significant economic and ecological importance in the forestry sector. Understanding their morphological differences at both macro and micro levels is crucial for their identification, management and conservation. This study conducted a comparative analysis of the macro- and micro-morphological characteristics of Entandrophragma utile and E. angolense. Samples of E. angolense and E. utile were collected from Forestry Research Institute of Nigeria (FRIN), Oyo State, and Aponmu Forest Reserve, Ondo State, Nigeria, respectively. The bark texture, leaf structure, and fruit/seed shapes were determined following standard methods. The leaf epidermal cells of E. utile were wavy-patterned, while those of E. angolense were polygonal-shaped. The number of stomata of E. utile (42.60±1.70) was significantly higher than E. angolense (22.80±1.40), while epidermal cell length was 32.40±6.40 ?m and 63.96±5.80 ?m, respectively. The number of trichomes was higher in E. angolense (7.20±0.30) than E. utile (1.80±0.30). The micro-morphology of leaves differed between E utile and E. angolense. Hence, the cellular structure (abaxial and adaxial epidermal cell layers) and anatomy (mid-rib and bark features) of the two species were uniquely different. These are essential findings for their ethnobotanical use, identification, management, and conservation strategies.
References
Abbasi, K., Shima, K. and Karimzadeh, G. (2024). Interspecific morphological and phytochemical variations in the willow herb (Epilobium spp.) medicinal plant. Journal of Plant Physiology and Breeding 13 (2): 15-27.
Amonum, J. I., Jonathan, B. A., and Japheth, H. D. (2019). Structure and diversity of tree species at the College of Forestry and Fisheries, University of Agriculture Makurdi, Benue State, Nigeria. International Journal of Forestry and Horticulture 5 (1): 20-27. https://doi.org/10.20431/2454-9487.0501004
Bazargani, M. M., Falahati-Anbaran, M. and Rohloff, J. (2021). Comparative analyses of phytochemical variation within and between congeneric species of willow herb, Epilobium hirsutum and E. parviflorum: Contribution of environmental factors. Frontiers in Plant Science 11: 595190. https://doi.org/10.3389/fpls.2020.595190
Benedict, O., Meincken, M. and Seifert, T. (2014). The protective role of bark against fire damage: A comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees 28. https://doi.org/10.1007/s00468-013-0971-0
Bertolino, L. T., Caine, R. S. and Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science 10: 225. https://doi.org/10.3389/fpls.2019.00225
Bisong, F. and Buckley, P. (2014). Threat status of commercially exploited trees in the Nigerian rainforest. Open Journal of Forestry 4 (5): 536-546. https://doi.org/10.4236/ojf.2014.45058
CABI International. (2022a). Entandrophragma angolense (tiama mahogany). https://doi.org/10.1079/cabicompendium.21174
CABI International. (2022b). Entandrophragma utile (ogipogo-mahogany). https://doi.org/10.1079/cabicompendium.21192
Clair, B., Ghislain, B., Prunier, J., Lehnebach, R., Beauchêne, J. and Alméras, T. (2018). Mechanical contribution of secondary phloem to postural control in trees: The bark side of the force. New Phytologist 221 (1), 209-217. https://doi.org/10.1111/nph.15375
Crespo-Martínez, S., Sobczak, M., Ró?a?ska, E., Forneck, A. and Griesser, M. (2019). The role of the secondary phloem during the development of the grapevine Berry Shrivel ripening disorder. Micron, 116:36-45. https://doi.org/10.1016/j.micron.2018.09.012
Curvers, K., Seifi, H., Mouille, G., de Rycke, R., Asselbergh, B., Van Hecke, A., Vanderschaeghe, D., Höfte, H., Callewaert, N., Van Breusegem, F. and Höfte, M. (2010). Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiology 154: 847–860. https://doi.org/10.1104/pp.110.158972
Harun, N., Shaheen, S., Ahmad, M. and Shahid, M. M. (2020). Light and scanning electron microscopy-based foliar micromorphological tools for the identification of fodder grass taxa. Microscopy Research and Technique 83. https://doi.org/10.1002/jemt.23490
Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R. and Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14 (5): 9643–9684. https://doi.org/10.3390/ijms14059643
James, O. E., Green, B. O., Ajuru, M. G. and Wilson, V. (2020). Macro-morphological study on seven selected species of Euphorbiaceae in the Niger Delta region of Nigeria. International Journal of Advanced Academic Research Sciences, Technology and Engineering 6 (4): 27.
Lang, A. C., Haerdtle, W., Bruelheide, H., Geißler, C., Nadrowski, K., Schuldt, A., Yu, M. and Oheim, G. (2010). Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China. Forest Ecology and Management 260 (10): 1708-1715. https://doi.org/10.1016/j.foreco.2010.08.015
Li, C., Mo, Y., Wang, N., Xing, L., Qu, Y., Chen, Y., Yuan, Z., Ali, A., Qi, J., Fernández, V., Wang, Y. and Kopittke, P. M. (2023). The overlooked functions of trichomes: Water absorption and metal detoxication. Plant, Cell and Environment 46 (3): 669-687. https://doi.org/10.1111/pce.14530
Liao, S., Fan, Z., Huang, X., Ma, Y., Huang, F., Guo, Y., Chen, T., Wang, P., Chen, Z., Yang, M., Yang, T., Xie, J., Si, J. and Liu, J. (2023). Variations in the morphological and chemical composition of the rhizomes of Polygonatum species based on a common garden experiment. Food Chemistry: X, 17 :100585. https://doi.org/10.1016/j.fochx.2023.100585
Liukko, K. and Elfowsson, T. (1999). The effect of bark condition, delivery time and climate-adapted wet storage on the moisture content of Picea abies (L.) Karst. pulpwood. Scandinavian Journal of Forest Research 14: 156-163.
Loram-Lourenço, L., Farnese, F., Alves, R., Dario, B., Martins, A., Aun, M., Batista, P., Silva, F., Cochard, H., Franco, A. and Menezes-Silva, P. (2022). Variations in bark structural properties affect both water loss and carbon economics in neotropical savanna trees in the Cerrado region of Brazil. Journal of Ecology 110. https://doi.org/10.1111/1365-2745.13908
Lu, Y., Avinash, K., Cadle-Davidson, L., Zou, C., Underhill, A., Atkins, P., Treiber, E., Voytas, D. and Clark, M. (2021). Fine mapping of leaf trichome density revealed a 747-kb region on chromosome 1 in cold-hardy hybrid wine grape populations. Frontiers in Plant Science 12: 587640. https://doi.org/10.3389/fpls.2021.587640
Migacz, I., Raman, V., Nisgoski, S., Muniz, G., Manfron, J., Farago, P., Khan, I. and Raeski, P. (2018). Comparative leaf morpho-anatomy of six species of Eucalyptus cultivated in Brazil. Revista Brasileira de Farmacognosia 28 (4): 437-449. https://doi.org/10.1016/j.bjp.2018.04.006
Miyazawa, S.-I., Livingston, N. and Turpin, D. (2006). Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa × P. deltoides). Journal of Experimental Botany 57. https://doi.org/10.1093/jxb/eri278
Ornellas, T., Heiden, G., de Luna, B. N. and Barros, C. F. (2019). Comparative leaf anatomy of Baccharis (Asteraceae) from high-altitude grasslands in Brazil: Taxonomic and ecological implications. Botany, 97 (10):615-626. https://doi.org/10.1139/cjb-2019-0035
Oviedo-Pereira, D. G., López-Meyer, M., Evangelista-Lozano, S., Sarmiento-López, L. G., Sepúlveda-Jiménez, G. and Rodríguez-Monroy, M. (2022). Enhanced specialized metabolite, trichome density, and biosynthetic gene expression in Stevia rebaudiana (Bertoni) Bertoni plants inoculated with endophytic bacteria Enterobacter hormaechei. Peer J 10: 13675. https://doi.org/10.7717/peerj.13675
Quadroni, S., De Santis, V., Carosi, A., Vanetti, I., Zaccara, S. and Lorenzoni, M. (2023). Past and present environmental factors differentially influence genetic and morphological traits of Italian barbels (Pisces: Cyprinidae). Water 15(2):325. https://doi.org/10.3390/w15020325
Ruffinatto, F., Negro, F. and Crivellaro, A. (2023). The macroscopic structure of wood. Forests 14 (3):644. https://doi.org/10.3390/f14030644
Rust, S. and Stoinski, B. (2024). Enhancing tree species identification in forestry and urban forests through light detection and ranging point cloud structural features and machine learning. Forests, 15 (1):188. https://doi.org/10.3390/f15010188
Ullah, F., Gao, Y., Sari, I., Jiao, R.-F., Saqib, S. and Gao, X.-F. (2022). Macro-morphological and ecological variation in Rosa serice complex. Agronomy 12 (5):1078. https://doi.org/10.3390/agronomy12051078
Valkama, E., Salminen, J.-P., Koricheva, J., and Pihlaja, K. (2004). Changes in leaf trichomes and epicuticular flavonoids during leaf development in three birch taxa. Annals of Botany 94 (2):233–242. https://doi.org/10.1093/aob/mch131
Vignesh, R. and Sumitha, V. (2020). Macro and microscopic evaluation of Gmelina arborea Roxb. – A botanical pharmacognostic approach for quality control of raw drug material. Plant Science Today 7 (1): 55. https://doi.org/10.14719/pst.2020.7.1.648
Wang, H., Wang, R., Harrison, S. P. and Prentice, I. C. (2022). Leaf morphological traits as adaptations to multiple climate gradients. Journal of Ecology 110 (6): 1344–1355. https://doi.org/10.1111/1365-2745.13873
Wang, X., Shen, C., Meng, P., Guo-Fei, T. and Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biology 21 (70). https://doi.org/10.1186/s12870-021-02840-x
Watts, S. and Kariyat, R. (2021). Morphological characterization of trichomes shows enormous variation in shape, density and dimensions across the leaves of 14 Solanum species. AoB Plants 13 (6): plab071. https://doi.org/10.1093/aobpla/plab071
Xuan, X., Wang, Y., Ma, S. and Ye, X. (2011). Comparisons of stomatal parameters between normal and abnormal leaf of Bougainvillea spectabilis Willd. African Journal of Biotechnology 10 (36): 6973-6978. https://doi.org/10.5897/AJB10.2196