HAEMATOLOGICAL, HISTOPATHOLOGICAL AND GROWTH CONDITIONS OF AFRICAN CATFISH (Clarias gariepinus) JUVENILES EXPOSED TO SUB-LETHAL CONCENTRATIONS OF CHROMIUM

Authors

  • V. S. Amesa Department of Aquaculture and Fisheries Management, University of Ibadan, Oyo State, Nigeria
  • F. P. D. Satimehin Department of Aquaculture and Fisheries Management, University of Ibadan, Nigeria
  • F. E. Olaifa Department of Aquaculture and Fisheries Management, University of Ibadan, Oyo State, Nigeria

Keywords:

Chromium, Haematology, Histopathology, Clarias gariepinus

Abstract

This study examined the effects of sub-lethal chromium (Cr) exposure on haematological parameters, pathology and growth performance of juvenile Clarias gariepinus. Based on the LC50 value of 29.6 mmg/L, four hundred juveniles were exposed to Chromium concentrations of 0.00, 0.50, 1.00, 1.50 and 2.00 mg/L for 28 days, while maintaining water quality within optimal ranges. Haematological assessments revealed significant, dose-dependent reductions in packed cell volume, haemoglobin and white blood cells. At 2.00 mg/L, packed cell volume decreased from 36.00% in the control group to 17.50% (51.39% reduction), while haemoglobin decreased from 15.00 g/dL to 5.00 g/dL, representing a 66.67% decrease. White blood cell counts dropped by 66.67%, from 13.50 × 103/?L to 4.50 × 103/?L. Growth performance was adversely affected, with mean weight gain reducing from 15 g in the control group to 9 g at 1.50 mg/L chromium concentration, and specific growth rate decreasing from 2.73% to 1.84%. The percentage weight gain dropped from 115.09% in the control to 67.30% at the highest Chromium concentration. Histopathological examination revealed concentration-dependent damage to the gill, liver and muscle tissues. Observed lesions included epithelial lifting, lamellar fusion in the gills, hepatocellular vacuolation in the liver, and myofiber disorganization in muscle tissues, with the severity of these lesions increasing with higher Chromium concentrations. Thus, sub-lethal chromium exposure induced significant haematological disruptions, tissue damage, and reduced growth in Clarias gariepinus, with potential implications for ecosystem health and human consumption safety.

References

Adeyemo, O. K. (2005). Haematological and histopathological effects of cassava mill effluent in Clarias gariepinus. African Journal of Biomedical Research 8: 179–183.

Ahmed, I., Zakiya, A. and Fazio F. (2022). Effects of aquatic heavy metal intoxication on haematological indices: a synthesis and research gaps. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2022.941773

Akbary, P. and Jahanbakhshi, A. (2018). Growth yield, survival, carcass quality, haematological, biochemical parameters and innate immune responses in the grey mullet (Mugil cephalus Linneaus, 1758) fingerling induced by Immunogen® prebiotic. Journal of Applied Animal Research 46(1): 10-16.

Akpokoje, J. O. and Mpama C. A. (2005). Basic protocol for histological slide preparation. Unpublished project, Department of Veterinary Pathology. University of Ibadan, Nigeria.

Al-Asgah, N. A., Abdel-Warith, A. A., Younis, E. M. and Allam, H. Y. (2015). Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi Journal of Biological Sciences 22(5): 543-550. https://doi.org/10.1016/j.sjbs.2015.01.002

APHA, (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association. ISBN: 978-0875532875.

Authman, M., Zaki, M., Khallaf, E. and Abbas, H. (2015). Use of fish as bio-indicator of the effects of heavy metals pollution. Journal of Aquaculture Research and Development 6(3): 328. https://doi.org/10.4172/2155-9546.1000328

Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F. and Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances 13(26): 17595–17610. https://doi.org/10.1039/d3ra00723e

Barbieri, M. (2016). The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. Journal of Geology and Geophysics 5: 1-4. https://doi.org/10.4172/2381-8719.1000237

Boyd, C. E. (1979). Water Quality Management in Fish Pond. Research and Development, Series No. 22, International Centre for Aquaculture and Agriculture, Experimental Station, Auburn University, Alabama, 45-47.

Cengiz, E. I. (2006). Gill and kidney histopathology in the freshwater fish Cyprinus carpio after acute exposure to deltamethrin. Environmental Toxicology and Pharmacology 22(2): 200–204. https://doi.org/10.1016/j.etap.2006.03.006

Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C. and Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews 25(3): 335–347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x

Crafford, D. and Avenant-Oldewage, A. (2010). Bioaccumulation of non-essential trace metals in tissues and organs of Clarias gariepinus (sharptooth catfish) from the Vaal River system: strontium, aluminium, lead and nickel. Water SA 36(5): 621-640. https://doi.org/10.4314/wsa.v36i5.63069

Cullen, J. M. and Stalker, M. J. (2016). Liver and Biliary System. Jubb, Kennedy and Palmer's Pathology of Domestic Animals: 2: 258–352.e1. https://doi.org/10.1016/B978-0-7020-5318-4.00008-5

Eaton, A. D. and Franson, M. A.H. (2005). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, Denver, Alexandria.

Ezejiofor, A. N., Orish, C. N. and Akaranta, O. (2022). Multi-organ induced toxicity of metal mixture (CdCl2, HgCl2, Pb (NO3)), and the ameliorative potentials of plantain Musa paradisiaca (F. Musaceae) stem juice on male Wistar rats. International Journal of Physiology, Pathophysiology and Pharmacology 14(4): 211–224.

FAO, (1986). Manuals of Methods in Aquatic Environment Research. Part 10. Short term static bioassays. Food and Agriculture Organization Fisheries Technical Paper 247 – 262.

Farkas, A., Salánki, J. and Specziár, A. (2002). Relation between growth and the heavy metal concentration in organs of Bream Abramis brama L. populating Lake Balaton. Arch. Environmental Contaminant Toxicology 43: 236–243 (2002). https://doi.org/10.1007/s00244-002-1123-5

Finney, D. J. (1971). Probit Analysis. Cambridge University Press, Cambridge. 333 p.

Goody, M. F., Carter, E. V., Kilroy, E. A., Maves, L. and Henry, C. A. (2017). "Muscling" throughout life: Integrating studies of muscle development, homeostasis, and disease in Zebrafish. Current Topics in Developmental Biology 124: 197–234. https://doi.org/10.1016/bs.ctdb.2016.11.002

Hashim, M., Arif, H., Tabassum, B., Arif, A., Rehman, A. A., Rehman, S. and Ajmal, M. R. (2022). Protective effect of Catharanthus roseus extract on cadmium-induced toxicity in albino rats: A putative mechanism of detoxification. Metabolites 12(11): 1059. https://doi.org/10.3390/metabo12111059

Hossain, M. A., Sutradhar, L., Sarker, T. R., Saha, S. and Iqbal, M. M. (2022). Toxic effects of chlorpyrifos on the growth, haematology, and different organs histopathology of Nile tilapia, Oreochromis niloticus. Saudi Journal of Biological Sciences 29: 103316.

Hughes, S. R., Kay, P. and Brown, L. E. (2013). Global synthesis and critical evaluation of pharmaceutical datasets collected from river systems. Environmental Science and Technology 47: 661–677.

Islam, S. M. M., Rohani, M. F., Zabed, S. A., Islam, M. T., Jannat, R., Akter, Y., and Shahjahan, M. (2020). Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish Pangasianodon hypothalamus. Toxicology Reports 7: 664–670. https://doi.org/10.1016/j.toxrep.2020.04.016

Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I. and Haq, Q. M. (2015). Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of Antioxidants. International Journal of Molecular Sciences 16(12): 29592–29630. https://doi.org/10.3390/ijms161226183

Kamila, S., Shaw, P., Islam, S., and Chattopadhyay, A. (2023). Ecotoxicology of hexavalent chromium in fish: An updated review. The Science of the total environment, 890: 164395. https://doi.org/10.1016/j.scitotenv.2023.164395

Kiran, K., Midhun, S. J., Vysakh, A., and James, T. J. (2021). Antagonistic effects of dietary Moringa oleifera on hemato-biochemical and oxidative stress of lead nitrate intoxicated Nile tilapia, Oreochromis niloticus. Aquaculture Research 52: 6164-6178.

Kori-Siakpere, O., Ogbe, M. G., and Ikomi, R. B. (2009). Haematological response of the African catfish Clarias gariepinus (Burchell, 1822) to sub-lethal concentrations of potassium permanganate. Scientific Research and Essays 4(5): 457-466.

Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P.K., Kumar, R., Kumar, P., Shubham, and Das, S. (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability 13(17): 9963. https://doi.org/10.3390/su13179963

Larsson, D. G. J. (2014). Pollution from drug manufacturing: review and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences 369:(1656) 20130571. doi: 10.1098/rstb.2013.0571.

Malaj, E., von der Ohe, P. C., Grote, M., Kühne, R., Mondy, C.P., Usseglio-Polatera, P., Brack, W. and Schäfer, R. B. (2014). Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proceedings of the National Academy of Sciences of the United States of America, 111, 9549–9554.

Martin, S. A., and Król, E. (2017). Nutrigenomics and immune function in fish: New insights from omics technologies. Developmental & Comparative Immunology, 75: 86-98. https://doi.org/10.1016/j.dci.2017.02.024

Nafees, M. S. M., Kamarudin, M. S., Karim, M., Hassan, M. Z., and De Cruz, C. R. (2023). Effects of dietary fiber on growth, feed efficiency and nutrient utilization of tinfoil barb (Barbonymus schwanenfeldii, Bleeker 1853) fry. Aquaculture Reports, 32, 101743. https://doi.org/10.1016/j.aqrep.2023.101743

Oyelese, O. A. and Faturoti, E. O. (1995). Growth and Mortality Estimates in Clarias gariepinus fed graded levels of processed cassava peels. Journal Tropical for Resources 11:71-81.

Parek, H. and Tank, S. (2015). Studies of haematological parameters of Oreochromis niloticus exposed to Cadmium Chloride (CdCl2, 2H2O). International Journal of Environment. 4. 10.3126/ije.v4i2.12631.

Paul, S., Mandal, A., Bhattacharjee, P., Chakraborty, S., Paul, R. and Kumar M. B. (2019). Evaluation of water quality and toxicity after exposure of lead nitrate in freshwater fish, major source of water pollution. Egyptian Journal of Aquatic Research, 45, 345-351.

Ricker, W. E. (1979) Growth rates and models. In: Hoar, W.S., Randall, D.J. and Brett, J.R., Eds., Fish Physiology, III, Bioenergetics and Growth, Academic Press, New York, 677 743.

Samprath, K., S. Velamnial, I. J. Kennedy and James, R. (1993). Haematological changes and their recovery in Oreochromis mossambicus as a function of exposure period and sublethal levels of Ekalux. Acta Hydrobiological., 35: 73-83.

Sarma, P.R. (1990). Red Cell Indices in, Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd Edition, Butterworth Publishers, Oxford.

Segner, H., Wenger, M., Moller, A. M., Kollner, B. and Casanova-Nakayama, A. (2011). Immunotoxic effects of environmental toxicants in fish—How to assess them? Environmental Science and Pollution Research International 19: 2465–2476.

Shah, S. Z. H., Fatima, M., Afzal, M. and Bilal, M. (2021). Interactive effect of citric acid, phytase and chelated mineral on growth performance, nutrient digestibility and whole?body composition of Labeo rohita fingerlings. Aquaculture Research 52(2): 842-858.

Shah, Z. U. and Parveen, S. (2022). Oxidative, biochemical and histopathological alterations in fishes from pesticide-contaminated river Ganga, India. Scientific Reports, 12(1): 3628. https://doi.org/10.1038/s41598-022-07506-8

Shahid, M., Natasha, Dumat, C., Niazi, N. K., Xiong, T. T., Farooq, A. B. U. and Khalid, S. (2021). Ecotoxicology of heavy metal (loid)-enriched particulate matter: foliar accumulation by plants and health impacts. Reviews of Environmental Contamination and Toxicology Volume 253, 65-113.

Shanker, A. K., Cervantes, C., Loza-Tavera, H., and Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International 31(5): 739–753. https://doi.org/10.1016/j.envint.2005.02.003

Sharma, P., Tripathi, S., and Chandra, R. 2020. Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon 6(7): e04559.

Steel, R. G. D. and Torrie, J. H. (1980). Principles and procedures of statistics. A biometrical approach, 2nd Edition, McGraw-Hill Book Company, New York.

Thrall, M. A., Weiser, G., Allison, R. W. and Campbell, T. W. (Eds.). (2012). Veterinary haematology and clinical chemistry. John Wiley & Sons.

Tucker, C. S., and Hargreaves, J. A. (2009). Environmental Best Management Practices for Aquaculture. John Wiley & Sons.

Vinodhini, R., and Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common Carp). International Journal of Environmental Science and Technology 5(2): 179-182.

Wepener, W. (1990). The effects of heavy metals at different pH on the blood physiology and metabolic enzymes in Tilapia sparmanii (Cichlidae). M.Sc. Thesis, Rand Afrikaans University, Johannesburg, South Africa.

Witeska, M., Kondera, E. and Bojarski, B. (2023). Hematological and hematopoietic analysis in fish toxicology—A review. Animals 13(16): 2625. https://doi.org/10.3390/ani13162625

Younis, E. S. M., Abdel-Warith, A. W. A. M., Al-Asgah, N. A., Ebaid, H., and Mubarak, M. (2013). Histological changes in the liver and intestine of Nile tilapia, Oreochromis niloticus, exposed to sublethal concentrations of cadmium. Pakistan Journal of Zoology 45: 833-841.

Downloads

Published

01/16/2026

How to Cite

Amesa, V. S., Satimehin, F. P. D., & Olaifa, F. E. (2026). HAEMATOLOGICAL, HISTOPATHOLOGICAL AND GROWTH CONDITIONS OF AFRICAN CATFISH (Clarias gariepinus) JUVENILES EXPOSED TO SUB-LETHAL CONCENTRATIONS OF CHROMIUM. RENEWABLE, 5(1). Retrieved from https://journals.ui.edu.ng/index.php/ren/article/view/2093